1,672 research outputs found

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This article develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error-correction performance, high rates, and low decoding complexity. The proposed method produces several infinite families of codes with a wide variety of parameters and entanglement requirements. Our framework encompasses the previously known entanglement-assisted quantum LDPC codes having the best error-correction performance and many other codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases

    Extra Shared Entanglement Reduces Memory Demand in Quantum Convolutional Coding

    Get PDF
    We show how extra entanglement shared between sender and receiver reduces the memory requirements for a general entanglement-assisted quantum convolutional code. We construct quantum convolutional codes with good error-correcting properties by exploiting the error-correcting properties of an arbitrary basic set of Pauli generators. The main benefit of this particular construction is that there is no need to increase the frame size of the code when extra shared entanglement is available. Then there is no need to increase the memory requirements or circuit complexity of the code because the frame size of the code is directly related to these two code properties. Another benefit, similar to results of previous work in entanglement-assisted convolutional coding, is that we can import an arbitrary classical quaternary code for use as an entanglement-assisted quantum convolutional code. The rate and error-correcting properties of the imported classical code translate to the quantum code. We provide an example that illustrates how to import a classical quaternary code for use as an entanglement-assisted quantum convolutional code. We finally show how to "piggyback" classical information to make use of the extra shared entanglement in the code.Comment: 7 pages, 1 figure, accepted for publication in Physical Review

    Quantum Coding with Entanglement

    Full text link
    Quantum error-correcting codes will be the ultimate enabler of a future quantum computing or quantum communication device. This theory forms the cornerstone of practical quantum information theory. We provide several contributions to the theory of quantum error correction--mainly to the theory of "entanglement-assisted" quantum error correction where the sender and receiver share entanglement in the form of entangled bits (ebits) before quantum communication begins. Our first contribution is an algorithm for encoding and decoding an entanglement-assisted quantum block code. We then give several formulas that determine the optimal number of ebits for an entanglement-assisted code. The major contribution of this thesis is the development of the theory of entanglement-assisted quantum convolutional coding. A convolutional code is one that has memory and acts on an incoming stream of qubits. We explicitly show how to encode and decode a stream of information qubits with the help of ancilla qubits and ebits. Our entanglement-assisted convolutional codes include those with a Calderbank-Shor-Steane structure and those with a more general structure. We then formulate convolutional protocols that correct errors in noisy entanglement. Our final contribution is a unification of the theory of quantum error correction--these unified convolutional codes exploit all of the known resources for quantum redundancy.Comment: Ph.D. Thesis, University of Southern California, 2008, 193 pages, 2 tables, 12 figures, 9 limericks; Available at http://digitallibrary.usc.edu/search/controller/view/usctheses-m1491.htm

    Quantum Error Correcting Codes and Fault-Tolerant Quantum Computation over Nice Rings

    Get PDF
    Quantum error correcting codes play an essential role in protecting quantum information from the noise and the decoherence. Most quantum codes have been constructed based on the Pauli basis indexed by a finite field. With a newly introduced algebraic class called a nice ring, it is possible to construct the quantum codes such that their alphabet sizes are not restricted to powers of a prime. Subsystem codes are quantum error correcting schemes unifying stabilizer codes, decoherence free subspaces and noiseless subsystems. We show a generalization of subsystem codes over nice rings. Furthermore, we prove that free subsystem codes over a finite chain ring cannot outperform those over a finite field. We also generalize entanglement-assisted quantum error correcting codes to nice rings. With the help of the entanglement, any classical code can be used to derive the corresponding quantum codes, even if such codes are not self-orthogonal. We prove that an R-module with antisymmetric bicharacter can be decomposed as an orthogonal direct sum of hyperbolic pairs using symplectic geometry over rings. So, we can find hyperbolic pairs and commuting generators generating the check matrix of the entanglement-assisted quantum code. Fault-tolerant quantum computation has been also studied over a finite field. Transversal operations are the simplest way to implement fault-tolerant quantum gates. We derive transversal Clifford operations for CSS codes over nice rings, including Fourier transforms, SUM gates, and phase gates. Since transversal operations alone cannot provide a computationally universal set of gates, we add fault-tolerant implementations of doubly-controlled Z gates for triorthogonal stabilizer codes over nice rings. Finally, we investigate optimal key exchange protocols for unconditionally secure key distribution schemes. We prove how many rounds are needed for the key exchange between any pair of the group on star networks, linear-chain networks, and general networks
    corecore