
QUANTUM ERROR CORRECTING CODES AND FAULT-TOLERANT

QUANTUM COMPUTATION OVER NICE RINGS

A Dissertation

by

SANGJUN LEE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Andreas Klappenecker
Committee Members, Anxiao Jiang

Eun Jung Kim
M. Suhail Zubairy

Head of Department, Dilma Da Silva

August 2017

Major Subject: Computer Science

Copyright 2017 Sangjun Lee

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147122402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Quantum error correcting codes play an essential role in protecting quantum

information from the noise and the decoherence. Most quantum codes have been

constructed based on the Pauli basis indexed by a finite field. With a newly intro-

duced algebraic class called a nice ring, it is possible to construct the quantum codes

such that their alphabet sizes are not restricted to powers of a prime.

Subsystem codes are quantum error correcting schemes unifying stabilizer codes,

decoherence free subspaces and noiseless subsystems. We show a generalization of

subsystem codes over nice rings. Furthermore, we prove that free subsystem codes

over a finite chain ring cannot outperform those over a finite field. We also generalize

entanglement-assisted quantum error correcting codes to nice rings. With the help of

the entanglement, any classical code can be used to derive the corresponding quan-

tum codes, even if such codes are not self-orthogonal. We prove that an R-module

with antisymmetric bicharacter can be decomposed as an orthogonal direct sum of

hyperbolic pairs using symplectic geometry over rings. So, we can find hyperbolic

pairs and commuting generators generating the check matrix of the entanglement-

assisted quantum code.

Fault-tolerant quantum computation has been also studied over a finite field.

Transversal operations are the simplest way to implement fault-tolerant quantum

gates. We derive transversal Clifford operations for CSS codes over nice rings, inclu-

ding Fourier transforms, SUM gates, and phase gates. Since transversal operations

alone cannot provide a computationally universal set of gates, we add fault-tolerant

implementations of doubly-controlled Z gates for triorthogonal stabilizer codes over

nice rings.

ii

Finally, we investigate optimal key exchange protocols for unconditionally secure

key distribution schemes. We prove how many rounds are needed for the key exchange

between any pair of the group on star networks, linear-chain networks, and general

networks.

iii

ACKNOWLEDGEMENTS

To be honest, I could never have finished this thesis without the support of many

people. I would like to reflect on the people who have supported and helped me so

much throughout my time at Texas A&M.

First and foremost I would like to express my sincere gratitude to my advisor Dr.

Andreas Klappenecker for his support, motivation and patience. His guidance has

always steered me toward the right direction whenever I struggled to make progress

in research. I would also like to thank the rest of my committee members, Dr.

Anxiao (Andrew) Jiang, Dr. Eun Jung (EJ) Kim, and Dr. M. Suhail Zubairy for

their support and assistance through this period.

I am also grateful to Aunt Susan and Uncle Ken for their continuous encourage-

ment and prayers. Last but not the least, I would like to thank my family: my mom

and to my wife Min Sun and my son Hyun for supporting me spiritually throughout

these past years.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

2. PRELIMINARIES . 5

2.1 Nearrings and Rings . 5
2.2 Qudits . 6
2.3 Nice Nearrings and Nice Rings . 6
2.4 Classical Error Correction . 9
2.5 Theory of Quantum Error Correction 10
2.6 Stabilizer Formalism and Stabilizer Codes 12
2.7 CSS Code Construction . 14

3. SUBSYSTEM CODES OVER NICE RINGS 16

3.1 Construction of Subsystem Codes over Nice Nearrings 17
3.2 Construction of Subsystem Codes over Nice Rings 21
3.3 Subsystem Codes over Rings and Fields 26

4. ENTANGLEMENT-ASSISTED QUANTUM ERROR CORRECTING CO-
DES OVER NICE RINGS . 30

4.1 Symplectic Abelian Groups . 32
4.2 Entanglement-Assisted Quantum Codes over Nice Rings 34
4.3 Examples . 39

4.3.1 [[6,1;1]] Quantum Binary LDPC Code 39
4.3.2 [[8,3;3]] Quantum LDPC Code over F16 41

v

5. GENERALIZED FAULT-TOLERANT QUANTUM COMPUTATION OVER
NICE RINGS . 45

5.1 Transversal Clifford Operations over Nice Rings 46
5.1.1 Transversal Fourier Transform 46
5.1.2 Transversal SUM Gate . 50
5.1.3 Transversal Phase Gate . 52

5.2 Transversal Non-Clifford Operations over Nice Rings 55
5.2.1 Transversal Controlled-Controlled Z Gates 55

6. OPTIMAL KEY EXCHANGE PROTOCOLS FOR UNCONDITIONALLY
SECURE KEY DISTRIBUTION SCHEMES 60

6.1 Switched Star Networks . 61
6.2 General Network Topologies . 65
6.3 Pass-Through Networks . 71

7. CONCLUSIONS . 78

REFERENCES . 80

vi

LIST OF FIGURES

FIGURE Page

6.1 A star network connecting 5 participants to one central crossbar switch
S. Two key exchanges can be done in parallel per round, but not
more. A total of five rounds are needed so that all 5 participants can
exchange keys. 61

6.2 A key exchange multigraph for three participants. The vertices are
labeled with the number of ports. Each edge is labeled with the round
in which the key exchange is performed. Two rounds of key exchanges
are needed, since one node v is of degree 4, but has only 3 ports.
Therefore, dd(v)/m(v)e = d4/3e = 2 rounds are needed by any key
exchange protocol. The given two-round key exchange protocol is
optimal. 66

6.3 A key exchange multigraph for three participants. Each participant
has a single communication port and can exchange just a single key
per round. In this configuration, it is not possible to exchange more
than one key per round overall, so three rounds are needed. This
three-round key exchange protocol is optimal as well. 66

6.4 The cycle graphs with 5 and 6 vertices. 69

6.5 Linear chain network with four nodes. The two middle nodes have
two communication ports, and the nodes at the ends have just one
communication port each. 71

6.6 Linear chain network with four nodes. The second node from the left
is in pass-through mode, so that the first and third nodes can exchange
keys. 71

6.7 Linear chain network with four nodes. Both nodes in the middle are
in pass-through mode, so that the first and fourth nodes can exchange
keys. 72

vii

6.8 The line graph L(H4) of the hypergraph H4 representing the linear
chain network with 4 hosts. Since we have a clique with four nodes in
L(H4), this means that every vertex coloring of L(H4) needs at least
four colors. 75

viii

LIST OF TABLES

TABLE Page

4.1 The addition and multiplication tables over F16 42

ix

1. INTRODUCTION

Conventional computing systems are usually implemented using VLSI circuits in

silicon technology. The size of silicon-based processing units is getting smaller each

year. But this technology is going to reach its physical limits within the next few

years [1, 2]. So we need to explore alternative technologies. New materials such as

carbon-nano tubes [3] promise faster transistors. Optical processing units [4] promise

higher bandwidths. Thus, the new circuit technologies offer a speed up compared to

silicon-based devices. How large is this speed up going to be? We don’t know yet.

Likely, it is going to be a constant speed up compared to the current silicon-based

technology. Are there other ways to obtain a much faster speed up?

Quantum computation is well known for outperforming conventional computation

for certain problems. In fact, it is able to provide quantum algorithms to solve some

hard problems. A famous example is the integer factorization problem. The classical

computation systems cannot solve this problem in a polynomial time. By contrast,

Shor’s quantum algorithm [5] runs in polynomial time to find the prime factors of an

integer. Another example is Pell’s equation, one of the oldest problems in number

theory. Given a positive nonsquare integer d, Pell’s equation is x2 − dy2 = 1. The

goal is to find the pair (x1, y1) that minimizes x + y
√
d among infinitely many pair

of integers satisfying the equation. Hallgren [6] showed how a quantum computer

can find the solution in polynomial time. We do not yet have any polynomial time

classical algorithm for this problem.

So what gives the quantum computation such powerful computational enhance-

ments? Conventional computation is based on laws of classical mechanics. On the

other hand, quantum computation exploits quantum physics for computation. A

1

quantum bit, or shortly a qubit, is a unit to store the information. It has a form of

a superposition of two basis, |0〉 and |1〉. The qubit gives us the information of the

probabilities to observe |0〉 and |1〉.

The problem here is that building quantum information systems is quite hard.

Quantum bits are so vulnerable to interactions with the environment surrounding

them. They tend to yield errors due to decoherence. In other words, coupling with

other quantum states corrupts the quantum information. To protect quantum system

from such errors, we need to use quantum error correcting codes. Quantum error

correcting codes are essential in quantum communication and quantum computation

[7, 8, 9]. They can protect quantum information against noise in a quantum channel.

Also, they can remedy decoherence effects in quantum memory. Quantum codes

encode the physical quantum information in a mathematically-defined way. So, we

could restore the information corrupted during the transmission or the computation.

We can also use quantum error correcting codes for fault-tolerant quantum com-

putation. Suppose that we have a good quantum error correcting code. First, we

encode quantum bits using this quantum code. Then, we perform logical quantum

operations on the encoded quantum bits without decoding. In such a way, we can

compute quantum information without any decoherence issues. It implies that we

could perform quantum computation in a fault-tolerant way.

One way to construct quantum codes is the so-called Calderbank-Shor-Steane

(CSS) code construction [10, 11]. This gives us a systematic way to construct the

quantum code using classical codes. For constructing quantum versions of error

correcting codes, Gottesman introduced the stabilizer formalism [12]. Currently, the

stabilizer formalism is indispensable for the construction of most quantum codes.

Stabilizer codes also allow us to derive quantum codes from classical error correcting

codes. CSS codes are a special subclass of stabilizer codes. Stabilizer codes are

2

simultaneous eigenspaces with +1 eigenvalues of all elements in stabilizer group.

One drawback of stabilizer codes is that the corresponding classical codes need to be

self-orthogonal codes.

Quantum error correcting scheme is the key technique for a fault-tolerant quan-

tum computation [7, 9]. Suppose that the level of the error can keep being under a

threshold. Then, we could perform any quantum operations without any concerns

about the errors [13]. One major difficulty here is that the quantum gate could

spread errors to other parts. Those affected parts might be in the same block or in

the other block. To avoid these undesirable events, we need to consider a transversal

operation. The transversal operation is in a simple form because it is a bit-wise

operation. Unfortunately, having only transversal operations are not enough for a

computational universality [14]. So we need an alternative approach to detour this

issue like the one introduced in [15].

A finite field is the dominant algebraic class for constructions of quantum codes.

A famous example of a finite field is a binary. Recently, Klappenecker [16] has intro-

duced a wider algebraic class, a nice nearring. It is well suitable for the generalized

Pauli basis. So we can use this ring to construct the quantum error correcting codes.

A nice nearring has some distinct advantages over a finite field. This wider algebraic

class has no restriction on the order, so it is not limited to powers of primes. Note

that the order of a finite field is a prime power. Besides, a nice nearring can have a

simpler arithmetic. A nice nearring has one special subclass, which is a nice ring. We

have considered to use a nice ring to generalize a couple of quantum error correcting

schemes so far. The first attempt was constructing the stabilizer codes over Frobe-

nius rings [17]. We have put more effort into constructing other quantum schemes

over a nice ring. In this thesis, we develop the theory of subsystem codes over nice

rings [18] and entanglement-assisted quantum error correcting codes over nice rings

3

[19]. Also, we investigated fault-tolerant quantum computation over nice rings [20].

Those generalizations are the main results of this thesis. We will show them in the

following chapters.

A fault-tolerant quantum computing system on its own may not be good enough

in a real world. These days, connecting high performance computers with others

offers a strong computing power. We may need to consider a distributed quantum

computing system, too. This can give us more computational power based on the

quantum operations. Moreover, it may ease one of the difficulties, a scaling-up is-

sue. Many researchers have been trying to overcome this issue to build a quantum

machine. Suppose we have some quantum computing systems communicating each

other. One of the key features that we need to set up is a secure key exchange

protocol. There have been a lot of efforts to investigate the secure key exchange

protocols. BB84 is the widespread secure key exchange protocol on the quantum

communication systems [21, 22]. There is also the protocol on the classical commu-

nication systems using Kirchhoff-Law-Johnson-Noise (KLJN) [23]. We focus on the

optimal numbers of rounds for the secure key exchange on various networks [24]. In

this thesis, we will give tight bounds for the optimal number of rounds.

This thesis has the following structure. In the next chapter, we provide the

fundamental concepts and the mathematical notations. In Chapter 3, we show the

generalization of the subsystem code over a nice ring. Furthermore, in Chapter

4, we prove the generalization of the entangled-assisted quantum error correcting

code. Then, we discuss how to generalize a fault-tolerant quantum computation

with transversal operations in Chapter 5. Finally, we show the optimal numbers of

rounds for the secure key exchange on three types of networks in Chapter 6. Those

are a star network, a network with a general topology, and a linear-chain network.

4

2. PRELIMINARIES

The fundamental concepts and basic notations are discussed in this chapter, so

that the readers would have sufficient background knowledge and be ready to go

through the following chapters without any hassles.

2.1 Nearrings and Rings

First of all, the definition of a nearring is introduced as follows.

A set N under an addition operation + and a multiplication operation · is called

a (left) nearring if it satisfies

1. (N,+) is a (not necessarily abelian) group,

2. (N, ·) is a semigroup,

3. and the left-distributive law x(y + z) = xy + xz holds for all x, y, z ∈ N .

Its subclass, a ring, has the following definition.

A set R under an addition operation + and a multiplication operation · is called

a ring if it satisfies

1. (R,+) is an abelian group,

2. (R, ·) is a monoid,

3. and the distributive laws on both sides, x(y + z) = xy + xz and (y + z)x =

yx+ zx, hold for all x, y, z ∈ R.

A nearring and a ring have fewer constraints than a finite field, so some nearrings

and rings offer an arithmetic that is simpler to implement than finite field arithmetic.

5

2.2 Qudits

The qudits are the generalization of the qubits for the higher dimensions. Let R

be a finite ring with q elements. We fix an orthonormal basis B of Cq and denote it

by

B = {|x〉|x ∈ R}.

A quantum state |ψ〉 is denoted by a superposition of the orthonormal basis,

|ψ〉 =
∑
x∈R

cx|x〉,

where cx ∈ C for all x ∈ R and
∑

x∈R |cx|2 = 1. The absolute square |cx|2 is the

probability to observe |x〉 when measuring |ψ〉B in the computational basis B.

The qubit is an example of the qudit since F2 is a finite field, so a ring.

Example 1. A qubit has an orthonormal basis {|0〉, |1〉} of C2. A quantum state

|ψ〉 = c0|0〉+ c1|1〉, where c0, c1 ∈ C and |c0|2 + |c1|2 = 1.

A ring of integer modulo n, where n is an integer, is a good example for the qudit.

Example 2. Let R be the ring of integer modulo 6, denoted Z/6Z. Then, an ort-

honormal basis of C6 is given by {|0〉, |1〉, |2〉, |3〉, |4〉, |5〉}. A quantum state |ψ〉 is of

the form

|ψ〉 =
∑

x∈Z/6Z

cx|x〉,

where cx ∈ C for all x ∈ Z/6Z and
∑

x∈Z/6Z |cx|2 = 1.

2.3 Nice Nearrings and Nice Rings

In this section, we provide fundamental information about nice nearrings and

their properties, see [16] for more details.

6

Let N be a nearring with q elements, where 2 ≤ q <∞. We denote by

{|x〉|x ∈ N}

a fixed orthonormal basis of Cq. Let χ be a character of (N,+). For all a, b ∈ N , we

define a shift operator X(a) : Cq → Cq and a multiplication operator Z(b) : Cq → Cq

by

X(a)|x〉 = |x+ a〉, Z(b)|x〉 = χ(bx)|x〉,

for all x ∈ N .

A finite nearring is called nice if and only if there exists a character χ of (N,+)

such that E = {X(a)Z(b)|a, b ∈ N} is a nice error basis. The set E is called a nice

error basis if and only if it contains the identity, is closed under multiplication up to

scalars, and is an orthogonal basis with respect to the Hilbert-Schmidt inner product.

