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Abstract This paper addresses a variant of the quickest path problem in
which each arc has an additional parameter associated to it representing the
energy consumed during the transmission along the arc while each node is
endowed with a limited power to transmit messages. The aim of the energy-
constrained quickest path problem is to obtain a quickest path whose nodes
are able to support the transmission of a message of a known size. After in-
troducing the problem and proving the main theoretical results, a polynomial
algorithm is proposed to solve the problem based on computing shortest paths
in a sequence of subnetworks of the original network. In the second part of
the paper, the bi-objective variant of this problem is considered in which the
objectives are the transmission time and the total energy used. An exact algo-
rithm is proposed to find a complete set of efficient paths. The computational
experiments carried out show the performance of both algorithms.
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1 Introduction

The quickest path problem (QPP) is a path problem in a directed network
which aims to minimize the time taken to transmit a given amount of data.
The transmission time depends on two parameters, an additive function which
represents the traversal time or the delay along the path and a bottleneck
function which represents the path capacity.

Let G = [N ,A] be a directed network without multiple arcs and self loops,
where N denotes the set of nodes and A the set of directed arcs. Let n be the
number of nodes and m the number of arcs. Let s and t be two distinguished
nodes in the network called, respectively, origin and destination and σ the data
units to be sent from node s to node t. Each arc (u, v) ∈ A is endowed with a
capacity c(u, v) > 0 and a delay time l(u, v) > 0. The capacity represents the
amount of data that can be sent through arc (u, v) per time unit. The delay
time is the time required for the data units to traverse the arc (u, v).

Let us assume that a message is transmitted as a continuous stream along
the arc (u, v) at a constant flow rate ρ 6 c(u, v). At this flow rate, a message
of σ data units is sent from node u to node v through arc (u, v) in l(u, v) + σ

ρ

time. This expression takes its minimum value when ρ = c(u, v). Thus, the
minimum required transmission time is l(u, v) + σ

c(u,v) .

A simple path or loopless path P from node s to node t is a sequence of
nodes and arcs P = (s = u1, u2, . . . , uk = t) such that ui ∈ N , i = 1, . . . , k,
ui 6= uj if i 6= j, and (ui, ui+1) ∈ A, i = 1, . . . , k − 1. In the paper, we use the
term path in place of simple or loopless path for short as well as the term s− t
path in place of a path from s to t. We assume that the set of s − t paths in
the network G is nonempty.

The delay experienced by a message sent via path P depends on the mes-
sage forwarding mechanism used at the intermediate nodes [18]. If σ data units
are sent at a constant rate from s to t along the s− t path P with no buffering
at intermediate nodes (circuit switching mode), the minimum transmission
time or end-to-end delay of path P is

Tσ(P ) = l(P ) +
σ

c(P )
(1)

where l(P ) =
∑k−1
i=1 l(ui, ui+1) denotes the delay time of path P and c(P ) =

mini=1,...,k−1 c(ui, ui+1) denotes its capacity.
Hence, the QPP can be formulated as finding an s− t path so that:

min
P

Tσ(P )

s.t. P is an s− t path in the network G
(2)

A characteristic of the QPP is that, in general, the size of the message has
a strong influence on the optimal path. When σ is small with respect to the arc
capacities, the transmission time is controlled by the arc delays and a shortest
path with respect to the arc delay could be a good solution to the problem.
However, when σ is very large, the transmission time is controlled by the arc
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capacities and the problem could be approached by computing the shortest
path with respect to the arc delay among all paths with the largest capacity.
It is also worth mentioning that the QPP does not satisfy the property known
as ‘the optimality principle’, i.e. an s′ − t′ subpath of an optimal s− t path is
not necessarily an s′ − t′ optimal path.

The QPP was first proposed by Moore [11] to model flows of convoy-type
traffic. Then it was proposed by Chen and Chin [5] in the context of model-
ing transmission problems in communication networks where nodes represent
transmitters/receivers without data memories and arcs represent communi-
cation channels. Cĺımaco et al [6] applied the model to the routing of data
packets in Internet networks. Hamacher and Tijandra [8] proposed the QPP
for a special evacuation problem where evacuees may use only a single path
or tunnel from their initial position. Martins and Santos [10] and Pelegŕın and
Fernández [16] approached the QPP as a special minsum-maxmin bi-objective
path problem. They proved that any optimal solution of the QPP is a non-
dominated solution of the bi-objective problem in which the delay time is
minimized and the capacity of the path is maximized. Hence, a quickest path
can be obtained by solving this bi-objective problem and selecting a nondom-
inated path with the minimum transmission time.

Several polynomial time algorithms have been proposed in the literature,
all with the same time complexity. They are based on solving a shortest path
problem in an enlarged network [2,5], solving a sequence of shortest path
problems with respect to the delay time on networks where the minimum
capacity increases [10,11,16,19], using a label-setting algorithm [12] or tak-
ing into account that a quickest path is a supported efficient solution of the
aforementioned bi-objective problem [20].

Several variants and extensions of the QPP have been addressed in the
literature. The problem of finding the first K quickest paths in nondecreasing
order of transmission time has been analyzed in [4,6,13,15,19]. The QPP
constrained to contain a given subpath has been studied in [3,19]. The problem
of determining the transmission process when data are transmitted in batches
of variable size but with required limits has been considered in [1]. The problem
of computing the quickest path whose reliability is not lower than a given
threshold has been analyzed in [2]. Pascoal et al. [14] provide a survey on the
subject.

