115 research outputs found

    Coordination and navigation of heterogeneous MAV-UGV formations localized by a 'hawk-eye'-like approach under a model predictive control scheme

    Get PDF
    n approach for coordination and control of 3D heterogeneous formations of unmanned aerial and ground vehicles under hawk-eye-like relative localization is presented in this paper. The core of the method lies in the use of visual top-view feedback from flying robots for the stabilization of the entire group in a leader–follower formation. We formulate a novel model predictive control-based methodology for guiding the formation. The method is employed to solve the trajectory planning and control of a virtual leader into a desired target region. In addition, the method is used for keeping the following vehicles in the desired shape of the group. The approach is designed to ensure direct visibility between aerial and ground vehicles, which is crucial for the formation stabilization using the hawk-eye-like approach. The presented system is verified in numerous experiments inspired by search-and-rescue applications, where the formation acts as a searching phalanx. In addition, stability and convergence analyses are provided to explicitly determine the limitations of the method in real-world applications

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    A guiding vector field algorithm for path following control of nonholonomic mobile robots

    Get PDF
    In this paper we propose an algorithm for path following control of the nonholonomic mobile robot based on the idea of the guiding vector field (GVF). The desired path may be an arbitrary smooth curve in its implicit form, that is, a level set of a predefined smooth function. Using this function and the robot’s kinematic model, we design a GVF, whose integral curves converge to the trajectory. A nonlinear motion controller is then proposed which steers the robot along such an integral curve, bringing it to the desired path. We establish global convergence conditions for our algorithm and demonstrate its applicability and performance by experiments with wheeled robots

    Guiding Vector Field Algorithm for a Moving Path Following Problem

    Get PDF
    This paper presents a guidance algorithm solving the problem of moving path following, that is, steering a mobile robot to a curvilinear path attached to a moving frame. The nonholonomic robot is described by the unicycle-type model under the influence of some constant exogenous disturbance. The desired path may be an arbitrary smooth curve in its implicit form, that is, a level set of some known smooth function. The path following algorithm employs a guiding vector field, whose integral curves converge to the trajectory. Experiments with a real fixed wing unmanned aerial vehicle (UAV) as well as numerical simulations are presented, illustrating the performance of the proposed path following control algorithm

    Swarm-based planning and control of robotic functions

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Basic issues with a robotic task that requires multiple mobile robots moving in formations are to assemble at an initial point in the work space for establishing a desired formation, to maintain the formation while moving, to avoid obstacles by occasionally splitting/deforming and then re-establishing the formation, and to change the shape of the formation upon requests to accommodate new tasks or safety conditions. In the literature, those issues have been often addressed separately. This research proposes a generic framework that allows for tackling these issues in an integrated manner in the optimal formation planning and control context. Within this proposed framework, a leader robot will be assigned and the path for the leader is obtained by utilising a modified A* search together with a vector approach, and then smoothed out to reduce the number of turns and to satisfy the dynamic and kinematic constraints of mobile robots. Next, a reference trajectory is generated for the leader robot. Based on the formation configuration and the workspace environment, desired trajectories for follower robots in the group are obtained. At the lowest level, each robot tracks its own trajectory using a unified tracking controller. The problem of formation initialisation, in which a group of robots, initially scattering in the workspace, is deployed to get into a desired formation shape, is dealt with by using a Discrete Particle Swarm Optimisation (DPSO) technique incorporated with a behaviour-based strategy. The proposed technique aims to optimally assign desired positions for each robot in the formation by minimisation of a cost function associated with the predefined formation shape. Once each robot has been assigned with a desired position, a search scheme is implemented to obtain a collision free trajectory for each robot to establish the formation. Towards optimal maintenance of the motion patterns, the path that has been obtained for robots in the group by using the modified A* search, is further adjusted. For this, the Particle Swarm Optimisation (PSO) technique is proposed to minimise a cost function involving global motion of the formation, with the main objective of preventing unnecessary changes in the follower robot trajectories when avoiding obstacles. A PSO formation motion planning algorithm is proposed to search for motion commands for each robot. This algorithm can be used to initialise the formation or to navigate the formation to its target. The proposed PSO motion planning method is able to maintain the formation subject to the kinematic and velocity constraints. Analytical work of the thesis is validated by extensive simulation of multiple differential drive wheeled mobile robots based on their kinematic models. The techniques proposed in this thesis are also experimentally tested, in part, on two Amigo mobile robots