If N is a nice nearring and E is a nice error basis indexed by N with respect to the

character χ, then we call χ a generating character.

If a finite nearring is nice, then it satisfies the following properties.

Proposition 3 ([16]). If N is a nice nearring, then

1. a generating character χ of (N,+) is a linear and irreducible,

2. (N,+) is an abelian group,

3. and (N, ·) has a unique left identity.

Proof. See [16, Proposition 3 and 6].

So a nice nearring has considerably more structure than a general nearring, but

does not need to be right-distributive.

7

A nice error basis E can be extended to n components by tensoring,

E⊗n = {M1 ⊗ · · · ⊗Mn |Mk ∈ E , 1 ≤ k ≤ n}.

This yields a nice error basis of Cqn . The elements in E generalize the Pauli matrices,

and the nice error basis E⊗n is the generalization of the Pauli basis on n qubits.

A nice error basis is not a group, since it is not closed under multiplication. The

group generated by a nice error basis is called an error group. In our case, the error

group of E⊗n is given by

En = {ωcX(a)Z(b)|a, b ∈ Nn, c ∈ Z}, (2.1)

where ω = exp(2πi/m) is a primitive mth root of unity and m is the exponent of

the group (N,+). This is a finite group with center Z(En) = {ωc1|c ∈ Z}, where 1

is the identity.

If R is a distributively generated nice nearring, then R is called a nice ring. A

distributively generated nearring is nice if and only if it is a finite Frobenius ring [16].

Finite Frobenius rings play a prominent role in classical coding theory.

Example 4. For a qubit with a basis {|0〉, |1〉} of C2, a shift operator X(1) is called a

bit-flip operator X and a multiplication operator Z(1) is called a phase-flip operator

Z, such that

X|0〉 = |1〉, X|1〉 = |0〉,

Z|0〉 = |0〉, Z|1〉 = −|1〉.

8

Those operators can be represented in the form of matrices,

X =

0 1

1 0

 , Z =

1 0

0 −1

 .

Example 5. Let R be the ring of integer modulo 6, denoted Z/6Z. For a qudit with

a basis {|0〉, |1〉, ..., |5〉} of C6, the shift operators and multiplication operators are

defined by

X(a)|x〉 = |x+ a (mod 6)〉, Z(b)|x〉 = exp(2πbx/6)|x〉,

where x ∈ Z/6Z.

2.4 Classical Error Correction

In this and subsequent sections, we provide some background information about

classical and quantum error correction, see also [25].

Before discussing the theory of quantum error correction, we first recall a few

facts from the theory of classical error correction. Classical linear codes can be used

to construct a variety of quantum error correction codes. For understanding the

stabilizer formalism, we provide some fundamental ideas about classical linear codes

in this section.

We say that a linear code C encoding k bits of messages into n bits of codewords

is an [n, k] code. A way to encode information is specified by an n by k generator

matrix G. Given the k bit message x, the encoded codeword is Gx. The columns of

G are linearly independent, so the set of codewords is the vector space spanned by

the columns of G.

For the error-correction of the code, we need to consider a parity check matrix.

9

The parity check matrix H is an n−k by n matrix such that Hx = 0 for all codewords

x of a code C. The rows of H are linearly independent. Suppose that we encode

the message x such that the encoded codeword is x′ = Gx. If an error e corrupts

the codeword x′ during the transmission, the receiver will get x′ + e. Since x′ is a

codeword, Hx′ = 0. When we multiply the received x′+e by the parity check matrix

H, we obtain H(x′+ e) = He. We call this the error syndrome. The error syndrome

is important for the error correction since it contains information about the error

occurred such as which bits the error corrupted.

We provide an example of a [7, 4] Hamming code for better understanding the

procedure of the error correction.

Example 6. A [7, 4] Hamming code encodes 4 bits of information into 7 bits of a

codeword, and is able to correct an error on any single bit. Its parity check matrix is

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .

For instance, let us suppose that we transmit a codeword (1, 0, 1, 0, 1, 0, 1)T . We can

easily check that this is a valid codeword in a [7, 4] Hamming code by multiplying the

codeword by the parity check matrix H. Suppose that an error occur such that the

fourth bit is flipped. Now the corrupted codeword is (1, 0, 1, 1, 1, 0, 1)T . We now need

to calculate the error syndrome, which is (1, 0, 0)T . In this case, the error syndrome

says that the fourth bit needs to be flipped to correct the error.

2.5 Theory of Quantum Error Correction

We need quantum error correcting codes to protect the quantum information

against noise. However, there are some aspects that we never had to consider when

10

constructing classical codes. Classical information can be duplicated, but quantum

information cannot be replicated by the no-cloning theorem. This means that we

cannot construct a repetition code that replicates the message several times.

We also need to deal with the fact that errors are continuous. So detecting which

error occurred seems to require infinite precision and resources. Luckily, however,

it turns out that quantum errors can be discretized. To show this, we provide the

quantum error correction conditions. The quantum error correction conditions de-

termine whether a quantum error correcting code protects against a particular type

of noise.

Theorem 7 (Quantum error correction conditions). Let C be a quantum code, P be

the projector onto C, {Ei} be the set of quantum errors. A necessary and sufficient

condition for the existence of an error-correction operation is

PE†iEjP = αijP,

for some Hermitian matrix α of complex numbers.

Proof. See the proof of Theorem 10.1 in [25].

Suppose the quantum error is a linear combination of the Ei’s. Then, this error

is also correctable by the error correction operation that can recover from {Ei}.

Therefore, we can say that it is sufficient to deal with a finite set of errors, the Pauli

matrices, instead of the continuum of errors.

In classical error correction, we can observe the output and calculate the error

syndrome to correct the errors. Observation in quantum system, however, may

destroy the information stored in the quantum state. So, we have to calculate the

error syndrome without observing the quantum state with the information directly.

11

With a help of ancilla states with the conditional quantum operations, it is possible to

obtain the error syndrome without knowing any information of the quantum states.

2.6 Stabilizer Formalism and Stabilizer Codes

Stabilizer codes are an important class of quantum codes. To understand stabili-

zer codes, we need first to review the stabilizer formalism. The stabilizer formalism

gives us a way to express the quantum code using the stabilizer, instead of the actual

code space.

Suppose S is a subgroup of the error group En. Let Fix(S) be the set of n qudit

states that are fixed by every element of S. Then, we say that Fix(S) is the code

space stabilized by S, and S is the stabilizer of Fix(S). In other words, Fix(S) is

the intersection of eigenspaces with +1 eigenvalue of every elements of S. There

are some conditions that the stabilizer should satisfy for a non-trivial code space.

Obviously, −I should not be an element of S, otherwise −I|ψ〉 = |ψ〉, which is a

contradiction. In addition, the elements of S commute each other. If there are some

elements of S which do not commute, then it leads to a contradiction, too.

The stabilizer S is described by its generators. Thus, if the quantum state is

stabilized by the generators of S, then that state is stabilized by S. Let S be ge-

nerated by n − k independent and commuting elements from En, and −I /∈ S.

Then, the code space Fix(S) stabilized by S has a dimension of k. We define

an [[n, k]] stabilizer code as the code space Fix(S) stabilized by a subgroup S of

En such that −I /∈ S and S has n − k generators. For example, the Steane

seven qubit code is a [[7, 1]] stabilizer code, and its stabilizer has 6 generators,

IIIXXXX, IXXIIXX,XIXIXIX, IIIZZZZ, IZZIIZZ, and ZIZIZIZ. This

code is indeed the CSS code, and we will see how to construct this using the CSS

code construction in the next section.

12

To present n−k generators of the stabilizer S, we construct an n−k by 2n matrix.

This matrix is called the check matrix. Each row of the check matrix corresponds to

each generator of S. If the generator contains an I on some qudit, then the entries

in the corresponding positions on both hand sides are 0. If it contains an X(a),

then the entry in the corresponding position on the left hand side is a and one on

the right hand side is 0. If it contains a Z(b), then the entry in the corresponding

position on the left hand side is 0, and one on the right hand side is b. For instance,

the generators of the stabilizer of the Steane seven qubit code is equivalent to the

following check matrix.



0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 1 0 1 0 1


Suppose a stabilizer code Fix(S) is corrupted by an error E ∈ En. We need to

distinguish three possible cases. (i) If the error E does not commute with an element

of the stabilizer S, then Fix(S) is taken to an orthogonal subspace, and the error will

be detected by measuring the generators of S. (ii) If E ∈ S, then there is nothing

to worry, since this error does not affect the code space Fix(S) at all. (iii) The last

case is when E commutes with all the elements of S, but is not a scalar multiple of

an element in S. This type of errors is not correctable.

13

2.7 CSS Code Construction

The Calderbank-Shor-Steane codes, or the CSS codes, are a subclass of stabi-

lizer codes. The CSS codes are very important since their constructions give us a

systematic way to build stabilizer codes.

Suppose C1 and C2 are [n, k1] and [n, k2] classical linear codes such that C2 ⊂ C1

and C1 and C⊥2 both correct t errors. An [[n, k1 − k2]] CSS code is constructed as

follows. Suppose x is any codeword in C1. Then,

|x+ C2〉 =
1√
|C2|

∑
y∈C2

|x+ y〉.

Since the state |x+C2〉 corresponds to the coset of C1/C2, this CSS is an [[n, k1−k2]]

stabilizer code. The error correcting property of the classical code C1 is utilized

to detect and correct the addition errors, the bit flip errors in binary. The error

correcting property of C⊥2 is to detect and correct the multiplication errors, the

phase flip errors in binary.

The check matrix corresponding to the generators of the CSS code is defined as

 H(C⊥2) 0

0 H(C1)

 .
We give an example of the Steane code for the CSS code construction.

Example 8. We construct the Steane code using the [7, 4] Hamming code C. Let

C1 = C and C2 = C⊥. Since C⊥ ⊂ C and C⊥ is the [7, 3] code, we can construct a

14

[[7, 1]] CSS code. The check matrix is

 H(C) 0

0 H(C)

 =



0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 1 0 1 0 1


.

The corresponding generators are IIIXXXX, IXXIIXX,XIXIXIX, IIIZZZZ,

IZZIIZZ, and ZIZIZIZ. Thus, the stabilizer of the Steane code is generated by

these generators.

15

3. SUBSYSTEM CODES OVER NICE RINGS

In this chapter, we will show one of the contributions by the author about gene-

ralization of subsystem codes over nice rings, which was published in [18]1.

Subsystem codes are one of the promising quantum error correction schemes for

the fault-tolerant quantum computation. The subsystem code formalism unifies the

features of stabilizer codes, decoherence free subspaces, and noiseless subsystems [26],

[27], [28]. The main idea of the subsystem code is to decompose a subspace C of the

Hilbert space H into a tensor product of the subsystem A and the co-subsystem B

and encode the quantum information in the subsystem [26], [27], [29] such that

H = C ⊕ C⊥ = (A⊗B)⊕ C⊥.

Since all quantum information is stored in the subsystem A, there is no need to

correct any errors affecting only the co-subsystem B.

As one of efforts to utilize nice error bases indexed by a nearring, the construction

of stabilizer codes over finite Frobenius rings was studied in [17]. In this chapter, we

provide a construction of subsystem codes over nice nearrings [18]. Thus, we gene-

ralize the results of [17] by (a) allowing for a more general nice nearring arithmetic,

and (b) generalizing from stabilizer codes to subsystem codes.

Before discussing the main results, some notations used in this chapter are given

below.

Let G be a group, and H a subgroup of G. The centralizer {g ∈ G | gh =

hg for all h ∈ H} of H in G is denoted by CG(H). The center CG(G) of G is

12013 IEEE. Reprinted, with permission, from Sangjun Lee and Andreas Klappenecker, Subsy-
stem codes over nice rings, 2013 IEEE International Symposium on Information Theory Proceedings
(ISIT), July 2013

16

denoted by Z(G). For x, y ∈ G, the commutator [x, y] is defined as x−1y−1xy. Given

subgroups X and Y of G, we define [X, Y] = 〈[x, y]|x ∈ X, y ∈ Y 〉. As usual, we

denote the commutator subgroup [X,X] by X ′.

Let N be a nice nearring. Suppose an error e in En is given by ωcX(a)Z(b) for

a, b ∈ Nn and c ∈ Z. Then the weight wt(e) of the error e is defined as the number

of its tensor components which are not scalar multiples of the identity. Similarly,

given (a|b) ∈ N2n, we can introduce its symplectic weight by

swt(a|b) = |{i|ai 6= 0 or bi 6= 0, 1 ≤ i ≤ n}|.

Thus, we have the relation wt(ωcX(a)Z(b)) = swt(a|b) between these two types of

weights.

3.1 Construction of Subsystem Codes over Nice Nearrings

In this section, we give the construction of subsystem codes over nice nearrings.

For this purpose, we use the more general theory of Clifford subsystem codes, see

[29].

Let M be a normal subgroup of an error group En and χ an irreducible character

of M . The inertia group of χ is given by

IEn(χ) = {g ∈ En |χ(gng−1) = χ(n) for all n ∈M}.

The inertia group of a character determines the parameters of the subsystem code

in the following theorem from [29]:

Theorem 9 ([29]). Let En be an error group such that E ′n ⊆ Z(En), M a normal

subgroup of En, and χ an irreducible character of M chosen such that the orthogonal

17

projector

P =
χ(1)

|N |
∑
n∈N

χ(n−1)n

is nonzero.2 Then C = image(P) is the corresponding Clifford code. The inertia

group of χ is given by IEn(χ) = CEn(Z(M)). If CEn(Z(M)) = LM for some subgroup

L of En such that [L,M] = 1, then C is a subsystem code C = A⊗B such that

1. dimA = |Z(En) ∩M ||En : Z(En)|1/2|M : Z(M)|1/2/|M |,

2. dimB = |M : Z(M)|1/2.

An error e in En is detectable by subsystem A if and only if e is contained in the set

En \ (CEn(Z(M)) \ Z(L)M).

Proof. See [29, Theorem 2].

We will show that Theorem 9 can be used to construct subsystem codes over nice

nearrings. For this purpose, we will prove that (a) the error group given in (2.1)

satisfies E ′n ⊆ Z(En) and (b) give a convenient condition on M which ensures that

the inertia group factorizes into a central product of the form required by Theorem 9.

The next two lemmas will establish the required facts.

Lemma 10. Let N be a finite nice nearring. The error group En = {ωcX(a)Z(b)|

a, b ∈ Nn, c ∈ Z} satisfies E ′n ⊆ Z(En).

Proof. From the definitions of the shift operator and the multiplication operator, we

know that X(a)X(b) = X(a+b) and Z(a)Z(b) = Z(a+b) for a, b ∈ N . Furthermore,

we have χ(ba)X(a)Z(b) = Z(b)X(a). Since Z(En) = {ωc1|c ∈ Z}, the quotient

group En/Z(En) is isomorphic to N2n. By Proposition 3, a nice nearring is an

2We can always find such a character. Notice that the parameters of the resulting code do not
depend on the particular choice of χ.

18

abelian group under addition. In other words, En/Z(En) is abelian, and it follows

that E ′n ⊆ Z(En), as claimed.

Our next concern is to find a convenient sufficient condition which ensures that

CEn(Z(M)) factors into a central product of the form LM for some subgroup L of

En.

A subgroup H of a group is called c-closed if and only if H = CG(CG(H)) holds.

This terminology is motivated by the fact that the centralizer map x 7→ CG(x) yields

a Galois connection on the lattice of subsets of the group G.

Lemma 11. Let En be an error group. Let M be a c-closed normal subgroup of the

error group En such that MCEn(M) is c-closed. Then

CEn(Z(M)) = MCEn(M).

Proof. Since MCEn(M) and M are c-closed, we have

MCEn(M) = CEn(CEn(MCEn(M)))

= CEn(CEn(M) ∩ CEn(CEn(M)))

= CEn(CEn(M) ∩M)

= CEn(CM(M))

= CEn(Z(M)),

which proves the claim.