When formulating the QPP, no attention is paid to the characteristics of
the transmitters/receivers represented by the nodes. It is implicitly assumed
that they have unlimited energy available for transmitting messages. Usually,
this can be the case in wired networks. However, for mixed networks which
combine wired and radio link connections, some of the nodes can have limited
power to transmit messages. This available power must be taken into account
when computing the QPP since the energy consumed at node u during the
transmission of the message along the arc (u, v) depends on the units of time
during which node u is active, i.e. while it is sending data. Hence, it depends on
the rate at which data are transmitted. In this paper, we introduce the energy-
constrained quickest path problem (EQPP) which aims to obtain a quickest
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path whose nodes are able to support the transmission of σ data units. We for-
mulate the problem and develop a polynomial time algorithm to solve it based
on computing shortest paths with respect to the delay time in a sequence of
subnetworks of the original network. Although it is a constrained QPP, the
time complexity of the algorithm is the same as that of any of the algorithms
developed for solving the QPP. In the second part of the paper we address
the minsum-minsum bi-objective variant of this problem (BEQPP) in which
the total transmission time and the total consumed energy are minimized.
We approach this NP-hard problem by determining a complete set of efficient
paths and develop an exact algorithm based on solving bi-objective shortest
path problems. The paper is structured as follows. Sections 2 and 3 formally
set out the EQPP and prove the main theoretical results which support the
algorithm developed for solving it. Section 4 goes on to develop a polyno-
mial algorithm to solve the EQPP and shows its computational complexity.
In Section 5 the bi-objective EQPP is formulated as well as its properties are
proved and the algorithm is developed to find a complete set of efficient paths.
Section 6 displays the results of the computational experiment carried out to
assess the performance of the proposed algorithms. Finally, our conclusions
are presented in Section 7.

2 The energy-constrained quickest path problem

Let G = [N ,A] be the directed network introduced in Section 1. In order to
formulate the EQPP, we assume that each arc (u, v) ∈ A is endowed with
an energy rate ω(u, v) > 0 which measures the energy required at node u to
transmit data units along the arc (u, v) per time unit. This energy typically
depends on the characteristics of the arc (delay time and capacity).

Each node u ∈ N is endowed with a power bu which represents the limited
energy available for transmission at node u. If σ data units are transmitted as
a continuous stream from node u to node v along the arc (u, v) at a constant
flow rate ρ, then the node u is active, i.e. sending data, during σ

ρ time units.

Hence the required energy at node u is ω(u, v) σ
ρ . Without loss of generality,

we assume that
ω(u, v)

σ

c(u, v)
6 bu, ∀(u, v) ∈ A (3)

If the arc (u, v) does not hold this condition it cannot support the transmission
of the σ data units and so can be removed.

Taking into account the message forwarding mechanism, σ data units are
sent along the s−t path P at a constant rate c(P ). Therefore, the total energy
required to transmit σ data units using the path P is:

Eσ(P ) =

k−1∑
i=1

ω(ui, ui+1)
σ

c(P )
(4)

Let us denote W (P ) =
∑k−1
i=1 ω(ui, ui+1).
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The residual energy bu(σ, P ) at node u after transmitting σ data units
through the path P is

bu(σ, P ) =

{
bu − ω(ui, ui+1) σ

c(P ) if u = ui, i = 1, . . . , k − 1

bu otherwise

In order for P to be an s− t feasible path, bu(σ, P ) > 0, ∀u ∈ P . That is to
say, the feasibility of a path P is measured through the availability of its nodes
to transmit the whole data units at a rate c(P ). Hence, the energy-constrained
quickest path problem (EQPP) can be formulated as finding an s− t path so
that:

min
P

Tσ(P )

s.t. bu(σ, P ) > 0, u ∈ N
P is an s− t path in the network G

(5)

The special characteristics of the side constraint on the residual energy
allow us to develop an algorithm which is based on successively solving shortest
path problems in subnetworks of the original network G which guarantee the
feasibility of the path with respect to the energy availability at the nodes.

3 Main theoretical results

In what follows, we assume without loss of generality that there are r different
capacities c1 < c2 < · · · < cr in the network G. Let us assign to each arc
(u, v) ∈ A the label

cmin(u, v) = min
i=1,··· ,r

{
ci : bu − ω(u, v)

σ

ci
> 0

}
This label provides the minimum capacity at which the node u is able to

support the transmission of the σ data units along the arc (u, v). Therefore,
it gives an idea of the feasible paths in which this arc can be included. Note
that (u, v) can be an arc of an s− t feasible path P only if c(P ) > cmin(u, v).

We define Gj = [N ,Aj ], j = 1, . . . , r, to be a subnetwork of G where
(u, v) ∈ Aj if and only if (u, v) ∈ A, c(u, v) > cj and cmin(u, v) 6 cj .

It is worth mentioning that, in general, the network Gj+1 is not a sub-
network of Gj and so the number of arcs in the successive networks does not
necessarily decrease. For illustration, Figure 1 displays a network G with the
capacities 1, 2, 3 and 4, and the associated networks Gj .

Lemma 1 Let P = (s = u1, u2, . . . , uk = t) be an s − t path in the network
Gj. Then, P is an s− t feasible path for the EQPP.

Proof If P is an s− t path in the network Gj , then c(P ) > cj > cmin(ui, ui+1),
i = 1, . . . , k − 1. Hence

bui
(σ, P ) = bui

− ω(ui, ui+1)
σ

c(P )
> bui − ω(ui, ui+1)

σ

cmin(ui, ui+1)
> 0
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Fig. 1: Networks G and Gj , j = 1, . . . , 4

For the remaining nodes u of the network, bu is not modified when the σ data
units are transmitted. Therefore, bu(σ, P ) > 0 ∀u ∈ N and the result follows.

ut

Lemma 2 Let P = (s = u1, u2, . . . , uk = t) be an s − t feasible path for
the EQPP with capacity c(P ) = cj. Then, P is an s − t path in the network
Gj.

Proof Since P is feasible

bui(σ, P ) = bui − ω(ui, ui+1)
σ

c(P )
> 0, i = 1, . . . , k − 1



The energy-constrained quickest path problem 7

Hence, cmin(ui, ui+1) 6 c(P ) = cj 6 c(ui, ui+1), i = 1, . . . , k − 1. Taking into
account the definition of the network Gj , we conclude that the arc (ui, ui+1),
i = 1, . . . , k − 1, is in Aj , and so P is an s− t path in Gj . ut

It is worth pointing out that an s − t feasible path P for the EQPP with
capacity c(P ) > cj is not necessarily an s − t path in the network Gj . For
instance, in the example displayed in Figure 1, the capacity of the path 1−3−
4−6 is equal to 3. However, this path is neither in network G1 nor in network G2.
In other words, the network Gj contains the paths P = (s = u1, u2, . . . , uk = t)
of G which are feasible for the EQPP with capacity greater than or equal to
cj , for which

bui
(σ, P ) = bui

− ω(ui, ui+1)
σ

cj
> 0, i = 1, . . . , k − 1

i.e., whose nodes are able to support the transmission with capacity cj . In
particular, the network Gj contains all the s − t feasible paths for the EQPP
with capacity cj . Hence, if there is no s− t path in the network Gj , then there
will not be an optimal solution of the EQPP with capacity cj .

