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Statement of Contributions

The Introduction, Background and Conclusion chapters (1, 2 and 7 respectively) do not
present any contributions but were solely written by the author. Prof. Soo Jeon, Pr.
William Melek and Dr. Mohamed Said provided feedback and suggested revisions to these
and the remaining chapters in this thesis.

Chapter 3 is an excerpt from [67] for which the author of this thesis is a co-author. The
author’s contribution in this paper include the adaptation of a continuous time growth
bound for the value function from the continuous to discrete time, which allows to prove
the asymptotic stability of the system. Other contributions include showing that the
asymptotic stability holds for the shortest possible horizon and confirming the theoretical
work through simulation and experiment.

The contributions in Chapters 4 and 5 are in many ways extensions of the work done in
Chapter 3, extending the work done for a point stabilization controller to an acceleration
constrained and path following controllers. The algorithms in both of these cases were
developed for a holonomic robot by the author. For Chapter 4, the author applies the
theory of barrier developed in [24] to develop an admissible set for an acceleration con-
strained holonomic robot. Using this admissible set the author develops a growth function
which bounds the value function for this algorithm. This allows us to show the system is
asymptotically stable for a sufficiently long prediction horizon.

The formulation of the model predictive path following problem in Chapter 5 is an
adaptation of the work done in [68] for a non-holonomic to the holonomic case. The
author adapts the algorithm to take advantage of the extra degree of freedom provided
by the holonomic robot. Again growth bounds which are adapted from [68] are developed
to ensure the asymptotic stability of the system for a sufficiently long prediction horizon.
The work in both of these Chapters was done in collaboration with Dr. Mohamed Said.

Finally work presented in Chapter 6 are entirely the authors own. By taking concepts
of the minimum effort controller presented in [11] the author develops a novel nonlinear
MPC algorithm which uses the Newton-Euler recursive dynamic model of a robotic arm.
This controller, explicitly minimizes torque while also ensuring that the desired end effector
position is reached, without terminal costs or constraints, using a time dependent preference
function.
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Abstract

The use of mobile robots greatly enhances the capability and versatility of industrial
robots compared to their fixed counterpart. However, successfully deploying autonomous
mobile robots is challenging and requires accurate mapping, localization, planning and
control. Herein, we focus the application of nonlinear model predictive control to a holo-
nomic mobile robot while ensuring closed loop asymptotic stability. This thesis presents
three main contributions in this area.

We begin with a study of the regulation control of a holonomic mobile robots with
limits on acceleration under a Model Predictive Control (MPC) scheme without stabiliz-
ing terminal conditions or costs. Closed-loop asymptotic stability is ensured by suitably
choosing the prediction horizon length. We first compute a set of admissible states for a
holonomic mobile robot with limits on acceleration using the theory of barriers. Then,
by deriving a growth (envelope) function for the MPC value function, we determine a
stabilizing prediction horizon length. Theoretical results are confirmed through numerical
simulations.

Next the Model Predictive Path Following Control (MPFC) of holonomic mobile robots
is considered. Here, the control objective is to follow a geometric path, where the time
evolution of the path parameterization is not fixed a priori, but rather is left as an extra
degree of freedom for the controller. Contrary to previous works, we show that the asymp-
totic stability can be ensured for the resulting closed-loop system under MPFC without
terminal constraints or costs. The analysis is based on verifying the cost-controllability
assumption by deriving an upper bound on the MPFC finite-horizon value function. This
bound is used to determine a stabilizing prediction horizon. The analysis is preformed in
the discrete-time setting and results are verified by numerical simulations.

Finally, a dual-objective MPC algorithm for an open chain manipulator is presented,
which, as a primary objective takes the end effector to a desired position and as a secondary
goal minimizes the effort required from the actuators. To achieve this, a recursive Newton-
Euler algorithm is used to calculate the system dynamics and to determine the actuator
torques. The proposed method is based on a time varying cost function which, as time
goes on, reduces weight on the secondary objective. This allows the controller to minimize
torque at the start of the maneuver without affecting the ability of the system to reach the
desired end effector position.

By taking advantage of the inherent benefits of MPC such as the ability to naturally
incorporate constraints and to manipulate the objective function, the algorithms proposed
here offer control solutions applicable in a variety of mobile robotic applications.
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r Wheel radius of holonomic mobile robot.

SE(3) The special Euclidean group.

SO(3) The special orthogonal group.

S Positive semi-definite weight on an additional objective in the running costs.

S Screw axis.

T̂ Minimum time horizon to guarantee stability for closed loop MPC.

T Time horizon over OCP.

tk/m/n Maneuver time for sub-optimal maneuver in continuous time.

t Time t ∈ R≥0.

Ti,j Transformation matrix between frames i and j, where Ti,j ∈ SE(3).

uref Control input required to exactly follow path P .

u Control input for robot system, u ∈ Rp.

u General control input.

uw Vector of wheel speeds for a holonomic mobile robot.