The existence of normal subgroups satisfying the hypothesis of the previous

lemma follows from a well-known group-theoretic result by Chermak and Delgado,

see [30]. We can now combine the previous results and formulate the construction of

subsystem codes over nice nearrings in the following form:

19

Corollary 12. Let En be the error group given in (2.1) over a nice nearring N . Let

M be a c-closed normal subgroup of En such that MCEn(M) is c-closed. Then there

exists a subsystem code C = A⊗B such that

1. dimA = |Z(En) ∩M ||En : Z(En)|1/2|M : Z(M)|1/2/|M |,

2. dimB = |M : Z(M)|1/2.

An error e in En is detectable by subsystem A if and only if e is contained in the set

En \ (MCEn(M) \M).

Proof. By Lemma 10, the error group satisfies E ′n ⊆ Z(En). By Theorem 9, the

inertia group is of the form CEn(Z(M). This inertia group factorizes into the central

product

CEn(Z(M)) = MCEn(M),

with [M,CEn(M)] = 1, by Lemma 11. Furthermore, we have

Z(CEn(M)) = CEn(CEn(M)) ∩ CEn(M)

= M ∩ CEn(M)

= Z(M)

≤ M.

Thus, the claim is obtained from Theorem 9 using L = CEn(M) and the fact that

Z(L) is a subset of M .

In the next section, we will remove the assumption on the normal subgroup M

in the case of rings.

20

3.2 Construction of Subsystem Codes over Nice Rings

In this section, we will assume that N is a distributively generated nice nearring.

A distributively generated nearring is nice if and only if it is a finite Frobenius

ring [16]. Finite Frobenius rings play a prominent role in classical coding theory. We

will relate the construction of subsystem codes over nice rings to classical codes over

rings. We will use R instead of N to denote a nice ring.

Let R be a nice ring. For u = (a|b) and v = (a′|b′) in R2n, we define

〈u|v〉 = χ(b · a′ − b′ · a).

We write u ⊥ v if and only if 〈u|v〉 = 1 holds. Thus, X(a)Z(b) and X(a′)Z(b′)

commute if and only if u ⊥ v. For a subset S ⊆ R2n, we define

S⊥ = {u ∈ R2n | 〈s|u〉 = 1 for all s ∈ S}
⊥S = {u ∈ R2n | 〈u|s〉 = 1 for all s ∈ S}

One can show that for a subgroup C of R2n, we have

|C||C⊥| = |⊥C||C| = |R2n|,

see [17, Lemma 6].

For a subgroup G of the error group En, we use the bar notation G to denote

G/Z(En).

A key element in the construction of subsystem codes is the decomposition of

the inertia group of the character χ into a central product (the groups L and M in

Theorem 9). The next lemma shows that this is always possible when R is a nice

ring.

21

Without loss of generality, we may assume that the normal subgroup M of the

error group En contains the center Z(En) of the error group. If M does not contain

Z(En), then simply use the larger group MZ(En),

Lemma 13. Let R be a finite nice ring. If En is a set {ωcX(a)Z(b)|a, b ∈ Rn, c ∈ Z}

and M is a normal subgroup of En, then CEn(Z(M)) = MCEn(M).

Proof. We first notice that MCEn(M) is a subgroup of CEn(Z(M)), and that both

groups contain the center Z(En) of the error group. Thus, it suffices to show that

the cardinality of the quotient groups MCEn(M) and CEn(Z(M)) are the same. We

have

|MCEn(M)| =|M +M
⊥|

=|M ||M⊥|/|M ∩M⊥|

=|M ||M⊥|/|Z(M)|

=|R2n|/|Z(M)|

=|Z(M)
⊥
|

=|CEn(Z(M))|,

which proves our claim.

From the previous two results, we can conclude the following theorem about the

construction of subsystem codes over a nice ring.

Theorem 14. Let R be a finite nice ring. Suppose the error group En is a set

{ωcX(a)Z(b)|a, b ∈ Rn, c ∈ Z}. If C is a Clifford code with data (En, ρ,M, χ) with

M 6= 1, then C is a subsystem code C = A⊗B such that

1. dimA = |Z(En) ∩M ||En : Z(En)|1/2|M : Z(M)|1/2/|M |,

22

2. dimB = |M : Z(M)|1/2.

An error e in En is detectable by subsystem A if and only if e is contained in the set

En − (MCEn(M)−M).

Proof. By Lemma 10, the error group En satisfies E ′n ⊆ Z(En). Thus, the inertia

group IEn(χ) = CEn(Z(M)). By Lemma 13, we have CEn(Z(M)) = MCEn(M).

Since CEn(M) ≤ En and [CEn(M),M] = 1, the resulting Clifford code is a subsystem

code C = A⊗B with dimA and dimB as given in Theorem 9.

In addition, since Z(En) ≤ M and [CEn(M),M] = 1, Z(CEn(M)) ⊆ CEn(M) ∩

CEn(M)
⊥
⊆ M

⊥ ∩M ⊆ M. Thus, we have the relation M ⊆ Z(CEn(M))M ⊆ M ,

which means Z(CEn(M))M = M . Therefore, an error e in En is detectable if and

only if e ∈ En − (MCEn(M)−M).

Now we are ready to construct subsystem codes from classical additive codes over

a nice ring.

Theorem 15. Let R be a nice ring with q elements. Let X be a classical additive

subcode of R2n such that X 6= {0} and let Y denote its subcode Y = X ∩ X⊥. Let

x = |X| and y = |Y |. Then, there exists a subsystem code C = A⊗B such that

1. dimA = qn/(xy)1/2,

2. dimB = (x/y)1/2.

The minimum distance of subsystem A is given by d = swt((X + X⊥) − X) =

swt(Y ⊥ −X). Thus, the subsystem A can detect all errors in En of weight less than

d, and can correct all errors in En of weight ≤ b(d− 1)/2c.

Proof. Let En be the nice error group given earlier, and let M be the full preimage

of M = X in En under the canonical quotient map. Then, we can apply Theorem

14 to prove the theorem.

23

Since Z(M) = X ∩X⊥ = Y , |M : Z(M)| = |M : Z(M)| = x/y. Thus, dimB =

(x/y)1/2. From the fact that Z(En) ≤ M by definition, |Z(En) ∩M |/|M | = 1/M =

1/x. Therefore, dimA = |En : Z(En)|1/2/(xy)1/2 = qn/(xy)1/2.

Since wt(e) = swt(e) for an error e ∈ En, the minimum distance of subsystem A

is wt(MCEn(M)−M) = swt(MCEn(M)−M) = swt((X +X⊥)−X). Equivalently,

wt(CEn(Z(M))−M) = swt(CEn(Z(M))−M) = swt(Y ⊥ −X).

Let R be a nice ring. Suppose K = dimA, L = dimB and d is a minimum

distance of subsystem A. Then, a subsystem code Q over a nice ring is called

an ((n,K,L, d))R subsystem code. We also write [[n, k, l, d]]R for an ((n, qk, ql, d))R

subsystem code, where q is the number of elements in R. By slight abuse of language,

we will also refer to d as the minimum distance of the subsystem code Q, cf. [28].

Next, we will derive a special case of Theorem 15, which constructs a subsystem

code over a nice ring with the help of two classical linear codes over a nice ring of

the same length n. This generalizes a result from [28] by allowing finite rings instead

of finite fields.

Let a, b, a′, b′ be in Rn. We define a form 〈·|·〉s : R2n ×R2n → R by

〈(a|b)|(a′|b′)〉s = b · a′ − b′ · a.

Suppose u and v are in R2n such that u = (a|b) and v = (a′|b′). Then, we define the

orthogonality u ⊥s v if and only if 〈u|v〉s = 0.

Lemma 16. Let C1 and C2 be two linear codes over a nice ring R such that C1 ≤ Rn

and C2 ≤ Rn. The product code C1 × C2 = {(a|b)|a ∈ C1, b ∈ C2} has length 2n and

its dual is given by

(C1 × C2)
⊥s = C⊥s2 × C⊥s1

24

Proof. If (a|b) ∈ C1 × C2 and (b′|a′) ∈ C⊥s2 × C⊥s1 , then 〈(a|b)|(b′|a′)〉 = b · b′ −

a′ · a = 0. Thus, C⊥s2 × C⊥s1 ⊆ (C1 × C2)
⊥s . Since |(C1 × C2)

⊥s| = |R|2n/|C1 ×

C2| = |R|2n/|C1||C2| = |R|n/|C2| · |R|n/|C1| = |C⊥s2 × C⊥s1 |, we can conclude that

(C1 × C2)
⊥s = C⊥s2 × C⊥s1 .

Corollary 17. Let R be a nice ring with q elements. Let Ci be [n, ki] linear codes in

Rn for i ∈ {1, 2}. Then, there exists an ((n,K,L, d))R subsystem code with

1. K = qn−(k1+k2)/2/|D|1/2,

2. L = q(k1+k2)/2/|D|1/2,

3. d = min{wt((C⊥s1 ∩ C2)
⊥s\C1),wt((C⊥s2 ∩ C1)

⊥s\C2)},

where |D| = |C1 ∩ C⊥s2 ||C2 ∩ C⊥s1 |.

Proof. Let C = C1 × C2, then by Lemma 16, C⊥s = C⊥s2 × C⊥s1 . Using C and C⊥s ,

we get D = C ∩ C⊥s = (C1 ∩ C⊥s2)× (C2 ∩ C⊥s1). Since |C| = |C1||C2| = qk1+k2 , we

can obtain that K = qn−(k1+k2)/2/|D|1/2 and L = q(k1+k2)/2/|D|1/2 by Theorem 15.

The distance of the code is provided in Theorem 15 by

d = swt(D⊥s\C)

= swt((C2 ∩ C⊥s1)⊥s × (C1 ∩ C⊥s2)⊥s\(C1 × C2)),

which can be simplified to

d = min{wt((C2 ∩ C⊥s1)⊥s\C1),wt((C1 ∩ C⊥s2)⊥s\C2)}.

Therefore, we can have an ((n,K,L, d))R subsystem code from C1 and C2.

25

In particular, an subsystem code ((n,K,L, d))R with simplified code parameters

can be obtained by setting C1 = C2, where K = qn−k/|D|, L = qk/|D|, |D| =

|C1 ∩ C⊥s1 | and d = wt((C1 ∩ C⊥s1)⊥s\C1).

3.3 Subsystem Codes over Rings and Fields

Now, we will discuss a finite chain ring to show how to derive the subsystem code

over a field from the subsystem code over a ring. A finite chain ring is a well-known

ring structure for a classical code [31], [32]. Since ideals of a finite chain ring construct

a form of a chain, it has a unique maximal ideal. A finite chain ring is Frobenius

ring, which implies that a finite chain ring is a nice distributively generated nearring

[16]. In order to discuss the relation between the subsystem code over a ring and a

finite field, we restrict our focus into a finite chain ring.

Let R be a finite chain ring with the Jacobson radical J(R) and the nilpotency

index ν. Then, J(R) is the maximal ideal of R since a finite chain ring is a local ring

and it has a unique maximal ideal. Thus, the quotient ring R/J(R) becomes a field.

Let F be such a residue field. Suppose that a field R/J(R) has q elements. Then,

we have |R| = qν and |J(R)| = qν−1 [31].

Let c ∈ Rn. We denote by c the image of c under the canonical projection from

Rn to F n. Let C ⊆ Rn. Then, we denote C = {c|c ∈ C}.

We define the submodule quotient (C : r) as a set {e ∈ R2n|re ∈ C} for any

code C ≤ R2n and any r ∈ R. The submodule quotient and its image under the

projection have following chain conditions [31]

C = (C : γ0) ⊆ · · · ⊆ (C : γi) ⊆ · · · ⊆ (C : γν−1),

and its projection to F ,

26

C = (C : γ0) ⊆ · · · ⊆ (C : γi) ⊆ · · · ⊆ (C : γν−1).

In order to know the relation between the subsystem code over a ring and that

over a field, we need to first show the relation of the symplectic weights of a code

over a ring and that over its residue field.

Lemma 18. Let R be a finite chain ring, γ a generator of the Jacobson radical J(R)

and ν the nilpotency index. Let X be a classical additive code of R2n and Y its

subcode Y = X ∩X⊥s. Then,

swt(Y ⊥s −X) ≤ swt(Y ⊥s − (X : α)),

where α = γν−1.

Proof. Let us consider x ∈ Y ⊥s−(X : α). Then, we know αx ∈ Y ⊥s−X. This means

that α(Y ⊥s−(X : α)) ⊆ Y ⊥s−X. Therefore, swt(Y ⊥s−X) ≤ swt(α(Y ⊥s−(X : α))).

We define the map ϕ : αR2n → F 2n given by ϕ(αx) = x. Since ϕ is an iso-

morphism and preserves the weight [32], we can say that this map also preserves

the symplectic weight. Thus, we have the relation that swt(α(Y ⊥s − (X : α))) =

swt(Y ⊥S − (X : α)). Then,

swt(Y ⊥s −X) ≤ swt(α(Y ⊥s − (X : α)))

= swt(Y ⊥s − (X : α))

Therefore, we can conclude that swt(Y ⊥s −X) ≤ swt(Y ⊥s − (X : α)).

For the simpler analysis of the relation between the subsystem code over a ring

and a field, we will focus on the free code. The free code over a ring has the following

27

properties [31].

Let C be a free code over R. Then, the dual code C⊥s is also a free code. The

number of rows in a generator matrix in standard form k(C) is k0(C), which is the

number of rows not divisible by γi for 1 ≤ i ≤ ν − 1. In addition, C = (C : γ) =

· · · = (C : γν−1).

Theorem 19. If an ((n,K,L, d))R free subsystem code exists over a finite chain

ring with the Jacobson radical J(R) and the nilpotency index ν, then there exists an

((n,K1/ν , L1/ν ,≥ d))q subsystem code over a field R/J(R) with q elements.

Proof. By Theorem 15, there are the classical additive code X ⊆ R2n and its subcode

Y = X ∩ X⊥s , which are associated with an ((n,K,L, d))R subsystem code. Since

an ((n,K,L, d))R subsystem code is a free code, X and Y are free codes. Suppose

that generator matrices of X and Y have the numbers of rows k0 and k′0, respecti-

vely. Then, |X| = qνk0 and |Y | = qνk
′
0 [31]. Therefore, K = |R|n/qν(k0+k′0)/2 =

qν(n−(k0+k
′
0)/2) and L = qν(k0−k

′
0)/2.

Now we consider X and Y , which are the subset of F 2n. Since dim(X) = k0 and

dim(Y) = k′0 [31], we have |X| = qk0 and |Y | = qk
′
0 . By [29, Theorem 5], we can

have an ((n,K ′, L′, d′))q subsystem code using X and Y , where K ′ = qn−(k0+k
′
0)/2

and L′ = q(k0−k
′
0)/2. Since K ′ = K1/ν and L′ = L1/ν , we conclude that there exists

an ((n,K1/ν , L1/ν , d′))q subsystem code over a finite field with q elements.

Since a free code has a property that X = (X : α) [31], the minimum distance

d′ = swt(Y ⊥s −X) = swt(Y ⊥s − (X : α)) ≥ swt(Y ⊥s−X) = d, where the inequality

is from Lemma 18.

Changing a notation to a simpler one, the derived subsystem code over a finite

field has same parameters as the free subsystem code over a finite chain ring except

for their distances.

28

Corollary 20. If an [[n, k, l, d]]R free subsystem code exists over a finite chain ring,

then there exists an [[n, k, l,≥ d]]q subsystem code over a finite field.

Proof. From the proof of Theorem 19, an ((n,K,L, d))R free subsystem code can be

called an [[n, n − (k0 + k′0)/2, (k0 − k′0)/2, d]]R free subsystem code since |R| = qν .

Using the fact that |F | = q, an ((n,K1/ν , L1/ν ,≥ d))q subsystem code can be called

an [[n, n−(k0+k
′
0)/2, (k0−k′0)/2,≥ d]]q subsystem code. By letting k = n−(k0+k

′
0)/2

and l = (k0−k′0)/2, we can conclude that an [[n, k, l,≥ d]]q code can be derived from

an [[n, k, l, d]]R code.