Let us consider the following SPP with respect to the delay time in Gj :

SPPj : min
P

l(P )

s.t. P is an s− t path in the network Gj
(6)

Lemma 3 Let P be an optimal solution of the SPPj and c(P ) = ch > cj.
Then, there is no optimal solution of the EQPP with capacity cj.

Proof Let Q be an s− t feasible path for the EQPP with capacity cj . Then Q
is a path in Gj and

Tσ(P ) = l(P ) +
σ

ch
< l(Q) +

σ

cj
= Tσ(Q)

Thus, Q cannot be an optimal solution of the EQPP. ut

Next we prove that any optimal solution to the EQPP can be obtained as
a shortest path with respect to the delay time.

Theorem 1 Let P ∗ be an optimal solution of the EQPP and c(P ∗) = ch.
Then, P ∗ is an optimal solution of the SPPh and any optimal solution of the
SPPh is an optimal solution of the EQPP.

Proof Since P ∗ is an s− t feasible path for the EQPP with capacity ch, then
P ∗ is an s − t path in Gh. Let Q be an s − t path in the network Gh. Thus,
c(Q) > ch. If l(Q) < l(P ∗), then

Tσ(Q) = l(Q) +
σ

c(Q)
< l(P ∗) +

σ

ch
= Tσ(P ∗)

which contradicts the optimality of P ∗. Furthermore, by applying Lemma 3,
the capacity of any s − t shortest path P̃ in Gh is c(P̃ ) = ch. Hence, P̃ is an

s− t feasible path for the EQPP such that T (P̃ ) = T (P ∗) and so is an optimal
solution of the EQPP. ut
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4 EQPA: An algorithm for solving the EQPP

As a consequence of Theorem 1, the optimal solutions of the EQPP can be
obtained by computing shortest paths with respect to the delay time in the
networks Gj and determining those which have minimum transmission time.

The algorithm EQPA
Step 0.

Set j = 1
Step 1.

Solve the SPPj .
If there is no s− t shortest path in Gj with capacity cj , go to Step 2.
Otherwise, let Pj be an optimal solution of the SPPj with c(Pj) = cj .

Step 2.
If j = r, go to Step 3. Otherwise, set j = j + 1 and go to Step 1.

Step 3.
Find the index h ∈ {1, . . . , r} such that Tσ(Ph) = min

j=1,...,r
Tσ(Pj)

Ph is an optimal solution of the EQPP.

It is worth at this point emphasizing the important differences existing
between the networks Fj , j = 1, . . . , r constructed by the algorithms proposed
in [10,11,16,19] to solve the QPP and the networks Gj , j = 1, . . . , r.

The network Fj = [N , Ãj ] is defined to be a subnetwork of G where (u, v) ∈
Ãj if and only if (u, v) ∈ A and c(u, v) > cj . Hence F1 ⊃ F2 ⊃ · · · ⊃ Fr.
This property allows the algorithms in [10,11,16,19] to skip analyzing some
of the networks Fj when solving the QPP. In fact, if the shortest path in
the network Fj has capacity c′j > cj , the networks from Fj+1 to Fj′ can be
omitted since they cannot provide a better candidate for the optimal solution
of the QPP. However, as the networks Gj do not satisfy that property, when
solving the EQPP it is necessary to solve the shortest path problem in each of
the networks Gj . No network can be skipped since arcs which are not in the
network Gj can be in the network Gj+1 and vice versa.

Notice also that, at the iteration j, the algorithm saves the shortest path
Q as a candidate to be the optimal solution of the EQPP only if its capacity
equals cj (Step 1). Otherwise, it is of no interest at this point of the algorithm.
Indeed, if c(Q) = cj′ > cj , by applying Lemma 3 no path with capacity cj can
be an optimal solution of the EQPP. Moreover, the path Q will be one of the
s − t paths in Gj′ and only if Q is an s − t shortest path in the network Gj′
will it be a candidate to be the optimal solution of the EQPP.

Finally, notice that if there are P ∗ and Q∗ optimal paths with capacities
cj = c(P ∗) 6= c(Q∗) = cj′ , the algorithm is able to provide both paths because
they are s− t shortest paths in Gj and Gj′ , respectively.

Theorem 2 The time complexity of the Algorithm EQPA is O(r(m+n log(n)))
and uses O(n+m) space.
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Proof It is enough to realize that the algorithm essentially amounts to solving
r times a shortest path problem each running in O(m+n log(n)) time [7]. ut

5 The bi-objective energy-constrained quickest path problem

In this section we propose to take into consideration not only the transmis-
sion time but also the total energy used and thus to minimize both over the
set of feasible paths. The bi-objective energy-constrained quickest path prob-
lem (BEQPP) can be stated as:

min
P

(Tσ(P ), Eσ(P ))

s.t. bu(σ, P ) > 0, u ∈ N
P is an s− t path in the network G

(7)

According to the theory of multi-objective optimization, a feasible solu-
tion P is efficient if and only if there is no other feasible solution Q so that
Tσ(Q) 6 Tσ(P ) and Eσ(Q) 6 Eσ(P ) with at least one strict inequality. If
P is an efficient solution, it will be called an s − t efficient path. The image
(Tσ(P ), Eσ(P )) of P is called a non-dominated point. Two feasible solutions
P and Q are called equivalent if they have the same image. A complete set
of efficient solutions is a set of efficient solutions Xe such that every feasible
solution not in Xe is either dominated or equivalent to at least one feasible
solution in Xe.

The BEQPP is NP-hard since the bi-objective shortest path problem (BSPP)
is also NP-hard [17]. Note that the BSPP can be obtained as a particular case
of the BEQPP when r = 1 and the bu is big enough not to constrain the
transmission. The following theorem allows us to conclude that the efficient
paths of the BEQPP can be obtained by solving bi-objective shortest path
problems in Gj .

Theorem 3 Let P̃ be an s − t efficient path for the BEQPP and c(P̃ ) = ch.