UN(x0) Set of admissible functions over horizon, N with starting position x0.

U Set of allowable control inputs.

u∗ Superscript ∗ denotes the solution to an optimization problem. In this case u∗ denotes
the solution to an OCP.

Vi Is the generalized velocity of the link i frame in frame i coordinates.

v Linear velocity of frame in space.

v Virtual control input for path parameter, θ.

V Set of admissible path control inputs, v.
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V Lyapunov function.

VN Minimum of the objective function, JN .

WN(z0) Set of allowable augmented control sequences over the horizon, N starting from
state z0.

W Set of admissible augmented control inputs, W := U × V .

w Augmented system control input which includes the virtual control, v.

Wi Is the generalized force (or wrench) transmitter from link i− 1 to link i.

x General system state.

x0 Subscript 0 denotes the initial state of a system.

x Mobile robot system state, where x ∈ Rn.

x? The superscript ? denotes the desired state in a point stabilization problem.

xu(·;x0) A state trajectory resulting from input function u, starting from initial position
x0.

x̄ Accent ·̄ represents an upper limit of a state or input. Similarly ·̄ denotes a lower limit.

xi Subscript i denotes the index of a vector x.

X Set of allowable states.

x+ Superscript + denotes the next system state, x+ = f(x, u).

Xf Set to which the final state of an OCP is constrained.

y Value of the states at a point tangent to the boundary.

Z Set of allowable augmented states for path following problem, Z := X × [θ̄, 0].

z Augmented system state which includes the path parameter, θ.
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Chapter 1

Introduction

In this thesis, we present nonlinear MPC algorithms designed to improve the control of
mobile robots. These include an algorithm for the point to point stabilization of a holo-
nomic robot, which is then extended to the case where the acceleration of the robot is
constrained as well as to a model predictive path following controller. An MPC algorithm
which aims to minimize the torque for a redundant robotic arm is also presented. These
algorithms can be deployed in a broad range of applications such as manufacturing and
warehousing where robust and stable control of mobile robots is required.

1.1 Motivation

Autonomous mobile robots have been and continue to be developed for a wide range of
applications, whether it be in manufacturing or logistics as a way to deal with rising
labour costs [22] or to to complete tasks in an environment which would be otherwise
inaccessible to humans [87]. In order for autonomous mobile robots to gain widespread
acceptance, they must be able to perform their desired function safely, effectively and
consistently. Designing autonomous mobile robots which meet these criteria is no simple
task and involves the integration of a number of complex bodies of knowledge. In order to
achieve successful design and deployment of a mobile robot the following are required [87]:

• Perception - the process of interpreting information from various sensors, which could
include cameras, lidar, odometers, accelerometers, etc. to extract features from the
robots environment.
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• Mapping - in order to successfully navigate in its environment, a mobile robot needs
access to a map of its surroundings, which is either known apriori or built from the
information extracted from sensors.

• Localization - the robot then needs to be able to localize or find itself on the map.
Using the perception data, the robot can obtain a pose estimate using a localization
algorithm such as an Extended Kalman Filter (EKF) or a particle filter.

• Planning - given an objective or command the robot needs to find a way or a path to
reach this objective. Common path planning algorithms that achieve this for mobile
robots include A*, Dijkstra or Rapidly-Exploring Random Trees (RRTs).

• Motion Control - finally a controller needs to provide the robots actuators with the
necessary commands to follow the planned path. These controllers usually take into
account the robot kinematics and dynamics and use the pose estimation as feedback
to get the robot to the desired path.

Figure 1.1: Scheme for autonomous mobile robot deployment, figure is reprinted from [87]

The relationship between the key capabilities for an autonomous mobile robot discussed
above is shown in Fig. 1.1. Without effective and robust algorithms to provide the robot
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with each of these aspects, an autonomous robot is unable to operate efficiently. From here
on, this thesis focuses on the motion control portion of mobile robot deployment.

1.2 Robotic Platform

The work in this thesis focuses on the design of optimal control algorithms for a holonomic
mobile robotic platform, specifically the Summit-XL-S from Robotnik shown in Fig. 1.2.
This robot employs mecanum wheels, which have rollers mounted on its outer circumference
and allow the wheel to slip in the free sliding direction, here at a ±45 degree angle from
the orientation of the robot. Rather than being steered, these wheels allow the robot
to independently control its forward, lateral and angular velocities [59]. The ability to
move in any direction independently gives holonomic mobile robots an advantage when
working in tight spaces, which is beneficial when considering warehouses or manufacturing
environments.

Figure 1.2: Holonomic mobile robot with mecanum wheels (Summit-XL-Steel [81]) with
the driving and the free sliding directions for each wheel type is shown by corresponding
vectors. The figure is partially reprinted from [59].