29

4. ENTANGLEMENT-ASSISTED QUANTUM ERROR CORRECTING CODES

OVER NICE RINGS

In this chapter, the generalization of the other quantum error correcting scheme,

entanglement-assisted quantum error correcting code over nice rings, which was pu-

blished in [19]1, will be given.

Entanglement-assisted quantum error correcting codes (EAQECCs), which are

quantum codes with the pre-shared entanglement between the sender and the re-

ceiver, have been introduced [33, 34]. Unlike the stabilizer codes, these codes do

not have a restriction that classical codes should be dual-containing codes for con-

structing the quantum codes. Thus, using this construction with a help of the en-

tanglement, any classical codes can be used in order to derive the corresponding

quantum codes. The constructions of the binary and quaternary EAQECCs were

well-established [33, 34] and the formalism of the generalized EAQECCs combining

EAQECCs and subsystem quantum error correcting codes was investigated [35].

What we now show is that the entanglement-assisted quantum error correcting

codes can be generalized over nice rings, so that these codes can also be not restricted

to power prime dimensions [19].

We will use the two types of forms to connect the commutativity with the ortho-

gonality. From [17], we have a form to use over R-module instead of the symplectic

inner product over a finite field. For each additive character χ, a unique function ψ

12014 IEEE. Reprinted, with permission, from Sangjun Lee and Andreas Klappenecker,
Entanglement-assisted quantum error correcting codes over nice rings, 2014 52nd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), October 2014

30

in Hom(R,Q/Z) exists such that

χ(x) = exp (2πiψ(x)).

Using the function ψ, we define a form 〈·|·〉χ : R2n ×R2n → Q/Z such that

〈(a|b)|(a′|b′)〉χ = ψ(b · a′ − b′ · a)

for all (a|b), (a′|b′) ∈ R2n.

Let u = (a|b) and v = (a′|b′) in R2n. We say that u ⊥ v if and only if 〈u|v〉χ = 0.

This implies that X(a)Z(b) commutes with X(a′)Z(b′) if and only if u ⊥ v [17].

There is an another inner product [18], which may be preferred to use in this

setting, which is defined by

〈(a|b)|(a′|b′)〉 = χ(b · a′ − b′ · a)

for all (a|b), (a′|b′) ∈ R2n.

Since this form uses the additive character χ directly, X(a)Z(b) and X(a′)Z(b′)

commute if and only if χ(b · a′ − b′ · a) = 1 [17]. Thus, this inner product has an

orthogonal property such that u ⊥ v if and only if 〈u|v〉 = 1. It is easily seen that

〈u|v〉 = 1 is equivalent to 〈u|v〉χ = 0 since ψ is in Hom(R,Q/Z). Both forms share

the same orthogonal condition.

We would like to recall the definitions of the weight and the symplectic weight.

Given an error e = ωcX(a)Z(b) in an error group for a, b ∈ Rn and c ∈ Z, the

weight wt(e) is defined as the number of its tensor components which are not scalar

31

multiples of the identity. The symplectic weight of (a|b) ∈ R2n is defined by

swt(a|b) = |{i|ai 6= 0 or bi 6= 0, 1 ≤ i ≤ n}|.

It is easily seen that wt(ωcX(a)Z(b)) = swt(a|b).

4.1 Symplectic Abelian Groups

In [36], an antisymmetric bicharacter on finite abelian groups is introduced. The

inner product 〈·|·〉 is indeed one of such antisymmetric bicharacters since 〈(a|b)|(a|b)〉

= χ(0) = 1. A finite abelian group with an antisymmetric bicharacter is called a

finite symplectic abelian group. It is known that a finite symplectic abelian group

can have a decomposition as an orthogonal direct sum of Sylow p-subgroups and a

primary symplectic abelian group can be splitted as an orthogonal direct sum of its

homogeneous components [37]. A primary abelian group is called homogeneous if

all of its invariants are equal. It is known that any finite abelian group is a direct

product of homogeneous subgroups such that no two distinct factors have a common

invariant. Such subgroups are called the homogeneous components of a group. Each

homogeneous component can indeed be splitted into an orthogonal direct sum of

hyperbolic subgroups [37, 36]. A subgroup of a symplectic abelian group is called

hyperbolic if the subgroup is nonsingular and H ∼= Zpn × Zpn for some prime p and

some integer n ≥ 1.

R2n with the inner product 〈·|·〉 is considered as a symplectic abelian group since

〈·|·〉 is the antisymmetric bicharacter [36], which defines a symmetric relation of

orthogonality, and R2n is a R-module. Then, we can have

Theorem 21. If R2n is a nondegenerate abelian group with 〈·|·〉 and R2n = H1 ⊕

· · · ⊕ Hm is any decomposition as the direct sum of homogeneous components such

32

that each homogeneous component has an even rank of ri = 2si for 1 ≤ i ≤ m,

then R2n admits a decomposition into the orthogonal direct sum of
∑

i si hyperbolic

subgroups.

Proof. Each homogeneous component Hi is nondegenerate since R2n is nondegene-

rate, and a nondegenerate, homogeneous, symplectic, abelian group of even rank 2s

is splitted into the orthogonal direct sum of s hyperbolic subgroups [36].

The following lemmas provide proofs that R2n is decomposed as an orthogonal

direct sum of hyperbolic subgroups like the symplectic linear spaces.

Lemma 22. Let R2n be a nondegenerate abelian group with 〈·|·〉. Then, there is

homogeneous components of R2n such that an orthogonal direct sum of those homo-

geneous components is R2n.

Proof. Any finite abelian group can be decomposed as an orthogonal direct sum of

its Sylow p-subgroups [37]. A primary symplectic abelian group can be decomposed

as an orthogonal direct sum of homogeneous components [37, 36]. Therefore, it

is clear that R2n can be decomposed as an orthogonal direct sum of homogeneous

components.

Lemma 23. Let R2n be a nondegenerate abelian group with 〈·|·〉. A homogeneous

component of R2n can be decomposed as an orthogonal direct sum of hyperbolic sub-

groups.

Proof. Since a homogeneous component of R2n is a homogeneous nondegenerate

abelian p-group, it is decomposed as an orthogonal direct sum of two isomorphic

isotropic cyclic subgroups, which are called hyperbolic subgroups [37, 36].

Using two lemmas above, we now have the following result.

33

Theorem 24. Let R2n be a nondegenerate abelian group with 〈·|·〉. Then, R2n can

be decomposed as an orthogonal direct sum of hyperbolic subgroups.

Proof. From Lemmas 22 and 23, R2n can be decomposed as an orthogonal direct sum

of homogeneous components, and each homogeneous component can be decomposed

as an orthogonal direct sum of hyperbolic subgroups.

4.2 Entanglement-Assisted Quantum Codes over Nice Rings

It was known that (Z2)
2n is a symplectic subspace of itself [33, 34]. This implies

that there exists a symplectic basis of (Z2)
2n consisting of n hyperbolic pairs. From

previous section, we now know that R2n also can be decomposed as an orthogonal

direct sum of hyperbolic subgroups like a vector space. In addition, the form 〈·|·〉 = 1

is equivalent to 〈·|·〉χ = 0, so they both have the same orthogonal condition.

We will show how to find a symplectic basis and an isotropic basis generating a

free submodule of R2n. A subgroup is called symplectic if it is generated by a set

of anti-commuting generator pairs, a symplectic basis, and a subgroup is isotropic if

it is generated by a set of commuting generators, an isotropic basis [38]. The form

〈·|·〉χ, not 〈·|·〉, will be used as an inner product in order to follow the approach

similarly, which was provided for a vector space over a finite field [33, 34].

We denote an element in Q/Z by [a
b
], such that (a, b) is co-prime and 0 ≤ a

b
< 1.

Then, we choose a
b

as a representative of [a
b
].

Theorem 25. Let R be a commutative nice ring. Let M be a free submodule of

R2n with a rank m. Then, there exists a symplectic basis of R2n with hyperbo-

lic pairs (ui,vi) for 1 ≤ i ≤ n such that 〈ui|uj〉χ = 0 for all i, j, 〈vi|vj〉χ =

0 for all i, j, 〈ui|vj〉χ = 0 for all i 6= j and 〈ui|vi〉χ 6= 0 for all i. A basis

{u1, · · · ,uc+s,v1, · · · ,vc} generates M for some c, s ≥ 0 with 2c+ s = m.

34

Proof. Since M is a free submodule of R2n with a rank m, we can pick a set of basis

{w1, · · · ,w2n} for R2n such that {w1, · · · ,wm} is a basis for M .

The following algorithm runs n rounds, and one pair (ui,vi) is calculated in each

round.

Initially, we have i = 1, m′ = m and U = V = Ø. In ith round,

1. For w1, · · · ,w2(n−i+1) and u1, · · · ,ui−1,v1, · · · ,vi−1, the followings are satis-

fied.

(a) {w1, · · · ,w2(n−i+1),u1, · · · ,ui−1,v1, · · · ,vi−1} is a basis for R2n.

(b) 〈uj|wk〉χ = 0 and 〈vj|wk〉χ = 0 for 1 ≤ j ≤ i−1 and 1 ≤ k ≤ 2(n− i+1).

(c) M = span{uj : j ∈ U} ⊕ span{vl : l ∈ V } ⊕ span{wk : 1 ≤ k ≤ m′}.

2. Choose ui = w1. If m′ ≥ 1, then add i to U . Let t ≥ 2 be the smallest index

such that 〈w1|wt〉χ 6= 0. Set vi = wt.

3. If t ≤ m′:

The hyperbolic pair (ui,vi) are in a set of generators generating M . Add i to

V , and swap wt with w2.

For k = 3, · · · , 2(n − i + 1), a new basis that is orthogonal to the hyperbolic

pair (ui,vi) is computed.

Let 〈vi|ui〉χ = [xi
yi

], 〈vi|wk〉χ = [ak
bk

], and 〈ui|wk〉χ = [ck
dk

], where xi
yi
, ak
bk

, and

ck
dk

are representatives of [xi
yi

], [ak
bk

], and [ck
dk

], respectively. Let ak
bk
· yi
xi

=
gk,i
hk,i

and

ck
dk
· yi
xi

=
rk,i
sk,i

, where (gk,i, hk,i) and (rk,i, sk,i) are co-prime, respectively. In order

to have all coefficients in the following equation as integers, the least common

multiple of two denominators is calculated. Let ek,i = lcm(hk,i, sk,i). Then,

35

w′k−2 = ek,iwk − ek,i
gk,i
hk,i

ui − ek,i
rk,i
sk,i

vi,

so that

〈w′k−2|ui〉χ = 〈w′k−2|vi〉χ = 0.

Then, set m′ = m− 2 since we found two generators of M .

If t > m′:

One of the hyperbolic pair ui is in a set of generators generating M , but another

one vi is out of a set of generators of M . Swap wt with w2(n−i+1).

For k = 2, · · · , 2(n − i) + 1, a new basis that is orthogonal to the hyperbolic

pair (ui,vi) is computed.

Let 〈vi|ui〉χ = [xi
yi

], 〈vi|wk〉χ = [ak
bk

], and 〈ui|wk〉χ = [ck
dk

], where xi
yi
, ak
bk

, and

ck
dk

are representatives of [xi
yi

], [ak
bk

], and [ck
dk

], respectively. Let ak
bk
· yi
xi

=
gk,i
hk,i

and

ck
dk
· yi
xi

=
rk,i
sk,i

, where (gk,i, hk,i) and (rk,i, sk,i) are co-prime, respectively. To

have all coefficients as integers, the least common multiple is calculated. Let

ek,i = lcm(hk,i, sk,i). Then,

w′k−1 = ek,iwk − ek,i
gk,i
hk,i

ui − ek,i
rk,i
sk,i

vi,

so that

〈w′k−1|ui〉χ = 〈w′k−1|vi〉χ = 0.

Then, set m′ = m− 1 if m′ ≥ 1, since we only found one generator of M .

4. wk = wk
′ for 1 ≤ k ≤ 2(n− i).

Reordering u′js and v′js may be required to put the hyperbolic pairs in a set of

36

generators of M first and the remaining u′js following the hyperbolic pairs.

Let ui = (a1, · · · , an|b1, · · · , bn) ∈ R2n, where ai, bi ∈ R for 1 ≤ i ≤ n. The

corresponding quantum error is defined as X(a1)Z(b1)⊗ · · · ⊗X(an)Z(bn).

Lemma 26. Let Gn be a nice error basis indexed by a nice ring R with q elements.

Let S be a subgroup in Gn with qm elements up to scalar. Then, there exists a set

of m independent generators {Z1, Z2, · · · , Zc, · · · , Zc+s, X1, · · · , Xc} for S such that

[Zi, Zj] = 0 for all i, j, [Xi, Xj] = 0 for all i, j, [Zi, Xj] = 0 for all i 6= j and

[Zi, Xi] 6= 0 for all i.

Proof. From Theorem 25, it is guaranteed that we can have such a set of generators.

Suppose that we have a subgroup S in Gn generated by the noncommuting set

of generators. From Lemma 26, we can obtain a new set of generators consisting of

c hyperbolic pairs and s commuting generators, where c is the number of entangled-

qudits and s is the number of ancilla qudits, which are ebits and ancilla bits for

binary quantum codes [33]. We label two generators in each hyperbolic pair as Zi

and Xi for 1 ≤ i ≤ c, and commuting generators as Zi for c+ 1 ≤ i ≤ c+ s. As [33]

has done, we can find a new group generated by commuting generators by extending

the generators. The only different thing from [33] is that this is not just a binary

case, but the generalized one over a nice ring.

For a hyperbolic pair (a|b) and (a′|b′) in R2n, let Zi = X(a)Z(b) and Xi =

X(a′)Z(b′). Then, we know χ(b · a′ − b′ · a) 6= 1 since Zi and Xi do not commute.

Let Z(s) and X(t) be operators to be appended to Zi and Xi, respectively, to obtain

the commuting pair for some s, t ∈ R. The extended pairs Z ′i = X(a|0)Z(b|s) and

37

X ′i = X(a′|t)Z(b′|0) commute if and only if χ((b|s) · (a′|t)− (b′|0) · (a|0)) = 1. This

implies that χ(b · a′ − b′ · a)χ(st) = 1, thus st = b′ · a − b · a′. We can easily pick s

and t in R satisfying st = b′ · a − b · a′. The trivial case may be to pick s = 1 or

t = 1. By appending c entangled-qudits, we now have the extended set of commuting

generators. It is assumed that the original qudits are possessed by Alice, and the

appended qudits are possessed by Bob and are error-free.

With the generators with appended qudits, EAQECC over a nice ring can be con-

structed. Initially, a state |Φ〉AB|0〉⊗s|ψ〉⊗k is prepared, where |Φ〉AB = 1√
|R|

∑
x∈R |x〉|x〉

is a generalized Bell state, which is a maximally entangled state shared between Alice

and Bob, |ψ〉⊗k contains the quantum information to transmit, and k is a number of

logical qudits. After encoding process on qudits possessed by Alice, the code space

is now stabilized by the generators. A half of the entangled pair is possessed by

Bob, and that is assumed to be error-free, so that Bob can measure the extended

generators on the transmitted qudits along with his entangled pair.

Let n be a number of physical qudits, k a number of logical qudits, d a minimum

distance, and c a number of entangled-qudits or a number of hyperbolic pairs. Then,

an EAQECC over a nice ring is called an [[n, k, d; c]]R EAQECC.

Proposition 27. Let R be a nice ring. If a classical [n, k, d]R code exists, then an

[[n, 2k − n + c, d; c]]R EAQECC exists, where c is the number of hyperbolic pairs in

the symplectic basis.

Proof. The classical [n, k, d]R code has a (n−k)×n parity-check matrix H. Using H,

we can construct a 2(n− k)× 2n parity-check matrix H̃ for CSS construction. From

Lemma 25 and Theorem 26, we know it is possible to find generators {Z1, Z2, · · · , Zc,

· · · , Zc+s, X1, · · · , Xc}, where 2c+s = 2(n−k). By appending appropriate qudits for

extended commuting generators, we finally set the entanglement-assisted quantum

38

error correcting code. For any nonzero (a|b) ∈ R2n such that swt(a|b) < d, the

syndrome of (a|b) is nonzero by the definition of the minimum distance. It means

that any error e = χ(c)X(a)Z(b) such that wt(e) < d can be detected. Therefore,

the constructed EAQECC is the [[n, 2k − n + c, d; c]]R code, where c is the number

of hyperbolic pairs in the symplectic basis.