Then, P̃ is an s− t efficient path with respect to:

BSPPh : min
P

(l(P ), W (P ))

s.t. P is an s− t path in the network Gh
(8)

Proof The path P̃ is an s− t path in the network Gh, by construction of this
network. Let us assume that there is an s− t path Q in Gh which dominates P̃
with respect to the bi-objective function (l,W ). Then, c(Q) > ch and l(Q) 6
l(P̃ ) and W (Q) 6W (P̃ ) with at least one strict inequality. Let us assume for

the time being that l(Q) < l(P̃ ). Then,

Tσ(Q) = l(Q) +
σ

c(Q)
6 l(Q) +

σ

c(P̃ )
< l(P̃ ) +

σ

c(P̃ )
= Tσ(P̃ )

and
Eσ(Q) = W (Q)

σ

c(Q)
6W (Q)

σ

c(P̃ )
6W (P̃ )

σ

c(P̃ )
= Eσ(P̃ )
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which contradicts that P̃ is an s− t efficient path for the BEQPP. The other
case is analogous. ut

As a consequence of Theorem 3, the description of the algorithm BEQPA
proposed to solve the BEQPP is as follows:

The algorithm BEQPA
Step 0.

Set j = 1, E = ∅
Step 1.

Solve the BSPPj .
If there is no s− t path in Gj , go to Step 2.
Otherwise, let Ej be a complete set of efficient paths of the BSPPj .
For each P ∈ Ej , compute (Tσ(P ), Eσ(P ))
E = Merge(E , Ej)

Step 2.
If j = r, stop. E solves the BEQPP.
Otherwise, set j = j + 1 and go to Step 1.

where the operation Merge is defined as follows:

Merge(E , Ej) = {P ∈ E ∪ Ej : There is no Q ∈ E ∪ Ej such that Q dominates P
with respect to the bi-objective function (Tσ, Eσ)}

Note that in Step 1 of the algorithm there is only the need to compute a
complete set of efficient paths. Indeed, let P and Q be equivalent efficient paths
for the BSPPj with capacities c(P ) = ch, c(Q) = ci such that ch > ci > cj .
Since they are equivalent, l(P ) = l(Q) and W (P ) = W (Q). Hence,

Tσ(P ) = l(P ) +
σ

c(P )
< l(Q) +

σ

c(Q)
= Tσ(Q)

Eσ(P ) = W (P )
σ

c(P )
< W (Q)

σ

c(Q)
= Eσ(Q)

Therefore, P dominates Q with respect to the bi-objective function (Tσ, Eσ)
and so the path Q is not relevant. In the case that the algorithm records Q,
the path P would be considered for sure when solving the BSPPh.

6 Computational experience

This section presents the results of the computational experiment carried out
to evaluate the performance of the algorithms EQPA and BEQPA proposed in
this paper. The numerical experiments have been performed on a PC Intel R©
CoreTM I7-3820 CPU at 3.6 GHz × 8 having 32 GB of RAM under Ubuntu
Linux 14.04 LTS. Although we had a multi-processor computer at hand, only
one processor was used in our tests. The code has been written in C++,
GCC 4.8.2. The algorithm EQPA involves a Dijkstra’s algorithm whose im-
plementation is based on a min-priority queue implemented using a binary
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Table 1: Parameters of test problems Set 1 and Set 2

n m r

Set 1 10,000, 20,000, 30,000, 40,000 10n, 20n, 30n, 40n, 50n 10, 100, 1000
Set 2 20,000, 40,000, 60,000, 80,000, 100,000 10n, 20n, 30n, 40n, 50n 10, 100, 1000

heap data structure. In the implementation of the algorithm BEQPA, we have
used the Biobjective Label Correcting Algorithm as described in [17] to solve
the BSPPj . As mentioned above, the EQPP can be solved in polynomial time
whereas the BEQPP is NP-hard. Due to this very distinctive characteristic,
we have used different sets of test problems to assess the performance of the
algorithms. Notice also that both algorithms heavily rely on the performance
of the algorithms to solve the SPP and the BSPP which they have embedded.

6.1 The EQPA performance evaluation

We have considered three different sets of test problems as in [20]. Set 1 uses
the network generator NETGEN [9] to provide the skeleton of the network.
Set 2 is based on the network generator GRIDGEN, which is able to provide
larger networks. It has been obtained from ftp://dimacs.rutgers.edu/pub/

netflow/generators/network/gridgen/gridgen.c. Finally, Set 3 is based
on seven USA road networks which have been obtained from http://www.

dis.uniroma1.it/challenge9/download.shtml.
Table 1 shows the parameters n, m and r of the networks in Sets 1 and 2.

There are 60 problem groups defined by the number of nodes n, the number
of arcs m and the number of distinct capacities r in Set 1 and 75 in Set 2.
For each problem group, we have generated 10 instances. Delay time and
capacity coefficients are generated from uniform distributions in the range
[10, 10,000]. To generate problems with a fixed number of capacities, first the
required number of capacities is generated from the corresponding uniform
distribution. Then, each arc is assigned one of the capacities generated with a
uniform probability. The energy rate of the arc (u, v) is computed as ω(u, v) =
10−5c(u, v)l2(u, v). The power at the nodes has been fixed at 3 × 108. For
assessing the effect of the number of items which are sent, we have taken
σ1 = 100, σ2 = 10,000 and σ3 = 1,000,000.

