3,182 research outputs found

    Fast Predictive Multimodal Image Registration

    Get PDF
    We introduce a deep encoder-decoder architecture for image deformation prediction from multimodal images. Specifically, we design an image-patch-based deep network that jointly (i) learns an image similarity measure and (ii) the relationship between image patches and deformation parameters. While our method can be applied to general image registration formulations, we focus on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) registration model. By predicting the initial momentum of the shooting formulation of LDDMM, we preserve its mathematical properties and drastically reduce the computation time, compared to optimization-based approaches. Furthermore, we create a Bayesian probabilistic version of the network that allows evaluation of registration uncertainty via sampling of the network at test time. We evaluate our method on a 3D brain MRI dataset using both T1- and T2-weighted images. Our experiments show that our method generates accurate predictions and that learning the similarity measure leads to more consistent registrations than relying on generic multimodal image similarity measures, such as mutual information. Our approach is an order of magnitude faster than optimization-based LDDMM.Comment: Accepted as a conference paper for ISBI 201

    Integration of multimodal data based on surface registration

    Get PDF
    The paper proposes and evaluates a strategy for the alignment of anatomical and functional data of the brain. The method takes as an input two different sets of images of a same patient: MR data and SPECT. It proceeds in four steps: first, it constructs two voxel models from the two image sets; next, it extracts from the two voxel models the surfaces of regions of interest; in the third step, the surfaces are interactively aligned by corresponding pairs; finally a unique volume model is constructed by selectively applying the geometrical transformations associated to the regions and weighting their contributions. The main advantages of this strategy are (i) that it can be applied retrospectively, (ii) that it is tri-dimensional, and (iii) that it is local. Its main disadvantage with regard to previously published methods it that it requires the extraction of surfaces. However, this step is often required for other stages of the multimodal analysis such as the visualization and therefore its cost can be accounted in the global cost of the process.Postprint (published version

    A comparative evaluation of 3 different free-form deformable image registration and contour propagation methods for head and neck MRI : the case of parotid changes radiotherapy

    Get PDF
    Purpose: To validate and compare the deformable image registration and parotid contour propagation process for head and neck magnetic resonance imaging in patients treated with radiotherapy using 3 different approachesthe commercial MIM, the open-source Elastix software, and an optimized version of it. Materials and Methods: Twelve patients with head and neck cancer previously treated with radiotherapy were considered. Deformable image registration and parotid contour propagation were evaluated by considering the magnetic resonance images acquired before and after the end of the treatment. Deformable image registration, based on free-form deformation method, and contour propagation available on MIM were compared to Elastix. Two different contour propagation approaches were implemented for Elastix software, a conventional one (DIR_Trx) and an optimized homemade version, based on mesh deformation (DIR_Mesh). The accuracy of these 3 approaches was estimated by comparing propagated to manual contours in terms of average symmetric distance, maximum symmetric distance, Dice similarity coefficient, sensitivity, and inclusiveness. Results: A good agreement was generally found between the manual contours and the propagated ones, without differences among the 3 methods; in few critical cases with complex deformations, DIR_Mesh proved to be more accurate, having the lowest values of average symmetric distance and maximum symmetric distance and the highest value of Dice similarity coefficient, although nonsignificant. The average propagation errors with respect to the reference contours are lower than the voxel diagonal (2 mm), and Dice similarity coefficient is around 0.8 for all 3 methods. Conclusion: The 3 free-form deformation approaches were not significantly different in terms of deformable image registration accuracy and can be safely adopted for the registration and parotid contour propagation during radiotherapy on magnetic resonance imaging. More optimized approaches (as DIR_Mesh) could be preferable for critical deformations

    Multimodal Elastic Matching of Brain Images

    Get PDF
    This paper presents an original method for three-dimensional elastic registration of multimodal images. We propose to make use of a scheme that iterates between correcting for intensity di#erences between images and performing standard monomodal registration. The core of our contribution resides in providing a method that finds the transformation that maps the intensities of one image to those of another. It makes the assumption that there are at most two functional dependences between the intensities of structures present in the images to register, and relies on robust estimation techniques to evaluate these functions. We provide results showing successful registration between several imaging modalities involving segmentations, T1 magnetic resonance (MR), T2 MR, proton density (PD) MR and computed tomography (CT)

    Elastic brain image registration using mutual information

    Get PDF
    Image Registration is the determination of a geometrical transformation that aligns points in one image of an object with corresponding points in another image. The source image is geometrically transformed to match the target image. The geometric transformation can be rigid or non-rigid. Rigid transformations preserve straight lines and angles between straight lines. The basic rigid transformations are rotation, scaling and translation. In this thesis non-rigid registration using B-splines is the method being used to take into account the elastic change in the brain structure. The B-spline equation is a type of curved transformation that does not preserve the straightness of lines, as is the case with rigid transformation. A similarity measure is based on similar pixel values in the image pairs. It is used as a cost function to measure the similarity between the source and target image. Mutual information is a similarity measure based on the probability density function. Optimization of both rigid and non-rigid registration techniques is performed to obtain the registration parameters that define the best geometrical transformation. The parameters are optimized based on the mutual information. Neurosurgery is an application of image registration and requires accurate surgical planning and guidance because of complex and delicate structures in the brain. Over the course of the surgery, the brain changes its shape in reaction to mechanical and physiological changes associated with the surgery such as loss of cerebrospinal fluid and gravity forces
    • …
    corecore