    A new coordination framework for multi-UAV formation control

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become very popular in the last few decades. Nowadays these vehicles are used for both civilian and military applications which are dull, dirty and dangerous for humans. The remarkable advances in materials, electronics, sensors, actuators and batteries enable researchers to design more durable, capable, smart and cheaper UAVs. Consequently, a significant amount of research effort has been devoted to the design of UAVs with intelligent navigation and control systems. There are certain applications where a single UAV can not perform adequately. However, carrying out such tasks with a fleet of UAVs in some geometric pattern or formation can be more powerful and more efficient. This thesis focuses on a new coordination scheme that enables formation control of quadrotor type UAVs. Coordination of quadrotors is achieved using a virtual structure approach where orthogonal projections of quadrotors on a virtual plane are utilized to define coordination forces. This plane implies planar spring forces acting between the vehicles. Virtual springs are also augmented with dampers to suppress oscillatory motions. While the coordination among the aerial vehicles is achieved on a virtual plane, altitude control for each vehicle is designed independently. This increases maneuvering capability of each quadrotor along the vertical direction. Due to their robustness to the external disturbances such as wind gusts, integral backstepping controllers are designed to control attitude and position dynamics of individual quadrotors. Several coordinated task scenarios are presented and the performance of the proposed formation control technique is assessed by several simulations where three and five quadrotors are employed. Simulation results are quite promising

    Dynamics and control of tethered satellite formations in low-Earth orbits

    Get PDF
    This thesis is focused on the study of dynamics and control of a multi-tethered satellite formation, where a multi-tethered formation is made up with several satellites (agents) connected by means of cables (tethers). The goal of the first part of the study is to evaluate the effect of tether mass on multi-tethered clusters. Due to the complexity of the formations analyzed, the stability of the formation is assessed through a numerical simulation. The behavior is evaluated in the ideal case of circular orbits, but also in non-ideal cases such as that of elliptical reference orbit or perturbed motion. For circular reference orbits, the dynamics of tethered satellite formation is studied, showing that tether mass affects formation dynamics for closed configurations featuring external tethers. This leads to significant instability effects affecting the position of deputies with respect to the parent body neglected by a more elementary modeling approach. When combined effect of orbit eccentricity and tether mass on tethered formations is analyzed, the most noticeable effect due to eccentricity is the increase in the variation of the local spin rate of the cluster between perigee and apogee passes of the reference elliptical orbit. This effect has consequences over the elongation of tethers, shape of tether oscillations and angular separation between adjacent tethers especially for open formations. When taking into account the J2 effect on massive tethered satellite formations, in the Earth¿facing scenario, the trajectory of the parent body presents oscillations of increasing amplitude in the direction perpendicular to the orbital plane. The second part of the study is focused on deriving a control law for position and attitude control of an Earth-facing double pyramid multi-tethered cluster. The control problem is decomposed in two levels: A first level to perform position and attitude coarse control of the formation as a whole, and a second level to achieve accurate position and control of each agent of the cluster. For the purpose of attitude control, and taking advantage again of the similarities between a tethered cluster and a rigid body, the virtual structure approach is chosen as the most suitable option. The formulation shown in this thesis augments the general virtual structure equations valid for a static formation by adding the kinematics of a spinning formation, since the original formulation is valid only to achieve a static final state. The controller is designed to modify the spin rate and the moment of inertia of the formation through a reeling mechanism, and therefore to be able to control the Likins-Pringle tilting angle of the cluster. For the derivation of the accurate positioning control law, the study initially discusses different alternatives based on the state of the art of the robotics control literature. After evaluating other alternatives, two control laws are chosen for this application: One based on a PID controller and one based on the sliding mode control technique. For the sliding mode based control, a proof of semi-global exponential stability is provided. Results of a representative simulation assess the viability of the control approach proposed leading to a submillimetric positioning accuracy.La tesi es centra en l'estudi de la dinàmica i control de formacions de satèl·lits connectats per tethers. Aquestes formacions estan compostes per diversos satèl·lits (agents) connectats per cables (tethers). L'objectiu de la primera part de l'estudi, és l'avaluació de l'efecte de la massa a clústers connectats per múltiples tethers. Degut a la complexitat de les formacions analitzades, l'estabilitat de la formació s'analitza a través de simulacions. S'estudia el comportament pel cas ideal d'orbites circulars, així com en casos no ideals tals com orbites de referència el·liptiques, o moviment sota l'efecte de pertorbacions. La tesi analitza la dinàmica de les formacions per òrbites circulars, mostrant que l'efecte de la massa dels tethers afecta la dinàmica de formacions de geometria tancada (on el perímetre extern esta definit per tethers) amb un satèl·lit central. Aquest efecte dóna lloc a una clara inestabilitat que afecta la posició dels agents respecte a l'objecte central. Aquest efecte no és apreciable en models simplificats on s'ignora l'efecte de la massa al model. Quan es combina una òrbita de referència el·liptica amb un model que incorpora la massa dels tethers, l'efecte més notori és la variació de la velocitat de rotació local del clúster entre el pas per l'apogeu i perigeu de l'òrbita de referència. Aquest efecte té conseqüències sobre l'elongació dels tethers, la forma de les oscil·lacions, i la separació entre tethers adjacents (especialment en el cas de formacions obertes). Quan es té en compte l'efecte de la pertorbació J2, en el cas de formacions orientades envers la Terra, la trajectòria de l'objecte central presenta oscil·lacions d'amplitud creixent en la direcció perpendicular al pla orbital. La segona part de l'estudi es centra en la definició d'una llei de control per regular la posició i orientació d'un clúster amb geometria de doble piràmide orientat envers la Terra. El problema de control es descompon en dos nivells. Un primer nivell per un control primari de posició i orientació del cluster, i un segon nivell per un control de posició precís per a cada agent del cluster. Per tal d'aconseguir el primer nivell de control, i aprofitant les similituds entre un cluster connectat per tethers i un sòlid rígid, s'utilitza la tècnica d'estructura virtual. La formulació utilitzada en aquest estudi amplia el model general d'estructura virtual utilitzat per formacions estàtiques, tot afegint les equacions necessàries per a una formació que gira sobre un eix propi. El controlador esta dissenyat per permetre el canvi de la velocitat de gir i el moment d'inèrcia de la formació a través d'un sistema que permet modificar la longitud dels tethers. D'aquesta forma es permet controlar l'angle d'inclinació de Likins-Pringle del clúster. Per a la definició del control de precisió, l'estudi avalua inicialment diferents alternatives basades en l'estat de l'art de sistemes de control aplicats a robòtica. Després de descartar altres alternatives, es proposen dues lleis de control : Una primera basada en un controlador PID, i una basada en control lliscant. Per l'opció de control lliscant es presenta una demostració d'estabilitat exponencial semiglobal. Els resultats de simulacions confirmen la viabilitat de la solució de control que permet posicionament amb precisió submil·limetric