Tables 2 and 3 display the results provided by the EQPA for Sets 1 and 2.
The first to third columns show the value of the parameters r, n and m.
The fourth to sixth columns display the mean of the s − t shortest paths
computed by the algorithm in the 10 runs which are candidate to be an optimal
solution of the EQPP, depending on the size of σ. The seventh to ninth columns
show the mean CPU time in seconds of the 10 runs for the different values
of σ. In the algorithm, there are as many networks Gj as distinct capacities.
Hence, in principle, we could expect to have as many candidate s− t shortest
paths as distinct capacities. However, with an increasing number of distinct
capacities, the number of candidate s− t shortest paths increases more slowly.
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Fig. 2: Boxplots of CPU time depending on the number of capacities and the
value of σ

For instance, when r = 10, the mean of the s− t shortest paths computed by
the algorithm varies between 4.3 and 8.5 for Set 1 and between 5.1 and 9.1
for Set 2. However, when r = 1000, the range is 11.1-36.9 for Set 1 and 14.3-
38.3 for Set 2. Regarding the CPU times, these are almost negligible when the
number of distinct capacities is r = 10. As expected, the CPU time increases
as long as the number of capacities and the size of the network increases, but
for the largest problems the average CPU time is less than 6 minutes and
usually takes less than 1 minute. In order to get an overall picture of the CPU
time invested by the algorithm in these sets of instances, Figure 2 displays the
boxplot of the CPU time for each number of capacities and each value of σ,
depending on the type of network generator. Every boxplot summarizes the
information of 200 problems when using Set 1 and 250 problems when using
Set 2. Note that in both groups the variability increases when the number of
capacities increases. Networks of Set 2 are larger and so CPU times are longer.

As for Set 3, Table 4 displays the characteristics of these USA road net-
works: name of the network, number of nodes and arcs, and the destination
node t. In all cases, the node origin is s = 1. The energy rate of the arcs and
the power of the nodes is the same as in Sets 1 and 2. Based on these net-
works we have constructed two different groups of test problems. In the first
group, the delay is taken as the parameter distance of the road network [20].
The capacity is computed from the parameter time of the road network. The
range of the arc times is partitioned in 100 intervals of equal length. In or-
der to have integer capacities, the intervals are rounded off by applying the
ceiling function to the upper endpoint and properly adjusting the intervals.
For instance, if (a1, a2], (a2, a3] are the first two intervals of the partition, the
resulting intervals would be (a1, da2e], (da2e, da3e]. Then, if an arc time is in
the interval (a, b], the arc capacity is b. Therefore, problems with 100 distinct
capacities are obtained.

The second group of instances built with the USA road networks takes
the arc delay and capacity from the empirical distributions proposed in [6],
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Table 2: EQPA test results: Set 1. Mean of the number of candidate s − t
shortest paths Pj and mean of the computing time (CPU time in seconds)

# Shortest paths CPU time
r n m σ1 σ2 σ3 σ1 σ2 σ3

10 10,000 100,000 6.5 6.5 4.3 0.04 0.04 0.03
200,000 7.8 7.8 7.1 0.08 0.09 0.08
300,000 8.4 8.4 7.4 0.13 0.13 0.13
400,000 7 7 6.6 0.15 0.15 0.15
500,000 7.4 7.4 7.2 0.20 0.20 0.19

20,000 200,000 7 7 4.7 0.10 0.10 0.08
400,000 7.6 7.6 7.1 0.20 0.20 0.19
600,000 7.3 7.2 6.4 0.27 0.27 0.25
800,000 8.3 8.3 7.7 0.35 0.35 0.36

1,000,000 8.5 8.5 8.4 0.44 0.44 0.45
30,000 300,000 6.4 6.4 5 0.17 0.17 0.15

600,000 8.2 8.2 7.2 0.34 0.34 0.31
900,000 8.1 8.1 7.5 0.45 0.46 0.44

1,200,000 8.3 8.3 8.3 0.61 0.61 0.60
1,500,000 7.7 7.7 7.3 0.71 0.71 0.71

40,000 400,000 6.7 6.7 4.6 0.25 0.25 0.21
800,000 7.8 7.8 6.7 0.47 0.47 0.42

1,200,000 7.8 7.8 6.8 0.62 0.62 0.60
1,600,000 7.9 7.9 7.4 0.77 0.77 0.76
2,000,000 8.1 8.1 8 0.95 0.95 0.95

100 10,000 100,000 13.4 13.4 8.8 0.23 0.23 0.15
200,000 17.1 17.1 15.5 0.36 0.36 0.31
300,000 20.1 20.1 18.8 0.57 0.57 0.50
400,000 16.9 16.9 14.6 0.70 0.70 0.61
500,000 20.1 20.1 19.1 0.74 0.75 0.67

20,000 200,000 17 17.1 12 0.61 0.62 0.38
400,000 18.8 18.8 13.3 1.04 1.05 0.78
600,000 18 18 14.8 1.38 1.39 1.06
800,000 19.8 19.8 19.3 1.73 1.74 1.59

1,000,000 22.5 22.5 19.5 2.18 2.21 1.97
30,000 300,000 18.1 18.1 11.6 1.07 1.08 0.71

600,000 18 18 15.1 1.81 1.82 1.50
900,000 20.9 20.9 16.9 2.45 2.45 2.12

1,200,000 22.2 22.2 19.6 3.00 3.02 2.66
1,500,000 24.4 24.4 20.9 4.24 4.28 3.73

40,000 400,000 19.8 19.8 9.5 1.62 1.63 0.95
800,000 18 17.9 15.9 2.45 2.47 1.83

1,200,000 18.3 18.3 14.4 3.33 3.35 2.83
1,600,000 24.3 24.3 23.1 4.60 4.62 3.99
2,000,000 24.8 24.8 20.8 5.14 5.18 4.37

1000 10,000 100,000 17.1 17.1 11.1 2.15 2.15 1.25
200,000 24.4 24.4 23 3.64 3.64 2.77
300,000 24.6 24.6 20.3 5.13 5.14 4.05
400,000 24.1 24.1 19.4 5.57 5.59 4.12
500,000 27.5 27.5 23.8 8.18 8.20 6.88

20,000 200,000 17.2 17.2 15.1 4.76 4.76 2.80
400,000 23.5 23.5 18.2 8.86 8.87 6.35
600,000 22.3 22.3 19.6 12.41 12.41 9.13
800,000 27.7 27.7 23.7 16.44 16.47 14.24

1,000,000 30.4 30.4 23.3 21.29 21.32 17.81
30,000 300,000 21.8 21.8 13.9 9.09 9.11 6.64

600,000 22.4 22.4 21.1 18.79 18.82 15.10
900,000 27.4 27.4 22.3 18.84 18.89 15.65

1,200,000 30.2 30.2 23.8 29.03 29.09 24.10
1,500,000 35.7 35.7 22.8 35.12 35.21 27.44

40,000 400,000 19.1 19.1 11.6 13.58 13.58 7.24
800,000 26.7 26.7 20.3 22.26 22.24 16.20