4.3 Examples

One of good examples for constructing EAQECCs is quantum LDPC code. The

classical LDPC codes are well-known as capacity-approaching codes, so there has

been many investigations on them. But because they are not generally dual-containing

codes, which are usually used to construct quantum codes, there has been many at-

tempts to find dual-containing classical LDPC codes for CSS construction [39]. It

has been relatively easy to find dual-containing LDPC codes with a short length,

but difficult to find long LDPC codes. The entanglement-assisted quantum code

construction, however, has no dual-containing constraints, so constructing quantum

LDPC codes directly from classical LDPC codes can be possible [40].

Here, we provide some examples to show that it is possible to employ any LDPC

codes directly to construct quantum codes with an entanglement-assistance.

4.3.1 [[6,1;1]] Quantum Binary LDPC Code

The classical irregular [6,3] binary LDPC code has a following parity-check ma-

trix.

H =


1 1 1 1 0 0

0 0 1 1 0 1

1 0 0 1 1 0

 .

39

For a CSS construction, we have the parity-check matrix from above.

H̃ =

 H 0

0 H

 .

From H̃, the stabilizer group has the following noncommuting generators.

M1 = Z Z Z Z I I

M2 = I I Z Z I Z

M3 = Z I I Z Z I

M4 = X X X X I I

M5 = I I X X I X

M6 = X I I X X I

Using Lemma 25, we obtain the symplectic basis and the isotropic basis to generate

the stabilizer group. The function ψ ∈ Hom(R,Q/Z) is ψ(x) = x/2. The additive

character χ is χ(x) = exp(2πiψ(x)) = exp(πix).

Z1 = I I Z Z I Z

X1 = I I X X I X

Z2 = Z Z Z Z I I

Z3 = X X X X I I

Z4 = I Z I Z Z Z

Z5 = I X I X X X

It is shown that a pair (Z1, X1) is only a hyperbolic pair in a generator set, and

they commute with any generators in an isotropic space. The number of hyperbolic

pairs is just one, and the number of generators in an isotropic space is four, which

40

imply that c=1 and s=4, so the number of logical qubits is k=1. Thus, this quantum

LDPC code is [[6,1;1]] code. The following is the generators with an appended qubit

belonging to a receiver Bob.

Z1 = I I Z Z I Z Z

X1 = I I X X I X X

Z2 = Z Z Z Z I I I

Z3 = X X X X I I I

Z4 = I Z I Z Z Z I

Z5 = I X I X X X I

By appending Z to Z1, X to X1, and I to the remainder, the generators with the

appended become commuting each other.

4.3.2 [[8,3;3]] Quantum LDPC Code over F16

The finite field F16 with 16 elements can be understood as the residue class ring

F16 = F2[x]/〈x4 + x + 1〉, so a residue class can be represented by a polynomial

a+ bx+ cx2 +dx3 over F2. Since we do not have much space, we choose to represent

the elements of F16 by integers from 0 to 15 as follows:

0 = (0, 0, 0, 0), 1 = (1, 0, 0, 0), 2 = (0, 1, 0, 0), 3 = (0, 0, 1, 0),

4 = (0, 0, 0, 1), 5 = (1, 1, 0, 0), 6 = (0, 1, 1, 0), 7 = (0, 0, 1, 1),

8 = (1, 1, 0, 1), 9 = (1, 0, 1, 0), 10 = (0, 1, 0, 1),11 = (1, 1, 1, 0),

12 = (0, 1, 1, 1),13 = (1, 1, 1, 1),14 = (1, 0, 1, 1),15 = (1, 0, 0, 1),

where (a, b, c, d) consists of the coefficients of the polynomial. The addition and

multiplication tables are provided below in Table 4.1.

The parity-check matrix of the classical (2,4)-regular [8,4] LDPC code over F16 is

41

Table 4.1: The addition and multiplication tables over F16

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 5 9 15 2 11 14 10 3 8 6 13 12 7 4
2 2 5 0 6 10 1 3 12 15 11 4 9 7 14 13 8
3 3 9 6 0 7 11 2 4 13 1 12 5 10 8 15 14
4 4 15 10 7 0 8 12 3 5 14 2 13 6 11 9 1
5 5 2 1 11 8 0 9 13 4 6 15 3 14 7 12 10
6 6 11 3 2 12 9 0 10 14 5 7 1 4 15 8 13
7 7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9
8 8 10 15 13 5 4 14 11 0 12 1 7 9 3 6 2
9 9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 7
10 10 8 4 12 2 15 7 6 1 13 0 14 3 9 11 5
11 11 6 9 5 13 3 1 8 7 2 14 0 15 4 10 12
12 12 13 7 10 6 14 4 2 9 8 3 15 0 1 5 11
13 13 12 14 8 11 7 15 5 3 10 9 4 1 0 2 6
14 14 7 13 15 9 12 8 1 6 4 11 10 5 2 0 3
15 15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
3 0 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2
4 0 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3
5 0 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4
6 0 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
7 0 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6
8 0 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7
9 0 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
10 0 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9
11 0 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
12 0 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11
13 0 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12
14 0 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13
15 0 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14

42

generated by the method that selects the coefficients of the matrices using a Monte

Carlo method [41]:

H =



0 15 2 0 0 6 0 4

15 9 0 11 0 13 0 0

0 0 3 0 1 0 14 5

5 0 0 7 3 0 9 0


.

From the parity-check matrix H̃ for a CSS construction, the stabilizer group has the

following eight noncommuting generators:

M1 = I Z(15) Z(2) I I Z(6) I Z(4)

M2 = Z(15) Z(9) I Z(11) I Z(13) I I

M3 = I I Z(3) I Z(1) I Z(14) Z(5)

M4 = Z(5) I I Z(7) Z(3) I Z(9) I

M5 = I X(15) X(2) I I X(6) I X(4)

M6 = X(15) X(9) I X(11) I X(13) I I

M7 = I I X(3) I X(1) I X(14) X(5)

M8 = X(5) I I X(7) X(3) I X(9) I

From Lemma 25, the symplectic basis and the isotropic basis generating the stabilizer

group can be calculated. The function ψ(x) is
tr24/2(x)

2
, where trpm/p(x) is the absolute

trace from Fpm to Fp defined as trpm/p(x) =
∑m−1

k=0 x
pk . The additive character χ is

43

given by χ(x) = exp(πitr24/2(x)).

Z1 = I Z(15) Z(2) I I Z(6) I Z(4)

X1 = X(15) X(9) I X(11) I X(13) I I

Z2 = I I Z(3) I Z(1) I Z(14) Z(5)

X2 = I I X(3) I X(1) I X(14) X(5)

Z3 = I X(15) X(2) I I X(6) I X(4)

X3 = Z(15) Z(9) I Z(11) I Z(13) I I

Z4 = Z(5) Z(15) Z(6) Z(7) Z(9) Z(6) Z(4) Z(8)

Z5 = X(5) X(15) X(6) X(7) X(9) X(6) X(4) X(8)

There are three pairs (Zi, Xi) for 1 ≤ i ≤ 3 and two generators Z4 and Z5 in the

isotropic basis. Thus, we can construct the [[8,3;3]] LDPC code over GF (16) having

the following generators with appended qudits.

Z1 = I Z(15) Z(2) I I Z(6) I Z(4) Z(13) I I

X1 = X(15) X(9) I X(11) I X(13) I I X(1) I I

Z2 = I I Z(3) I Z(1) I Z(14) Z(5) I Z(15) I

X2 = I I X(3) I X(1) I X(14) X(5) I X(1) I

Z3 = I X(15) X(2) I I X(6) I X(4) I I Z(13)

X3 = Z(15) Z(9) I Z(11) I Z(13) I I I I X(13)

Z4 = Z(5) Z(15) Z(6) Z(7) Z(9) Z(6) Z(4) Z(8) I I I

Z5 = X(5) X(15) X(6) X(7) X(9) X(6) X(4) X(8) I I I

44

5. GENERALIZED FAULT-TOLERANT QUANTUM COMPUTATION OVER

NICE RINGS

In this chapter, generalization of fault-tolerant quantum computation over nice

rings, which was published in [20]1, will be discussed.

Quantum error correcting codes can protect the quantum information system

against errors that are due to the decoherence. However, when building a fault-

tolerant quantum computing device, it is not enough to merely deploy quantum

error correcting codes. A large part of the errors stem from operational errors due

to imperfect gate operations. Furthermore, controlled-not gates likely spread the

errors to other qudits. Unless we take great care, the resulting cascade of errors

will quickly exceed the error-correction capability of the quantum code. Therefore,

it is very important to have a good scheme to avoid such a desperate situation for

constructing the fault-tolerant quantum computing devices.

A simple way for realizing fault-tolerant quantum operations are transversal ope-

rations. A transversal operation acts in a bit-wise fashion, so that the fault-tolerant

gate does not spread errors within the same block of qudits. Thus, it is easily seen

that transversal operations are fault-tolerant. However, one cannot achieve compu-

tational universality with transversal operations alone, as was shown by Eastin and

Knill [14].

Recently, it has been shown that universal fault-tolerant quantum computation is

possible in the binary case with transversal gates and quantum error correction [15].

Using the binary triorthogonal matrix [42], the transversal version of Controlled-

12016 IEEE. Reprinted, with permission, from Sangjun Lee and Andreas Klappenecker, Gene-
ralized fault-tolerant quantum computation over nice rings, 2016 IEEE International Symposium
on Information Theory Proceedings (ISIT), July 2016

45

Controlled Z (CCZ) operations are indeed logical operations on the binary triort-

hogonal stabilizer codes [15]. In this chapter, we will show how to generalize the

triorthogonal matrix and the triorthogonal stabilizer code over a nice ring [20]. Ba-

sed on these tools, it will be shown that the transversal CCZ operation is the logical

CCZ operation on the triorthogonal stabilizer codes over nice rings.

5.1 Transversal Clifford Operations over Nice Rings

5.1.1 Transversal Fourier Transform

In the d dimensions, where d is a prime, the Hadamard operation is defined as

the d-dimensional discrete Fourier transform [43]

H|x〉 =
1√
d

d−1∑
b=0

ωxb|b〉,

where x ∈ Fd and ω = e
2πi
d . More generally for Fq, where q is a power of a prime,

H|x〉 =
1
√
q

q−1∑
b=0

ωtr(xb)|b〉,

where x ∈ Fq, ω = e
2πi
p and tr is the absolute trace of the finite field Fq to its prime

subfield.

With the help of the character, the form can be described more simply. By

substituting the primitive root of the unity ω with the character χ, the Hadamard

operation can be generalized for a nice ring.

Definition 28. Let R be a nice ring. Then, for x ∈ R,

H|x〉 =
1√
|R|

∑
y∈R

χ(xy)|y〉

46

is a Hadamard operation, where χ is a generating irreducible character of the additive

group (R,+), meaning that all other irreducible characters of (R,+) can be expressed

in the form x 7→ χ(ax) for a ∈ R.

The adjoint of the Hadamard operation H† also can be defined as follows.

Definition 29. Let R be a nice ring. Then, for x ∈ R,

H†|x〉 =
1√
|R|

∑
z∈R

χ(−(zx))|z〉,

where H† is a complex conjugate of transpose Hadamard operation, where χ is the

irreducible character of the additive group (R,+).

We recall the CSS code construction over nice rings as follows.

Proposition 30 ([44]). Let R be a nice ring. Let C1 and C2 denote two clas-

sical linear codes with parameters [n, k1, d1]R and [n, k2, d2]R such that C⊥2 ≤ C1.

Then there exists an [[n, k1 + k2 − n, d]]R stabilizer code with minimum distance

d = min{wt(c)|c ∈ (C1 \ C⊥2) ∪ (C2 \ C⊥1)} that is pure to min{d1, d2}.

Proof. See the proof of Lemma 9 in [44].

We will call a CSS code self-orthogonal if and only if there exists a classical code

C containing its dual code, C⊥ ⊆ C, such that C1 = C2 = C.

According to [8], given the arbitrary unitary transformation U and the operator

M , UM |ψ〉 = UMU †U |ψ〉. This implies that |ψ〉 is an eigenvector of M if and

only if U |ψ〉 is an eigenvector of the UMU †. When we restrict our attention to the

stabilizer codes, it turned out that the transformed UMU † should be in the stabilizer

S for all M ∈ S [8]. When it comes to the transversal Hadamard operation for the

fault-tolerant quantum computation, we need to check what H⊗nMH†⊗n would be

47

for M ∈ S. When you consider CSS quantum codes, the generators of stabilizer

consists of X operators or Z operators. Thus, it would be needed to check if HMH†

is either X or Z for M ∈ {X,Z}.

Using the shift and multiplication operators, we will determine HMH† for M ∈

{X(a), Z(b)}. To simplify computations, we will assume that the nice ring R is

commutative, so ab = ba holds for all a, b ∈ R.

Lemma 31. Let R be a nice ring. For all a, b ∈ R, we have

HX(a)H† = Z(a).

Proof. It suffices to show that HX(a)H† acts on the computational basis {|x〉 | x ∈

R} in the same way as Z(a). Indeed,

HX(a)H†|x〉 =HX(a)

(
1√
|R|

∑
z∈R

χ(−(zx))|z〉

)

=
1

|R|
∑
z∈R

∑
y∈R

χ(z(−x+ y))χ(ay)|y〉

The character values cancel unless x = y, so we get

HX(a)H†|x〉 =
1

|R|
∑
z∈R

χ(ax)|x〉 = χ(ax)|x〉

The latter expression is nothing but Z(a)|x〉. Therefore, we can conclude that

HX(a)H†|x〉 = Z(a)|x〉,

holds for all x ∈ R, which proves the claim.

48

Lemma 32. Let R be a nice ring. For a, b ∈ R, we have

HZ(b)H† = X(−b).

In general, X(−b) is not equal to X(b) over a nice ring.

Proof. For all x ∈ R, we have

HZ(b)H†|x〉 =HZ(b)

(
1√
|R|

∑
z∈R

χ(−(zx))|z〉

)

=
1

|R|
∑
z∈R

∑
y∈R

χ(z(−x+ b+ y))|y〉

The character values cancel unless y = x− b, so we get

HZ(b)H†|x〉 =
1

|R|
∑
z∈R

|x− b〉 = |x− b〉.

Since the right-hand side is equal to X(−b)|x〉, the claim follows.

The stabilizer S is the abelian subgroup of the error group En such that the co-

dewords are fixed by all elements of S. For a self-orthogonal CSS code, the stabilizer

has a symmetry, that is, it is possible to have the same set of generators consisting

of X operators by replacing Z’s in the set of generators consisting of Z operators by

X’s or vice versa. From two previous lemmas, we can conclude that applying the

generalized Hadamard operators to the codeword does not change the stabilizer in

the following.

Theorem 33. A self-orthogonal CSS code over a nice ring affords a transversal

Hadamard operation.

Proof. We know that HX(a)H† = Z(a) from Lemma 31 and HZ(b)H† = X(−b)

49

from Lemma 32. The first one implies that any generator in the stabilizer consisting

of X operators can be converted to the generator in the stabilizer consisting of Z

operators by a conjugation of the Hadamard operation. When any generator in the

stabilizer consisting of Z operators is converted by the Hadamard conjugation, the

transformed operator is the inverse of a generator in the stabilizer consisting of X

operators since all indices after the transformation are the inverses of the indices

before the transformation and X(b)X(−b) = X(−b)X(b) = I. Since the stabilizer

is a group, there should be an inverse of any elements in S, which means that the

transformed operator is still a generator in S. Therefore, the stabilizer is invariant

under the transversal Hadamard operation.

5.1.2 Transversal SUM Gate

In order to construct the Clifford group, we also need to consider two-qudit ope-

rations, and one of the good candidates is the generalized controlled-NOT operation,

or the SUM gate [43].