    Application of Nonlinear Model Predictive Control to Holonomic Mobile Robots without Terminal Constraints or Costs

    Get PDF
    The use of mobile robots greatly enhances the capability and versatility of industrial robots compared to their fixed counterpart. However, successfully deploying autonomous mobile robots is challenging and requires accurate mapping, localization, planning and control. Herein, we focus the application of nonlinear model predictive control to a holonomic mobile robot while ensuring closed loop asymptotic stability. This thesis presents three main contributions in this area. We begin with a study of the regulation control of a holonomic mobile robots with limits on acceleration under a Model Predictive Control (MPC) scheme without stabilizing terminal conditions or costs. Closed-loop asymptotic stability is ensured by suitably choosing the prediction horizon length. We first compute a set of admissible states for a holonomic mobile robot with limits on acceleration using the theory of barriers. Then, by deriving a growth (envelope) function for the MPC value function, we determine a stabilizing prediction horizon length. Theoretical results are confirmed through numerical simulations. Next the Model Predictive Path Following Control (MPFC) of holonomic mobile robots is considered. Here, the control objective is to follow a geometric path, where the time evolution of the path parameterization is not fixed a priori, but rather is left as an extra degree of freedom for the controller. Contrary to previous works, we show that the asymptotic stability can be ensured for the resulting closed-loop system under MPFC without terminal constraints or costs. The analysis is based on verifying the cost-controllability assumption by deriving an upper bound on the MPFC finite-horizon value function. This bound is used to determine a stabilizing prediction horizon. The analysis is preformed in the discrete-time setting and results are verified by numerical simulations. Finally, a dual-objective MPC algorithm for an open chain manipulator is presented, which, as a primary objective takes the end effector to a desired position and as a secondary goal minimizes the effort required from the actuators. To achieve this, a recursive Newton-Euler algorithm is used to calculate the system dynamics and to determine the actuator torques. The proposed method is based on a time varying cost function which, as time goes on, reduces weight on the secondary objective. This allows the controller to minimize torque at the start of the maneuver without affecting the ability of the system to reach the desired end effector position. By taking advantage of the inherent benefits of MPC such as the ability to naturally incorporate constraints and to manipulate the objective function, the algorithms proposed here offer control solutions applicable in a variety of mobile robotic applications
    corecore