1,200,000 28.5 28.5 23.1 34.20 34.26 26.50
1,600,000 29.6 29.6 25.1 33.58 33.74 26.94
2,000,000 36.9 36.9 25.5 41.43 41.61 33.41
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Table 3: EQPA test results: Set 2. Mean of the number of candidate s − t
shortest paths Pj and mean of the computing time (CPU time in seconds)

# Shortest paths CPU time
r n m σ1 σ2 σ3 σ1 σ2 σ3

10 20,000 200,000 7.4 7.1 5.1 0.14 0.14 0.12
400,000 8.2 8.0 6.9 0.32 0.30 0.26
600,000 7.9 8.4 7.3 0.48 0.48 0.46
800,000 8.2 7.5 7.6 0.65 0.64 0.64

1,000,000 8.5 8.9 7.6 0.78 0.79 0.76
40,000 400,000 5.6 7.0 5.1 0.31 0.35 0.28

800,000 7.3 7.3 7.1 0.63 0.78 0.68
1,200,000 8.6 7.9 7.9 1.04 0.95 0.96
1,600,000 8.6 7.8 7.9 1.48 1.14 1.30
2,000,000 8.3 7.8 7.7 1.57 1.52 1.55

60,000 600,000 7.7 7.5 6.5 0.53 0.53 0.41
1,200,000 8.4 7.5 6.8 1.08 1.12 0.93
1,800,000 8.9 8.5 8.7 1.48 1.55 1.35
2,400,000 8.0 8.6 8.4 1.99 2.10 1.98
3,000,000 9.0 8.5 8.6 2.63 2.31 2.39

80,000 800,000 7.5 7.3 6.2 0.85 0.82 0.65
1,600,000 8.0 7.9 7.4 1.45 1.48 1.32
2,400,000 7.8 8.4 7.0 1.90 2.02 1.76
3,200,000 8.5 8.5 8.9 2.88 2.69 2.67
4,000,000 8.3 8.4 8.7 2.82 3.21 3.32

100,000 1,000,000 7.1 7.2 4.5 0.97 1.00 0.72
2,000,000 8.6 8.7 7.6 1.95 1.85 1.67
3,000,000 8.4 8.2 7.8 2.92 2.74 2.45
4,000,000 9.0 9.1 8.1 3.64 3.40 3.09
5,000,000 8.6 8.4 8.4 4.49 4.53 4.52

100 20,000 200,000 17.5 15.1 16.1 0.77 0.88 0.62
400,000 18.1 20.4 16.1 1.92 2.14 1.82
600,000 22.1 21.0 19.1 3.38 3.43 2.97
800,000 23.0 22.1 17.0 4.58 4.53 3.58

1,000,000 23.0 22.5 21.6 5.50 5.11 5.40
40,000 400,000 15.4 18.9 14.3 2.69 2.65 2.20

800,000 21.0 20.7 18.4 5.45 5.74 4.86
1,200,000 21.4 23.3 19.4 6.34 6.90 6.51
1,600,000 26.8 23.1 20.8 10.39 9.04 7.88
2,000,000 21.7 23.9 20.0 11.11 11.33 10.31

60,000 600,000 19.0 17.4 17.1 3.92 3.53 2.32
1,200,000 21.9 19.1 19.5 8.09 7.08 6.55
1,800,000 24.7 25.0 22.3 10.39 10.91 9.30
2,400,000 23.8 23.1 21.5 14.34 15.76 13.05
3,000,000 24.4 24.6 24.2 16.11 16.96 15.05

80,000 800,000 19.8 16.2 13.9 5.99 6.32 4.07
1,600,000 23.7 21.4 20.7 11.20 9.89 9.26
2,400,000 22.7 23.4 22.7 13.46 13.15 14.53
3,200,000 25.5 25.6 21.8 18.86 18.47 15.41
4,000,000 24.6 26.3 21.9 24.07 22.62 20.98

100,000 1,000,000 17.0 18.2 11.2 7.01 7.69 4.40
2,000,000 22.9 24.2 21.7 14.74 15.03 11.03
3,000,000 25.9 23.8 20.8 23.22 22.43 16.20
4,000,000 24.8 24.5 22.5 24.84 23.00 19.95
5,000,000 26.5 26.7 23.1 35.49 32.16 27.34

1000 20,000 200,000 16.4 21.2 17.4 7.05 7.64 5.59
400,000 28.3 24.7 20.3 18.83 16.80 13.81
600,000 28.4 25.2 20.0 33.84 28.61 26.85
800,000 31.4 32.5 24.7 40.10 42.63 35.63

1,000,000 32.4 30.4 26.4 47.70 47.07 45.59
40,000 400,000 21.6 20.4 14.3 24.66 23.38 15.10

800,000 23.5 25.1 19.9 45.14 45.88 41.90
1,200,000 35.9 30.1 20.4 60.73 63.05 57.30
1,600,000 31.8 36.7 27.5 84.54 81.46 82.87
2,000,000 30.9 30.1 28.7 99.68 109.98 105.14

60,000 600,000 21.8 16.1 15.8 39.21 31.20 22.96
1,200,000 29.9 26.8 21.7 65.34 72.31 59.27
1,800,000 28.7 32.4 26.2 92.61 87.70 78.63
2,400,000 31.8 35.3 23.0 124.92 141.53 104.93
3,000,000 36.0 32.2 34.1 170.26 161.07 135.22

80,000 800,000 21.8 21.4 16.5 57.94 51.97 37.74
1,600,000 28.4 27.0 28.7 89.25 90.94 81.56
2,400,000 31.6 31.8 26.5 130.03 143.72 108.45
3,200,000 35.0 35.9 33.9 148.90 168.41 164.46
4,000,000 37.0 38.3 31.4 223.11 214.16 207.19

100,000 1,000,000 22.3 22.5 17.7 66.68 58.03 43.85
2,000,000 28.7 27.3 17.5 134.51 115.37 105.83
3,000,000 30.3 32.3 25.4 194.02 212.43 174.07
4,000,000 35.7 35.4 30.0 229.23 216.92 199.08
5,000,000 36.0 34.7 30.5 320.52 308.50 265.57
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Table 4: Dimension and destination nodes of the network in Set 3