Definition 34. Let R be a nice ring. Then, for x, y ∈ R,

SUM |x〉|y〉 = |x〉|y + x〉

is a generalized controlled-NOT operation, or a SUM gate.

The following is the adjoint of the generalized CNOT defined above.

Definition 35. Let R be a ring. Then, for x, y ∈ R,

SUM† |x〉|y〉 = |x〉|y − x〉,

where SUM† is a complex conjugate of transpose SUM gate.

50

It is well-known that any self-orthogonal CSS code over a binary field affords a

transversal CNOT, cf. [8]. We will now show that this can be generalized to self-

orthogonal CSS codes over nice rings.

Lemma 36. Let R be a nice ring. For a, b ∈ R, SUM gate maps by a conjugation

X(a)⊗ I → X(a)⊗X(a),

I ⊗X(a) → I ⊗X(a),

Z(b)⊗ I → Z(b)⊗ I,

I ⊗ Z(b) → Z(−b)⊗ Z(b).

Proof. For all elements x, y in R, the SUM gate acts by conjugation on an X gate

in the form

SUM(X(a)⊗ I) SUM† |x〉|y〉 = SUM |x+ a〉|y − x〉

= |x+ a〉|y + a〉

= X(a)|x〉 ⊗X(a)|y〉

and

SUM(I ⊗X(a)) SUM† |x〉|y〉 = SUM |x〉|y − x+ a〉

= |x〉|y + a〉

= |x〉 ⊗X(a)|y〉.

The action of the SUM gate on a Z gate is given by

SUM(Z(b)⊗ I) SUM† |x〉|y〉 = SUMχ(bx)|x〉|y − x〉

= χ(bx)|x〉|y〉

= Z(b)|x〉 ⊗ |y〉

51

and

SUM(I ⊗ Z(b)) SUM† |x〉|y〉 = SUMχ(b(y − x))|x〉|y − x〉

= χ(by) · χ(−bx)|x〉|y〉

= Z(−b)|x〉 ⊗ Z(b)|y〉,

which proves the claim.

The above result is similar to the conjugation of the SUM gate in d dimension,

where d is a prime [43]. Thus, applying the transversal SUM gates will work well

fault-tolerantly on CSS codes over nice rings. These operations keep the stabilizer

S × S invariantly.

In a two dimensional quantum system, the Clifford group can be generated by

Hadamard gate, the phase gate, and the controlled-NOT gate. In order to generate

the Clifford group over a nice ring, we may need to have the generalized phase gate.

5.1.3 Transversal Phase Gate

We already know that a multiplication operator Z(b) and a phase gate S com-

mute, that is, Z(b) 7−→S Z(b). When it comes to an addition operator X(a) and a

phase gate S, we want to have the following conjugation action, X(a) 7−→S X(a)Z(a)

or Z(a)X(a). For the finite fields of odd prime, Gottesman [43] showed X 7−→S XZ

using the phase gate defined by |j〉 → ωj(j−1)/2|j〉, and Clark [45] proved X 7−→S ZX

using the phase gate defined by |j〉 → ωj(j+1)/2|j〉. We will extend our scope to a

nice ring R.

To investigate the phase gate over a nice ring, we use Weyl-Heisenberg operators.

The definition of Weyl-Heisenberg operators [46] is

ω(p, q, t) = χ(t)ω(p, q) = χ(t− 2−1pq)Z(p)X(q).

52

Since 2 is in general not a unit in a nice ring, we cannot define its inverse 2−1. To

avoid such an issue, we introduce new phase factor χ′(a) = χ(a)1/2, which can be

defined since χ(a) ∈ C. From this new factor, the Weyl-Heisenberg operators are

ω(p, q, t) = χ′(2t− pq)Z(p)X(q) = ω′(p, q, 2t).

Those Weyl operators are closed under multiplication up to phase factors, which is

shown below

ω′(p1, q1, 2t1)ω
′(p2, q2, 2t2) = ω′(p1 + p2, q1 + q2, 2t1 + 2t2 + p1q2 − q1p2).

Now, we define the phase gate S by

S|j〉 = χ′(j(j + 1))|j〉,

for all j ∈ R. Then, the phase gate S acts by conjugation on the Weyl operator as

follows.

Lemma 37. Let R be a nice ring. For a, b ∈ R, the phase gate S maps by a

conjugation

Z(b) 7−→ Z(b),

X(a) 7−→ χ′(c)Z(a)X(a),

where c = −a2 + a.

Proof. We will determine the conjugation action of the phase gate S on a Weyl

53

operator. For all j, t ∈ R, we have

Sω′(b, a, 2t)|j〉 = χ′(2t− ab)SZ(b)X(a)|j〉

= χ′(2t− a2 + a)Z(a)χ′(−ab)Z(b)X(a)S|j〉

= χ′(2t− a2 + a)ω(a, 0)ω(b, a)S|j〉

= χ′(2t− a2 + a)χ′(a2)ω(a+ b, a)S|j〉

= χ′(2t+ a)ω(a+ b, a)S|j〉

= ω′(a+ b, a, 2t+ a)S|j〉.

By respectively substituting (1, 0) and (0, 1) for (b, a), we obtain the claim.

With the similar definition of the phase gate [45], we can obtain same conjugation

actions with some phase factors over a nice ring R.

The conjugate action of the phase gate onX(a) produces the phase factor χ′(−a2+

a). Thus, given (c1, · · · , cn) ∈ Rn corresponding to the stabilizer generator, the con-

jugating action of the transversal phase gate on this stabilizer generator produces

the phase factor χ′(
∑n

i=1(−c2i +ci)). For the self-orthogonal CSS codes,
∑n

i=1 c
2
i = 0.

This means that applying the transversal phase gate does not change the stabilizer

like the transversal Hadamard operations if the classical codewords corresponding to

the stabilizer generators of the self-orthogonal CSS code satisfy the condition that∑n
i=1 ci = 0. In other words, the transversal phase gate is the logical operation on

the self-orthogonal CSS codes over nice rings when the sum of all entries of each

row in the parity-check matrix of the classical code is zero. For the logical X(a)

and Z(b), it should be satisfied that given (a1, · · · , an) ∈ Rn corresponding to X(a),∑n
i=1(−a2i + ai) = −a2 + a for all a ∈ R. Z(b) and S gate commute, but Z(b) has

the same condition as X(b) does since they have the same entries.

54

5.2 Transversal Non-Clifford Operations over Nice Rings

All previous operations belong to the Clifford group, so they cannot provide

a universal set of gates. An example of a non-Clifford operation is given by the

generalized Toffoli gate that we introduce here (which generalizes the Toffoli gates

given in [43] and [7]). If the nice rings is a field, then Nebe, Rains, and Sloane [47]

showed that the Clifford group is a projective maximal finite subgroup of the unitary

group, so adding the Toffoli gate gives a universal set of gates. It seems likely that a

similar result holds for nice rings in general. We will study the controlled-controlled

Z gate from which the generalized Toffoli gate can be obtained by conjugation.

5.2.1 Transversal Controlled-Controlled Z Gates

In order to implement the transversal Controlled-Controlled Z gates over nice

rings, we introduce a triorthogonal matrix defined over a nice ring R, which is a

generalized version of a binary triorthogonal matrix [42].

We define two forms |a · b| : Rn ×Rn → R and |a · b · c| : Rn ×Rn ×Rn → R for

all a, b, c ∈ Rn by

|a · b| =
n∑
i=1

aibi, |a · b · c| =
n∑
i=1

aibici,

where a = (a1, · · · , an), b = (b1, · · · , bn), c = (c1, · · · , cn).

For the transversal CCZ operations to work as the logical CCZ operations on the

encoded triorthogonal stabilizer codes over nice rings, we need to make the triort-

hogonal matrix have stronger restrictions or conditions than those in the definition

provided before. But, it can be easily seen that the new definition of the triorthogo-

nal matrix is still a generalized version of the definition of the binary triorthogonal

matrix.

55

Definition 38. Let R be a nice ring. Let G be a m× n matrix with elements in R.

Let g1, · · · , gm are the rows of G. Then, G is triorthogonal if and only if

1. |gi · gj| = 0 for all pairs of rows 1 ≤ i < j ≤ m,

2. |gi · gi| = 0 or is a unit for all 1 ≤ i ≤ m, and

3. |gi · gj · gk| =


1, if i = j = k and |gi · gi| is a unit,

0, otherwise.

While the binary triorthogonal matrix just had the condition that |gi · gj · gk| = 0

for all distinct triples of rows, the triorthogonal matrix defined above has more

restrictions on triples of rows of the triorthogonal matrix as seen above. For binary

triorthogonal matrix, it is shown that those conditions hold naturally.

For a binary triorthogonal matrix [42], G0 and G1 are denoted by submatrices of

G formed by even-weight and odd-weight rows, respectively. Linear subspaces G0,G1,

and G ⊆ Fn2 are defined as linear subspaces spanned by the rows of G0, G1, and G

respectively.

For a generalized triorthogonal matrix defined above, the submatrices G0 and

G1 are formed by self-orthogonal and non-self-orthogonal rows, respectively. Then,

G0,G1, and G ⊆ Rn are defined as submodules by the rows of G0, G1, and G respecti-

vely. Here, we assume that the first k rows g1, · · · , gk are non-self-orthogonal ones,

and the remainders gk+1, · · · , gm are the self-orthogonal rows.

Lemma 39. Suppose G is triorthogonal over R. Then, (i) G1 is a free submodule of

G, (ii) G0 ∩ G1 = 0, and (iii) G0 = G ∩ G⊥.

56

Proof. Let f ∈ G1 such that f =
∑k

i=1 xig
i for xi ∈ R. If f = 0 or f ∈ G0, then

|f ·gi| = xi|gi ·gi| = 0 for 1 ≤ i ≤ k. Since |gi ·gi| is a unit for 1 ≤ i ≤ k by definition,

xi = 0 for 1 ≤ i ≤ k, which proves (i) and (ii).

We know that f0 · f = 0 for all f0 ∈ G0 and f ∈ G, since rows of G0 are self-

orthogonal and orthogonal to any row of G1 by definition. Thus, G0 ⊆ G ∩ G⊥. Let

f =
∑m

i=1 xig
i ∈ G ∩ G⊥ for xi ∈ R. Then, |f · gi| = xi|gi · gi| = 0 for 1 ≤ i ≤ k.

Since |gi · gi| is a unit, xi is 0 for all 1 ≤ i ≤ k. Thus, f ∈ G0. This proves (iii).

We define a CSS code (X,G0;Z,G⊥) with X-type stabilizers X(f) for f ∈ G0,

and Z-type stabilizers Z(g) for g ∈ G⊥.

Lemma 40. Let R be a commutative nice ring. The CSS code (X,G0;Z,G⊥) has k

logical qudits, and its logical X and Z operators can be chosen as

Xi(s) = X(s · gi), Zi(t) = Z(t · gi),

where g1, · · · , gk are the rows of G1, and s, t are in R.

Proof. Since Xi(s) Zj(t) = χ(st|gi · gj|)Zj(t) Xi(s), logical X and Z operators com-

mute if i 6= j, and does not commute if i = j. This means that those logical operators

obey the commutation rules.

We also need to show that the logical X and Z operators commute with all stabi-

lizers. Given Z-type stabilizer Z(g) for g ∈ G⊥, X(s · gi)Z(g) = χ(s|gi · g|)Z(g)X(s ·

gi) = Z(g)X(s · gi) since gi ∈ G1 ⊆ G and g ∈ G⊥. Given X-type stabilizer X(f) for

f ∈ G0, Z(t · gi)X(f) = χ(t|gi · f |)X(f)Z(t · gi) = X(f)Z(t · gi) since gi ∈ G1 ⊆ G

and f ∈ G0 = G ∩ G⊥ from Lemma 39

Since Z(g)|f〉 = χ(gf)|f〉 = |f〉 for any f ∈ G0 and any g ∈ G + G⊥, the encoded

57

state |0⊗k〉 is defined as

|0⊗k〉 = |G0〉 =
1√
|G0|

∑
g∈G0

|g〉.

For any x = (x1, · · · , xk) ∈ Rk, the encoded state |x〉 is obtained by

|x〉 = X1(x1) · · ·Xk(xk)|G0〉

=
1√
|G0|

∑
f∈G0+x1g1+···+xkgk

|f〉.

In [15], transversal CCZ operations are implemented on the triorthogonal sta-

bilizer codes over F2. Now, we will try to show the generalized transversal CCZ

operations on the triorthogonal stabilizer codes over nice rings. It was shown that

HZ(b)H† = X(−b), so that the transversal generalized Toffoli gate can be imple-

mented if the transversal generalized CCZ operation is implemented. We assume

that the triorthogonal stabilizer code to be considered has a single encoded qudit

with a non-self-orthogonal row g1 for simplicity. Let Gx = G0 + x · g1. Then, for

x ∈ R, |x〉 = 1√
|Gx|

∑
g∈Gx |g〉.

CCZ(b)⊗n|x, y, z〉 =
∑

l∈Gx,m∈Gy ,n∈Gz

CCZ(b)⊗n|l,m, n〉

=
∑

l∈Gx,m∈Gy ,n∈Gz

χ(b|l ·m · n|)|l,m, n〉

In order to check if it is possible to implement the transversal generalized CCZ

operations on the triorthogonal stabilizer codes, we need to calculate the value of

|l ·m · n|.

58

|l ·m · n| = |(l′ + xg1) · (m′ + yg1) · (n′ + zg1)|,

for l′,m′, n′ ∈ G0. By definition, the only term that does not vanish is |g1 · g1 · g1|.

So, |l ·m · n| = xyz|g1 · g1 · g1| = xyz.

Therefore, the transversal CCZ operation is the logical CCZ operation on the

triorthogonal stabilizer codes as follows.

CCZ(b)⊗n|x, y, z〉 = χ(bxyz)|x, y, z〉

Using the transversal Fourier transform with a help of the quantum error correcting

code, we can construct the transversal Toffoli gate working on the triorthogonal

stabilizer codes [15].

59

6. OPTIMAL KEY EXCHANGE PROTOCOLS FOR UNCONDITIONALLY

SECURE KEY DISTRIBUTION SCHEMES

Finally, optimal key exchange protocols will be discussed for unconditionally se-

cure key distribution schemes1.

The key exchange protocols by Bennett and Brassard [21], Ekert [22], and Kish [23]

offer unconditional security for establishing a common secret between two parties.

The common secret allows the two parties to establish a shared key. These three

protocols achieve their remarkable feat by resting their security on physical principles

rather than on computational ones. However, all three protocols assume a dedicated

communication channel between the two parties, which can be impractical when the

number of parties grows. In practice, a communication network will connect the

different parties. Therefore, it is natural to ask how quickly a group of people can es-

tablish shared secrets between any two parties of the group using the unconditionally

secure point-to-point key exchange protocols [21], [22] or [23] over a communication

network? Naturally, the answer to this question depends on the topology of the

network and the number of key exchanges that can be done in parallel by a party.

Gonzalez, Balog, and Kish [48] started to investigate this question and gave

asymptotic results for daisy chain, fully connected, and star network topologies. We

will improve upon their results and furthermore give optimal or near optimal result

for arbitrary network topologies.

1This chapter contains the unpublished paper “Optimal Key Exchange Protocols for Uncondi-
tionally Secure Key Distribution Schemes” by S. Lee and A. Klappenecker [24].

60

6.1 Switched Star Networks

Suppose that m parties communicate over a star network. Each of the partici-

pants is connected to a central crossbar switch. If parties a and b are exchanging a

key, then no one else can exchange a key with either a or b at the same time, but

other pairs in {1, 2, . . . ,m} \ {a, b} can do a key exchange in parallel.

1

2

3

4

0

S

Figure 6.1: A star network connecting 5 participants to one central crossbar switch S.
Two key exchanges can be done in parallel per round, but not more. A total of five rounds
are needed so that all 5 participants can exchange keys.

A round consists of key exchanges that can be done in parallel (e.g. in a star

network with five nodes, we could have the following key exchanges in parallel {1, 2}

and {3, 4}, but 0 would have to sit out this round). The next theorem shows that m

parties can exchange all keys over a star network in m rounds when m is odd, and

in m− 1 rounds when m is even.