Road network n m Dest. 1 Dest. 2 Dest. 3 Dest. 4

NY 264,346 733,846 264,346 132,173 857 20
BAY 321,270 800,172 321,270 160,635 567 18
COL 435,666 1,057,066 435,666 217,833 660 19
FLA 1,070,376 2,712,798 1,070,376 535,188 1035 21
NE 1,524,453 3,897,636 1,542,453 762,227 1235 21

CAL 1,890,815 4,657,742 1,890,815 945,408 1375 21
LKS 2,758,119 6,885,658 2,758,119 1,379,060 1661 23

Table 5: Arcs delay empirical distribution

l(u, v) 11 16 25 42 73 128 227 410 744 1365 2520 4681 8700

% 2.3 5.4 8.5 10.0 12.0 11.0 10.0 11.0 8.5 7.0 5.0 5.0 4.3

Table 6: Arcs capacity empirical distribution

c(u, v) 1360 64 128 256 800 1680 2640 4000 8000

% 51.30 7.15 5.30 0.88 4.40 19.47 4.40 2.70 4.40

which are displayed in Tables 5 and 6. For this group, 10 instances have been
generated for each problem.

Table 7 provides the results. Now the first column displays the name of
the network and the second column shows the destination node. The other
columns display, for the first group, the number of candidate shortest paths
and the CPU time depending on the size σ. For the second group, the columns
which contain the number of candidate shortest paths and CPU time provide
the average of the 10 instances. Note that the number of candidates as well as
the CPU time are small. It is worth pointing out that the USA road networks
considered are not very dense. In fact, the average degree of the nodes is 2.6.

6.2 The BEQPA performance evaluation

As mentioned above, it is harder to solve these problems. We present the
results of a set of smaller networks which have been generated using NET-
GEN. The parameters have been assigned as follows. Delay time and capac-
ity coefficients are generated from uniform distributions in the range [1, 50]
and [10, 50], respectively. The energy rate of the arc (u, v) is computed as
ω(u, v) = 0.01c(u, v)l2(u, v). The power at the nodes has been fixed at 3×105.
There are 45 problem groups defined by the number of nodes n = 1000, 5000
and 10,000, the number of arcs m = 10n, 20n and 50n and the number of dis-
tinct capacities r = 2, 5, 10, 20 and 30. For each problem group, we have gen-
erated 10 instances. The size of the message has been taken to be σ1 = 10,000,
σ2 = 20,000 and σ3 = 50,000.
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Table 7: EQPA test results. Set 3, first group: Number of candidate s − t
shortest paths Pj and computing time. Set 3, second group: Mean of the
number of candidate s− t shortest paths Pj and mean of the computing time.
(CPU time in seconds)

First group Second group

# Shortest paths CPU time # Shortest paths CPU time
Dest. σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

NY 4 2 2 0 1.36 1.36 1.36 2.2 2.2 0.0 0.44 0.40 0.31
3 2 2 1 1.36 1.36 1.36 3.2 3.1 2.3 0.29 0.29 0.31
2 1 1 0 1.45 1.45 1.36 3.2 3.7 0.1 0.49 0.50 0.31
1 1 1 0 1.39 1.40 1.36 2.2 2.7 0.0 0.43 0.44 0.31

BAY 4 1 1 0 1.46 1.45 1.46 1.6 1.6 0.0 0.38 0.37 0.35
3 1 1 0 1.49 1.48 1.46 1.9 1.6 0.0 0.41 0.41 0.35
2 1 1 0 1.51 1.51 1.46 1.8 2.2 0.0 0.45 0.47 0.35
1 1 1 0 1.54 1.55 1.45 1.7 1.6 0.0 0.50 0.50 0.35

COL 4 1 1 0 2.02 2.02 2.03 1.4 1.9 0.3 0.48 0.47 0.47
3 1 1 0 2.02 2.02 2.03 3.0 3.2 0.0 0.48 0.46 0.47
2 1 0 0 2.04 2.02 2.03 2.7 3.0 0.0 0.50 0.51 0.47
1 1 0 0 2.14 2.03 2.02 1.0 0.9 0.0 0.70 0.71 0.47

FLA 4 1 1 0 3.89 3.88 3.88 1.2 1.1 0.0 1.24 1.17 1.18
3 1 1 0 3.88 3.87 3.89 1.0 1.2 0.0 1.24 1.19 1.18
2 1 1 0 3.97 3.98 3.89 1.2 1.0 0.0 1.27 1.28 1.18
1 1 1 0 3.90 3.93 3.88 1.3 1.1 0.0 1.20 1.21 1.18

NE 4 1 1 0 9.57 9.57 9.60 3.5 4.0 0.3 1.98 1.89 1.92
3 1 1 0 9.56 9.57 9.59 2.7 3.2 0.2 2.18 2.09 1.94
2 1 1 0 9.89 9.97 9.60 1.6 1.4 0.0 3.49 3.47 1.93
1 1 1 0 9.79 9.92 9.60 1.1 0.9 0.0 3.27 3.36 1.93

CAL 4 1 1 0 9.93 9.91 9.92 2.1 2.1 0.0 2.20 2.21 2.32
3 1 0 0 9.94 9.90 9.94 1.0 1.0 0.0 2.30 2.32 2.32
2 1 0 0 10.34 9.91 9.93 1.0 1.0 0.0 2.80 2.81 2.32
1 1 0 0 10.12 9.93 9.93 1.0 1.0 0.0 2.50 2.48 2.32

LKS 4 1 1 0 14.78 14.76 14.83 2.0 1.9 0.9 3.43 3.40 3.56
3 1 1 0 14.87 14.85 14.82 3.5 2.9 0.0 3.60 3.49 3.58
2 1 1 0 15.48 15.37 14.83 2.7 2.6 0.0 5.26 5.20 3.56
1 1 1 0 14.84 14.87 14.83 2.6 2.4 0.0 4.10 4.22 3.55

Table 8 presents the results provided by the BEQPA. The first to third
columns show the value of the parameters r, n and m. The fourth to sixth
columns display the mean of the candidate s − t efficient paths computed by
the algorithm in the 10 runs by solving problem (8), depending on the size
of σ. The seventh to ninth columns show the mean of the cardinality of the
complete set of efficient paths of the BEQPP computed by the algorithm in the
10 runs. Finally, the tenth to twelfth columns display the mean CPU time in
seconds of the 10 runs for the different values of σ. We can see that the number
of efficient solutions is reasonably small, as suggested in practical applications
for the BSPP [17]. Moreover, computing times are also short, less than twelve
seconds on average for all the problems.

7 Conclusions

In this paper we have introduced the energy-constrained quickest path prob-
lem, a variant of the QPP with a side constraint on the consumption of energy
at the nodes. Taking into account its properties, this problem can be reformu-
lated as the problem of finding shortest paths with respect to the delay time on
a sequence of as many subnetworks of G as different capacities. These subnet-
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Table 8: BEQPA test results. Mean of the number of candidate s− t efficient
paths Pj , mean of the cardinality of the complete set of efficient paths of
the BEQPP and mean of the computing time (CPU time in seconds)

# Efficient paths Pj # Efficient paths CPU time
r n m σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

2 1000 10,000 6.0 4.8 3.9 5.7 4.8 3.9 0.01 0.01 0.00
20,000 5.3 4.4 3.5 4.6 4.1 3.2 0.03 0.02 0.01
50,000 5.3 4.9 4.4 4.4 4.4 4.3 0.06 0.04 0.03

5000 50,000 6.2 5.7 4.7 5.5 5.2 4.4 0.09 0.07 0.04
100,000 6.6 6.5 6.1 6.4 6.3 5.9 0.19 0.15 0.10
250,000 5.4 5.4 5.4 5.0 5.1 5.2 0.47 0.45 0.26

10,000 100,000 5.9 5.9 4.2 5.0 5.3 4.0 0.27 0.19 0.11
200,000 6.3 6.3 6.0 5.7 6.1 5.9 0.48 0.46 0.25
500,000 6.9 6.9 6.9 6.1 6.6 6.6 1.43 1.11 0.71

5 1000 10,000 9.7 8.5 5.7 6.0 5.7 4.0 0.02 0.01 0.01
20,000 10.9 9.9 8.2 5.7 6.1 5.3 0.04 0.03 0.02
50,000 13.2 12.5 10.5 7.2 7.8 7.5 0.11 0.08 0.05

5000 50,000 11.6 10.1 7.7 5.9 6.5 5.6 0.17 0.11 0.06
100,000 13.2 13.1 12.0 7.7 8.9 8.7 0.38 0.29 0.17
250,000 15.3 15.3 14.9 10.5 11.3 11.3 1.10 0.92 0.63

10,000 100,000 12.7 10.9 7.9 7.5 7.7 6.8 0.50 0.31 0.11
200,000 13.7 13.4 12.3 10.2 10.8 10.1 1.07 0.80 0.58
500,000 16.3 16.2 15.8 8.8 10.5 11.0 2.86 2.37 1.51

10 1000 10,000 20.9 15.8 9.0 6.1 5.8 4.6 0.04 0.02 0.01
20,000 22.8 19.1 12.4 10.8 10.3 8.1 0.08 0.05 0.03
50,000 23.5 22.6 18.3 10.2 10.9 10.1 0.20 0.15 0.09

5000 50,000 21.5 18.9 12.3 8.2 9.0 6.8 0.29 0.20 0.09
100,000 27.7 26.3 19.8 10.6 12.7 11.4 0.68 0.51 0.29
250,000 29.8 29.2 27.6 12.6 13.8 13.4 1.98 1.58 1.02

10,000 100,000 20.2 17.0 10.5 7.4 8.1 6.6 0.91 0.58 0.20
200,000 30.3 29.0 26.0 10.0 11.8 11.7 1.83 1.45 0.84
500,000 31.4 31.2 30.1 12.8 14.7 16.3 5.64 4.23 2.65

20 1000 10,000 38.1 29.8 15.0 5.4 6.3 5.0 0.07 0.04 0.01
20,000 40.1 32.6 26.5 10.3 11.0 9.7 0.14 0.09 0.05
50,000 44.3 41.4 35.7 11.5 13.4 12.8 0.34 0.24 0.14

5000 50,000 47.3 42.5 23.0 9.4 10.4 8.0 0.56 0.37 0.15
100,000 46.6 42.8 36.5 7.9 8.6 8.9 1.21 0.87 0.51
250,000 56.7 55.9 52.8 15.5 18.6 20.3 3.92 2.95 1.96

10,000 100,000 43.5 35.6 24.4 8.3 8.3 7.8 1.60 0.95 0.42
200,000 53.7 52.1 45.6 7.0 9.4 10.6 3.57 2.74 1.64
500,000 66.0 65.6 62.0 16.0 19.0 22.0 9.30 7.11 4.96

30 1000 10,000 57.8 51.1 26.8 5.2 6.6 4.9 0.09 0.06 0.02
20,000 67.5 52.4 37.1 8.9 9.7 9.2 0.21 0.13 0.06
50,000 68.1 65.7 54.9 13.4 14.5 15.2 0.49 0.36 0.19

5000 50,000 64.1 58.4 37.1 8.6 9.7 8.9 0.63 0.40 0.17
100,000 65.6 63.2 56.4 10.6 11.9 12.7 1.44 1.03 0.59
250,000 80.5 79.4 76 14.9 17.4 20 4.61 3.45 2.31

10,000 100,000 63.7 51.7 30.9 9.8 10.9 9.1 1.67 1.05 0.40
200,000 79.2 76.1 67.7 11.8 14.3 15.4 4.08 2.99 1.81
500,000 100.7 99.7 96.7 16.6 20.3 23.8 11.85 9.06 6.30

works satisfy, by construction, that there is energy available at the nodes for
transmitting the data units. A polynomial algorithm has been developed with
the same time complexity as the algorithms developed to solve the QPP. The
bi-objective variant of the energy-constrained quickest path problem is also
considered which aims to minimize transmission time and consumed energy.
The problem is transformed into finding a complete set of efficient shortest
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paths in the same networks. The results of the computational study show the
good performance of the algorithms.
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13. Pascoal, M., Captivo, M., Cĺımaco, J.: An algorithm for ranking quickest simple paths.
Computers and Operations Research 32(3), 509–521 (2005)
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