Theorem 41. Suppose that m nodes are connected by a star network, where m is

an integer greater than 1. Then 2
⌊
m−1
2

⌋
+ 1 rounds of point-to-point key exchanges

(using the protocols [21] or [23]) are necessary and sufficient to exchange all
(
m
2

)
pairs of keys among the m nodes.

61

The proof of this theorem will follow from Proposition 43 for the case m even

and Proposition 44 for the case m odd. We will first need to prove a simple lemma.

Lemma 42. Let G be an abelian group of order 2n − 1. Then f : G → G given by

f(x) = 2x is an injective function.

Proof. If g and h are elements of G such that 2g = 2h, then

g = g + (2n− 1)g = n(2g) = n(2h) = h+ (2h− 1)h = h,

so the function f is injective, as claimed.

Proposition 43. Suppose that m = 2n nodes are connected by a star network. Then

it is possible to establish
(
2n
2

)
pairwise key-exchanges in 2n − 1 rounds. No protocol

can establish this in fewer rounds.

Proof. Let us label the 2n nodes of the network by the elements of an abelian group

G of order 2n − 1 and an additional element ∞ that is not contained in G. In a

single round, each node can establish a key exchange with exactly one other node.

It is allowed that disjoint pairs of nodes can exchange their keys in parallel, so at

most n pairs of nodes can exchange a key in one round.

We will parameterize the round by an element of the group G. A round with

parameter g ∈ G consists of the following pairs of key exchanges:

Γg = {{∞, g}} ∪ {{h, k} ∈ G×G | h+ k = 2g, h 6= k}.

An element h ∈ G is paired with the element k = 2g− h. We have h = k if and only

if 2g = 2h. In an abelian group of odd order, 2g = 2h implies that g = h by the

previous lemma. Therefore, Γg contains n sets of pairs.

62

If g and g′ are two distinct elements of G, then Γg ∩ Γg′ = ∅. Seeking a contra-

diction, let us assume that there exists a pair {h, k} that is contained in both Γg

and Γg′ . The pair {h, k} cannot contain ∞, so both h and k must be elements of

G. Since {h, k} is contained in both sets, we must have 2g = 2g′, whence g = g′,

contradicting the fact that the elements g and g′ are distinct.

Therefore, ⋃
g∈G

Γg

contains n(2n − 1) =
(
2n
2

)
distinct pairs of nodes. We can conclude that after

executing the 2n − 1 rounds Γg with g ∈ G, we have established a key exchange

between any pair of the 2n nodes. Since each round permits at most n key exchanges,

we cannot have fewer rounds to exchange
(
2n
2

)
keys, so the protocol is optimal.

Proposition 44. Suppose that m = 2n − 1 nodes are connected by a star network.

Then it is possible to establish
(
2n−1

2

)
pairwise key-exchanges in 2n − 1 rounds. No

protocol can establish this in fewer rounds.

Proof. Let us label the 2n − 1 nodes of the network by the elements of an abelian

group G of order 2n− 1. In a single round, each node can establish a key exchange

with exactly one other node. It is allowed that disjoint pairs of nodes can exchange

their keys in parallel, so at most n − 1 pairs of nodes can exchange a key in one

round.

We will parameterize the round by an element of the group G. A round with

parameter g ∈ G consists of the following pairs of key exchanges:

∆g = {{h, k} ∈ G×G | h+ k = 2g, h 6= k}.

An element h ∈ G is paired with the element k = 2g− h. We have h = k if and only

63

if 2g = 2h. In an abelian group of odd order, 2g = 2h implies that g = h by the

previous lemma. Therefore, ∆g contains n− 1 sets of pairs.

If g and g′ are two distinct elements of G, then ∆g ∩∆g′ = ∅, since ∆g ⊂ Γg and

∆g′ ⊂ Γg′ and Γg ∩ Γg′ = ∅, using the notation of the proof of the previous theorem.

Therefore, ⋃
g∈G

∆g

contains (n−1)(2n−1) =
(
2n−1

2

)
distinct pairs of nodes. We can conclude that after

executing the 2n − 1 rounds ∆g with g ∈ G, we have established a key exchange

between any pair of the 2n − 1 nodes. Since each round permits at most n − 1 key

exchanges, we cannot have fewer rounds to exchange
(
2n−1

2

)
keys, so the protocol is

optimal.

Example 45. Consider a star network with 5 participants. According to the previous

proposition, we will need at least five rounds to exchange the keys among all partici-

pants. The proof details a way to accomplish these key changes. They are explicitly

given by the following rounds of key exchanges:

∆0 = {{1, 4}, {2, 3}},

∆1 = {{0, 2}, {3, 4}},

∆2 = {{0, 4}, {1, 3}},

∆3 = {{0, 1}, {2, 4}},

∆4 = {{0, 3}, {1, 2}},

where we have used the cyclic group G = Z/5Z with addition modulo 5.

64

6.2 General Network Topologies

In the previous section, we worked out the key exchange protocol for the star

network. Since every participant can exchange a key with every other participant,

the underlying communication structure can be represented by a complete graph.

However, one limitation of the star network is that each participant can exchange at

most one key per round.

In this section, we will discuss a much more general setup. We assume that a

participant p has several ports that allow her to exchange keys with up to m(p) other

participants in parallel per round. The number m(p) of communication ports is a

positive integer that can vary depending on the participant p. For instance, a parti-

cipant p1 may have m(p1) = 3 different communication ports, whereas participant p2

may have just m(p2) = 2 communication ports. A larger number of ports increases

the cost, but may reduce the number of rounds until all keys are exchanged.

In general, we might not need to secure communication between all parties of a

communication network. The key exchange multigraph models each participant by

a node and contains an edge between two nodes if and only if the participants are

going to exchange keys. We even allow several edges between nodes, so that we can

also model the parallel exchange of several keys between two participants in a single

round. Every finite multigraph can occur as a key exchange multigraph, but we

assume that the multigraph does not contain loops, since no one needs to exchange

a key with herself.

It is instructive to look at some small examples. Figure 6.2 shows a network with

three participants that are connected with multiple edges.

65

4 3

3

1
1

1
1 2

2

Figure 6.2: A key exchange multigraph for three participants. The vertices are labeled
with the number of ports. Each edge is labeled with the round in which the key exchange
is performed. Two rounds of key exchanges are needed, since one node v is of degree 4,
but has only 3 ports. Therefore, dd(v)/m(v)e = d4/3e = 2 rounds are needed by any key
exchange protocol. The given two-round key exchange protocol is optimal.

We can contrast this with the key exchange protocol for three participants shown

in Figure 6.3.

1 1

1

1

2 3

Figure 6.3: A key exchange multigraph for three participants. Each participant has a
single communication port and can exchange just a single key per round. In this configu-
ration, it is not possible to exchange more than one key per round overall, so three rounds
are needed. This three-round key exchange protocol is optimal as well.

Let us fix some notation. Let G = (V,E) be a multigraph with vertex set V and

edge set E. Let (
V

2

)
= {{x, y} | x, y ∈ V, x 6= y}

be the set of unordered pairs in V . We chose to represent each edge by a unique

66

identifier e in the set of edges E. We denote by b : E →
(
V
2

)
the map that associates

to the edge the pair of incident vertices. In other words, b(e) = {u, v} means that

the edge e is incident to the vertices u and v.

Let µ(u, v) be the number of edges between the nodes u and v, that is,

µ(u, v) = |{e ∈ E | b(e) = {u, v}}|.

We denote by N(v) the neighborhood of the node v, that is, the set of all nodes in

V that are connected by some edge to v. We write µ(u) for the maximal multiplicity

of any edge incident with the vertex u; thus,

µ(u) = max{µ(u, v) | v ∈ N(u)}.

The number of edges that are incident with a vertex v is called the degree d(v)

of the vertex. We denote the maximal degree of the graph G = (V,E) by ∆(G). In

other words, ∆(G) = max{d(v) | v ∈ V }.

Let Rm(G) denote the minimal number of rounds needed to exchange all keys

between any parties that are connected by an edge in the multigraph G.

Theorem 46. Let G = (V,E) denote the key exchange multigraph, and let m : V →

N∗ be the function assigning the number of communicator ports to each vertex. Then

the minimal number R(G,m) of rounds that any protocol needs to exchange keys

between all parties that are connected by an edge in G satisfies

max
v∈V

⌈
d(v)

m(v)

⌉
≤ R(G,m) ≤ max

v∈V

⌈
d(v) + µ(v)

m(v)

⌉
.

If µ(v) ≤ m(v), then the lower and upper bounds on R(G,m) differ by at most 1.

67

Proof. Let C : E → N∗ denote a function that assigns a positive integer to each

edge. For an edge e in E, the number C(e) denotes the round during which a key

exchange between the vertices u and v is performed, where {u, v} = b(e). Thus, the

assignment of rounds is an edge coloring problem of sorts.

Not all possible colorings C will lead to a feasible key exchange schedule. One

serious restriction is that a node v can perform at most m(v) key exchanges per

round. Let ni(v) denote the number of edges e of color i that are incident with v,

that is,

ni(v) = |{e ∈ E | C(e) = i, v ∈ b(e)}|.

We call C a proper m-coloring for the multigraph G if and only if for each vertex v

in V and each color i, we have ni(v) ≤ m(v). A coloring C provides a feasible key

exchange schedule if and only if it is a proper m-coloring.

We are interested in the minimal number of rounds R(G,m) of any key exchange

protocol for the key exchange multigraph G. In terms of coloring, this means that

we want to find the smallest integer k such that there exist a proper m-coloring with

k colors, but no such coloring exists with fewer colors. In other words, the minimal

number of rounds R(G,m) in a key exchange protocol for G and the fewest possible

colors k of a proper m-coloring of G coincide.

By the generalized pigeonhole principle, if d(v) edges are incident to a vertex v,

and the node v has m(v) communication ports, then at least dd(v)/m(v)e rounds

of key exchanges are needed before v is able to complete the key exchanges with all

its d(v) neighbors. Therefore, the minimal number R(G,m) of key exchange rounds

satisfies

max
v∈V

⌈
d(v)

m(v)

⌉
≤ R(G,m).

68

It was shown in [49, Theorem 3] that

k = max
v∈V

⌈
d(v) + µ(v)

m(v)

⌉

colors suffice to give the multigraph G a proper m-coloring. Therefore,

R(G,m) ≤ max
v∈V

⌈
d(v) + µ(v)

m(v)

⌉
.

If the number of ports is equal to 1 for all vertices v, then this is know as Vizing’s

theorem. The bound ensures that km(v) ≥ d(v) + µ(v), so at each node there are

always µ(v) colors available when coloring with k colors. The proof given in [49,

Theorem 3] shows that this gives enough freedom to ensure the existence of a proper

m-coloring with k colors.

Let us consider some examples. Let us denote by Cn the cycle graph on n vertices.

Each vertex of the cycle graph is of degree 2. A cycle graph has n edges.

Figure 6.4: The cycle graphs with 5 and 6 vertices.

The next proposition determines the minimal number of key exchange rounds

that are needed in the cycle network for all possible configurations of ports.

69

Proposition 47. Consider a network of n nodes that form a cycle graph Cn, so each

node performs a key exchange with precisely two neighbors. Then the minimal number

R(Cn,m) of key exchange rounds for a given configuration m of communication ports

is given as follows.

(i) If n is even and m(v) = 1 for some vertex v, then R(Cn,m) = 2.

(ii) If n is odd and m(v) = 1 for all vertices v, then R(Cn,m) = 3.

(iii) If n is odd and m(v) = 1 for some vertex v and m(u) ≥ 2 for some other vertex

u, then R(G,m) = 2.

(iv) If m(v) ≥ 2 for all vertices v, then R(Cn,m) = 1.

Note that the cases (i) and (iv) cover all situations for cycle graphs with an even

number of vertices, and (ii)–(iv) cover all situations for cycle graphs with an odd

number of vertices.

Proof. (i) If n is even, then coloring the edges of Cn by alternating the colors 1 and

2 yields a proper m-coloring for any m, so R(G,m) ≤ 2. If m(v) = 1 for some

vertex v, then R(G,m) ≥ dd(v)/m(v)e = d2/1e = 2. Therefore, the minimal

number of key exchange rounds is R(G,m) = 2.

(ii) If n is odd and m(v) = 1 for all vertices v, then two colors do not suffice.

Indeed, each vertex has degree 2, so at least two colors are needed, but the

edges would have to alternate in the two colors, which is impossible for an odd

number of edges.

(iii) Suppose that n is odd, m(v) = 1 for some vertex v, and m(u) = 2 for another.

We need at least dd(v)/m(v)e = d2/1e = 2 colors. However, two colors suffice.

Indeed, we can color the edges incident with u in the color 1, and alternate

the color for the remaining n− 2 edges (starting and ending with the color 2).

Thus, we can conclude that R(G,m) = 2.

70

(iv) If m(v) is at least two for each vertex v, then coloring each edge with the color

1 is a valid edge m-coloring, so R(G,m) = 1.

6.3 Pass-Through Networks

In this section, we make a small but very significant change to our network model

by allowing that communication can pass through nodes. This is best explained

with a small example. Consider the linear chain network with four nodes shown in

Figure 6.5.

1 2 2 1

Figure 6.5: Linear chain network with four nodes. The two middle nodes have two
communication ports, and the nodes at the ends have just one communication port each.

The obvious drawback of the linear chain network is that only neighboring nodes

can establish a key exchange, but the two nodes at the end cannot exchange a key.

Let us now assume that a node in the middle can either exchange key with its

two neighbors or pass-through the communication and allow neighboring nodes to

exchange keys, see Figures 6.6 and 6.7.

1 2 2 1

Figure 6.6: Linear chain network with four nodes. The second node from the left is in
pass-through mode, so that the first and third nodes can exchange keys.

71

1 2 2 1

Figure 6.7: Linear chain network with four nodes. Both nodes in the middle are in
pass-through mode, so that the first and fourth nodes can exchange keys.

We can now ask the question: How many rounds of key exchanges does it take so

that all pairs of nodes in a linear chain network have exchanged keys assuming that

pass-through is allowed?

The interesting aspect of this setup is that a simple network structure, such as the

linear chain network, can still provide the connectivity of a complete graph. However,

the scheduling of the key exchanges is now complicated by the fact that two or more

communication links might be involved for key exchanges between non-neighboring

nodes.

We will use a hypergraph rather than a graph to model the key exchanges. The

hypergraph allows us to model each communication port as a node, so that we can

include in a hyperedge all communication ports that are involved in (or disabled by)

a key exchange.

For simplicity, let us assume that we are given a linear chain network with n nodes.

The node 1 has a single communication port v1,r that connects him to nodes to the

right. Each node k in the range 1 < k < n has two communication ports, vk,l that

allows to communicate with nodes less than k, and vk,r that allows to communicate

with nodes greater than k. Finally, the node n has a single communication port vn,l.

We can model the linear chain network by a hypergraph as follows. The set of

vertices Vn consists of the communication ports

Vn = {v1,r, v2,l, v2,r, . . . , vn−1,l, vn−1,r, vn,l}.

72

The key exchange between nodes i and j for 1 ≤ i < j ≤ n is modeled by the

hyperedge eij that contains the communication port vi,r of the node i and the com-

munication port vj,l of the node j, and the communication ports vk,l and vk,r of all

nodes k in the range i < k < j that are disabled due to pass-through, hence

eij = {vi,r, vi+1,l, vi+1,r, . . . , vj−1,l, vj−1,r, vj,l}.

Thus, the hypergraph Hn = (Vn, En) modeling the key exchanges for the linear

chain network with pass-through has 2n − 2 vertices and a set of
(
n
2

)
hyperedges

En = {eij | 1 ≤ i < j ≤ n}.

Example 48. The linear chain network with four nodes has six communication ports

V4 = {v1,r, v2,l, v2,r, v3,l, v3,r, v4,l}.

and six hyperedges eij that model the key exchange between the nodes i and j, namely

e12 = {v1,r, v2,l}, e13 = {v1,r, v2,l, v2,r, v3,l},

e14 = {v1,r, v2,l, v2,r, v3,l, v3,r, v4,l}, e23 = {v2,r, v3,l},

e24 = {v2,r, v3,l, v3,r, v4,l}, e34 = {v3,r, v4,l}.

The key exchange between nodes i and j requires two ports for communication and

disabling of 2(j − i+ 1) intermediate ports due to pass-through.

Our goal is to find the optimal number of rounds for key exchanges over the

linear chain network with n hosts. This means that we need to find a coloring of the

hyperedges of Hn with a minimal number of colors such that any two hyperedges

that have a vertex in common receive different colors; in other words, we need to

find the chromatic index of Hn.

73

Since we prefer to work with a graph rather than a hypergraph, we translate

the edge coloring problem of the hypergraph Hn into an equivalent vertex coloring

problem of the line graph L(Hn). We can form the line graph L(Hn) = (V ′n, E
′
n)

of the hypergraph Hn as follows. The set of vertices V ′n of the line graph L(Hn) is

given by the set of hyperedges V ′n = En of the hypergraph Hn, and the edge set E ′n

contains a pair {ei,j, ek,l} of hyperedges of Hn if and only if ei,j ∩ ek,l 6= ∅.

The smallest number of colors needed to color the vertices of L(Hn) such that

adjacent vertices do not share the same color is called the chromatic number of line

graph L(Hn). Since the line graph exchanges the role of hyperedges and vertices,

the chromatic index of the hypergraph Hn is the same as the chromatic number of

the line graph L(Hn). Therefore, the problem of finding the minimal number of

rounds in key exchanges in the line graph when pass-through is allowed is the same

as finding the chromatic number of the line graph L(Hn).

It might be instructive to look at an example.

Example 49. We discussed the hypergraph H4 in Example 48. The line graph of H4

is shown in Figure 6.8. Every node of the line graph L(H4) represents a hyperedge.

Two nodes of the line graph are adjacent if and only if the corresponding hyperedges

share a vertex. Since the line graph contains a clique with four nodes, we need at

least four rounds to exchange all keys. It turns out that four rounds are enough, since

we can exchange keys in round 1 between nodes {1, 4}, in round 2 between {1, 3} and

{3, 4}, in round 3 between {1, 2} and {2, 4}, and in round 4 between {2, 3}.

The next theorem determines the number of key exchange rounds in the linear

chain network with n nodes by deriving the chromatic number of the line graph

L(Hn).

74

e1,4

e1,3 e2,4

e1,2 e2,3 e3,4

Figure 6.8: The line graph L(H4) of the hypergraph H4 representing the linear chain
network with 4 hosts. Since we have a clique with four nodes in L(H4), this means that
every vertex coloring of L(H4) needs at least four colors.

Theorem 50. The minimal number Rn of key exchange rounds in the linear chain

network with n participants with key exchanges between all participants is given by

Rn =


n2

4
if n is even,

n2−1
4

if n is odd.

Proof. We set k = bn/2c, so that n = 2k when n is even and n = 2k + 1 when n is

odd. Let us partition the set V ′n = En of vertices of the line graph L(Hn) into the

sets

An = {eij | 1 ≤ i ≤ k, i+ 1 ≤ j ≤ k},

Cn = {eij | 1 ≤ i ≤ k, k + 1 ≤ j ≤ n},

Bn = {eij | k + 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n}.

The sets An, Bn, and Cn are pairwise disjoint, and their union is the entire set

V ′n = En.

Since each element eij in the set Cn contains vk,r, we can conclude that Cn is a

75

clique in the line graph L(Hn) with m elements, where

m =


k2 = n2

4
if n is even,

k(k + 1) = n2−1
4

if n is odd.

Therefore, each vertex coloring of L(Hn) requires at least m different colors.

We can give a vertex coloring C of L(Hn) with m colors as follows.

(a) For eij in Cn, we set C(eij) = k(j − k − 1) + i.

(b) For eij in An, we have ej,n−i+1 in Cn and we set C(eij) = C(ej,n−i+1).

(c) For eij in Bn, we have en−j+1,i in Cn and we set C(eij) = C(en−j+1,i).

In this coloring, the m vertices in Cn have pairwise distinct colors.

We will now show that C is a proper coloring of the vertices. For eij ∈ An,

the set {eij, ej,n−i+1} is an independent set in L(Hn). Similarly, for eij ∈ Bn, the

set {en−j+1,i, eij} is an independent set in L(Hn). Since vertices in an independent

set can be colored with the same color, we only need to show that each element

in An ∪ Bn receives a different color when assigning colors as in (b) and (c), so no

coloring conflicts can arise.

The map τ : An → Cn given by τ(eij) = ej,n−i+1 is an injective map. The map

σ : Bn → Cn given by σ(eij) = en−j+1,i is an injective map as well. The two maps have

disjoint images in Cn, since any eij in An yields an image τ(eij) = ej,n−i+1 satisfying

j+n−i+1 ≥ n+2, whereas any eij in Bn yields an image σ(eij) = en−j+1,i satisfying

n− j + 1 + i ≤ n. Therefore, the map ρ : An ∪Bn → Cn given by

ρ(eij) =


τ(eij) = ej,n−i+1 if eij ∈ An,

σ(eij) = en−j+1,i if eij ∈ Bn,

76

is injective as well. Since all elements in An ∪ Bn get assigned different colors, no

coloring conflicts will arise. The color assignments in (b) and (c) are proper, since

elements in An ∪ Bn get the same color as elements in Cn only when they form an

independent set.

Remark 51. Gonzalez, Kish, Balog, and Enjeti have shown in [50] that the number

of rounds for key exchanges for the linear chain network with pass-through is at most

(N + 1)2/4 when N is odd and ((N + 1)2 − 1)/4 when N is even, where N = n− 1.

The previous theorem proves that their key exchange protocol is optimal. Our protocol

given here differs from the one given in [50].

77

7. CONCLUSIONS

As nice nearrings and its special subclass, nice rings, were introduced in [16],

we can construct quantum error correcting codes without the restriction that their

alphabet sizes are powers of a prime. In this thesis, two quantum error correcting

schemes were generalized over nice rings.

The first quantum code we showed to generalize was the subsystem code. We gave

a construction of subsystem codes over nice nearrings generally. Then, by focusing

our scope on nice rings, we derived a construction of subsystem codes from classical

linear codes over finite Frobenius rings. Furthermore, for the much smaller class of

free subsystem codes over finite chain rings, we were able to show that there exists

a free subsystem code over a finite field that has the same rate and at least same

minimum distance.

For the generalization of the entanglement-assisted quantum error correcting co-

des, we first showed that the R-module can be decomposed as an orthogonal direct

sum of hyperbolic pairs since it is a finite symplectic abelian group with the anti-

symmetric bicharacter. From that, it can be possible to have a symplectic basis and

a isotropic basis generating a free submodule of R2n. It was shown that appending

appropriate entanglement qudits, the noncommuting generators are extended to the

commuting generators. The entanglement-assisted quantum error correcting codes

over nice rings can be constructed with the extended commuting generators.

When it comes to the generalization of the fault-tolerant quantum computation,

we showed that transversal versions of Fourier transform, SUM gate, and phase gate

are logical operations on CSS codes over nice rings. For non-Clifford operation,

we discussed that the transversal CCZ gate can be performed fault-tolerantly on

78

triorthogonal stabilizer codes over nice rings. Using these transversal Clifford and

non-Clifford gates, quantum computation over nice rings can be fault-tolerant and

universal.

Finally, the optimal key exchange protocols on three network topologies, the star

network topology, the general network topology, and the pass-through network topo-

logy, were discussed for unconditionally secure key distribution. For the star network,

we can compute the optimal number of rounds needed for the key exchanges between

all pairs of given nodes. In order to expand our scope to the more general situation,

the multigraph was investigated as the key exchange model, and based on this set-

ting, the quite tight bounds on the minimum number of rounds required for the

key exchange were shown. For the pass-through network topology, the hypergraph

was introduced to model the network, and its line graph was derived and used to

calculate the optimal number of rounds for the key exchange.

79

REFERENCES

[1] (2013) International Technology Roadmap for Semiconductors (ITRS). [Online].

Available: http://www.itrs.net/

[2] I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512,

no. 7513, pp. 147–154, 2014.

[3] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong, and

S. Mitra, “Carbon nanotube computer,” Nature, vol. 501, no. 7468, pp. 526–

530, 2013.

[4] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical

control of light on a silicon chip,” Nature, vol. 431, no. 7012, pp. 1081–1084,

2004.

[5] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332,

1999.

[6] S. Hallgren, “Polynomial-time quantum algorithms for pell’s equation and the

principal ideal problem,” Journal of the ACM (JACM), vol. 54, no. 1, p. 4, 2007.

[7] P. W. Shor, “Fault-tolerant quantum computation,” in 37th Annual Symposium

on Foundations of Computer Science (Burlington, VT, 1996). Los Alamitos,

CA: IEEE Comput. Soc. Press, 1996, pp. 56–65.

[8] D. Gottesman, “Theory of fault-tolerant quantum computation,” Phys. Rev. A,

vol. 57, no. 1, pp. 127–137, Jan 1998.

[9] D. Gottesman, “An Introduction to Quantum Error Correction and Fault-

Tolerant Quantum Computation,” ArXiv e-prints, Apr. 2009.

80

[10] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,”

Phys. Rev. A, vol. 54, no. 2, pp. 1098–1105, Aug 1996.

[11] A. Steane, “Multiple Particle Interference and Quantum Error Correction,”

Proc. Roy. Soc. Lond., vol. A452, p. 2551, 1996.

[12] D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D. disser-

tation, California Institute of Technology, 1997.

[13] D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computation with con-

stant error,” in Proceedings of the twenty-ninth annual ACM symposium on

Theory of computing, ser. STOC ’97. New York, NY, USA: ACM, 1997, pp.

176–188.

[14] B. Eastin and E. Knill, “Restrictions on transversal encoded quantum gate sets,”

Physical review letters, vol. 102, no. 11, p. 110502, 2009.

[15] A. Paetznick and B. W. Reichardt, “Universal fault-tolerant quantum compu-

tation with only transversal gates and error correction,” Physical review letters,

vol. 111, no. 9, p. 090505, 2013.

[16] A. Klappenecker, “Nice nearrings,” in 2012 IEEE International Symposium on

Information Theory Proceedings (ISIT), july 2012, pp. 170 –173.

[17] S. Nadella and A. Klappenecker, “Stabilizer codes over frobenius rings,” in 2012

IEEE International Symposium on Information Theory Proceedings (ISIT), july

2012, pp. 165 –169.

[18] S. Lee and A. Klappenecker, “Subsystem codes over nice nearrings,” in 2013

IEEE International Symposium on Information Theory Proceedings (ISIT).

IEEE, 2013, pp. 912–916.

81

[19] ——, “Entanglement-assisted quantum error correcting codes over nice rings,” in

52nd Annual Allerton Conference on Communication, Control, and Computing,

Sept 2014.

[20] ——, “Generalized fault-tolerant quantum computation over nice rings,” in 2016

IEEE International Symposium on Information Theory (ISIT). IEEE, 2016,

pp. 2279–2283.

[21] G. Bennett, C.H.; Brassard, “Quantum cryptography: Public key distribution

and coin tossing,” Proc. of IEEE International Conference on Computers, Sys-

tems and Signal Processing, vol. 175, p. 8, 1984.

[22] A. K. Ekert, “Quantum cryptography based on bells theorem,” Physical review

letters, vol. 67, no. 6, p. 661, 1991.

[23] L. B. Kish, “Totally secure classical communication utilizing johnson (-like)

noise and kirchoff’s law,” Physics Letters A, vol. 352, no. 3, pp. 178–182, 2006.

[24] S. Lee and A. Klappenecker, “Optimal key exchange protocols for unconditio-

nally secure key distribution schemes,” unpublished.

[25] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum infor-

mation,” 2011.

[26] D. Kribs, R. Laflamme, and D. Poulin, “Unified and generalized approach to

quantum error correction,” Phys. Rev. Lett., vol. 94, no. 18, p. 180501, May

2005.

[27] D. W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky, “Operator quantum

error correction,” Quantum Info. Comput., vol. 6, no. 4, pp. 382–399, Jul. 2006.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2012086.2012092

82

[28] S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “Subsystem codes,” in In

44th Annual Allerton Conference on Communication, Control, and Computing,

vol. 44, no. 1, sep 2006.

[29] A. Klappenecker and P. Sarvepalli, “Clifford code constructions of operator

quantum error-correcting codes,” IEEE Transactions on Information Theory,

vol. 54, no. 12, pp. 5760 –5765, dec. 2008.

[30] I. M. Isaacs, Finite Group Theory, ser. Graduate Studies in Mathematics. Ame-

rican Mathematical Society, 2008, vol. 92.

[31] G. H. Norton and A. Slgean, “On the structure of linear and cyclic codes over

a finite chain ring,” Applicable Algebra in Engineering, Communication and

Computing, vol. 10, pp. 489–506, 2000, 10.1007/PL00012382.

[32] G. Norton and A. Salagean, “On the hamming distance of linear codes over a

finite chain ring,” IEEE Transactions on Information Theory, vol. 46, no. 3, pp.

1060 –1067, may 2000.

[33] T. Brun, I. Devetak, and M. H. Hsieh, “Correcting quantum errors with entang-

lement,” Science, vol. 314, no. 5798, pp. 436–439, 2006.

[34] ——, “Catalytic quantum error correction,” arXiv preprint quant-ph/0608027,

2006.

[35] M. H. Hsieh, I. Devetak, and T. Brun, “General entanglement-assisted quantum

error-correcting codes,” Physical Review A, vol. 76, no. 6, p. 062313, 2007.

[36] E. M. Zmud, “Symplectic geometries over finite abelian groups,” Sbornik: Mat-

hematics, vol. 15, pp. 7–29, 1971.

[37] G. Karpilovsky, Group representations. Elsevier, 1994, vol. 3.

83

[38] D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi, and I. L. Chuang, “Entangle-

ment in the stabilizer formalism,” arXiv preprint quant-ph/0406168, 2004.

[39] S. A. Aly, “A class of quantum ldpc codes constructed from finite geometries,” in

Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE,

Nov 2008, pp. 1–5.

[40] M. H. Hsieh, T. A. Brun, and I. Devetak, “Entanglement-assisted quantum

quasicyclic low-density parity-check codes,” Phys. Rev. A, vol. 79, p. 032340,

Mar 2009.

[41] D. J. C. MacKay, “Optimizing sparse graph codes over GF(q),” 2003.

[42] S. Bravyi and J. Haah, “Magic-state distillation with low overhead,” Physical

Review A, vol. 86, no. 5, p. 052329, 2012.

[43] D. Gottesman, “Fault-tolerant quantum computation with higher-dimensional

systems,” in Quantum Computing and Quantum Communications. Springer,

1999, pp. 302–313.

[44] S. Nadella, “Stabilizer codes over frobenius rings,” Master’s thesis, Texas A&M

University, 2012.

[45] S. Clark, “Valence bond solid formalism for d-level one-way quantum computa-

tion,” Journal of Physics A: Mathematical and General, vol. 39, no. 11, p. 2701,

2006.

[46] D. Gross, “Computational power of quantum many-body states and some results

on discrete phase spaces,” Ph.D. dissertation, Imperial College, 2008.

[47] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-dual codes and invariant theory.

Springer, 2006, vol. 17.

84

[48] E. Gonzalez, R. S. Balog, and L. B. Kish, “Resource requirements and speed

versus geometry of unconditionally secure physical key exchanges,” Entropy,

vol. 17, no. 4, pp. 2010–2024, 2015.

[49] S. Louis Hakimi and O. Kariv, “A generalization of edge-coloring in graphs,”

Journal of Graph Theory, vol. 10, no. 2, pp. 139–154, 1986.

[50] E. Gonzalez, L. B. Kish, R. S. Balog, and P. Enjeti, “Information theoretically

secure, enhanced johnson noise based key distribution over the smart grid with

switched filters,” PloS one, vol. 8, no. 7, p. e70206, 2013.

85