To benefit from the advantages offered by holonomic robots, a controller is required
which can take into account the nonlinearities of the system, can guarantee asymptotic
stability and is robust to disturbances. In cluttered environments, being able to apply
constraints to the robot state, such as limiting the proximity to obstacles or boundaries
is also important. Given that for the considered environments, the robot may be required
to share a space with humans, applying constraints on the actuator output also becomes
important for safety reasons. In this thesis, by taking advantage of the properties of model
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predictive control, we develop control algorithms which achieve given control objectives as
well as the aforementioned goals.

1.3 Motion Control

There have been several controllers developed for motion control of a holonomic robot.
The control objectives for these controllers are typically categorized as follows:

• Point stabilization - involves stabilizing the robot to a desired pose. Planning the
path required to reach the desired point is also sometimes included. Within the
approaches based on optimal control, this may be achieved using real-time near-
optimal trajectory generation [45] or MPC [7].

• Trajectory tracking - here the robot follows a desired trajectory with predetermined
speed, either defined as a set of points or a function. One example presented in [20]
uses a controller based on ideal reference velocities. Another in [43] uses an adaptive
back-stepping approach to achieve stabilization and trajectory tracking.

• Path-following - similar to the trajectory tracking problem, the goal is to follow a
function or set of points, however there is no time assignment to the desired positions
for path following. A version of this controller is presented in [57] using the linearized
inverse kinematic model. Another formulation using linearized MPC can be seen in
[46].

This thesis will address the implementation of MPC for a point stabilization controller,
which unlike previous works [7, 46, 48] guarantees stability without the use of terminal
constraints or penalties. This controller is then extended to constrain the robot’s accel-
eration while maintaining its guaranteed stability. The path-following problem presented
in Section 2.4 is similarly considered, again the algorithm presented herein differs from
previous applications of MPC for this purpose [47, 49] as it offers a proof of asymptotic
stability for a model path predictive controller without terminal costs or constraints.

1.4 Structure of This Thesis

This thesis is organized as follows, in the next chapter some of the background information
needed for the remainder of this thesis is presented. This will include an introduction
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of the MPC algorithm in Section 2.1.2, including the motivation for using it in robotics
applications. Since it is the subject of study in much of this paper, the history and current
state of MPC stability is covered in the following section (2.2). Finally, the kinematic
model for a holonomic robot and the path following problem formulation are presented in
the last two sections.

In the chapters following the background, we present the main contributions of this
thesis. Chapter 3, an excerpt from a joint journal paper published in Robotics and Au-
tonomous Systems, presents an MPC scheme without terminal constraints or costs for
point stabilization in discrete time. This chapter presents a rigorous proof of closed-loop
asymptotic stability for this system, using the concept of cost controllability following the
theory presented in 2.2. Furthermore, it is shown that the system will be stable for the
shortest possible prediction horizon of N = 2. Finally, through numerical simulation and
experiments, we verify these theoretical results.

The work from Chapter 3 is extend in Chapter 4, where the same system is considered,
with an additional constraint on acceleration rather than only on velocity and position.
The acceleration constraints ensure smoother operation of the robot and reduce wear on its
components. Using the theory of barriers, an admissible set where the system is recursively
feasible is constructed. With an initial state inside this admissible set, the proof of closed-
loop asymptotic stability for this system is again ensured using cost controllability. In this
case, stability is ensured for MPC with a sufficiently long prediction horizon.

Another extension of the work done in Chapter 3 is presented in Chapter 5, where a
model predictive path following control (MPFC) algorithm is presented for the holonomic
mobile robot. In this chapter, by parametrizing the path we allow the MPC algorithm to
choose the optimal velocity along the path as an extra degree of freedom. With its ability
to control its lateral, longitudinal positions and orientation independently, the holonomic
robot has the ability to follow any arbitrary path accurately. For this formulation of the
MPFC, using the concept of cost controllability, again we can prove closed-loop asymptotic
stability for a sufficiently long prediction horizon.

Finally, Chapter 6 introduces a dual objective MPC control algorithm which minimizes
the effort to move to a desired position while at the same time ensuring that the end
effector does in fact reach that position with no steady state error. Reducing the effort
required, defined here as the sum of the square of the joint torques, reduces the stress on the
joints. In this chapter we apply this algorithm to a planar arm with three revolute joints.
This system is modeled using a recursive Newton-Euler algorithm. We are able to show
a significant reduction in torque when comparing this to a standard MPC formulation.
By comparing the Newton-Euler model to a classical dynamic model obtained from the

5



Lagrangian of the system, we can see it produces similar results but that the Optimal
Control Problem (OCP) can be solved significantly faster.
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Chapter 2

Background

In this chapter, some of the background theory and concepts on which our contributions
rely are presented. This includes background on nonlinear model predictive control, its
stability analysis, the presentation of kinematic models for holonomic robots and the path
following problem.

2.1 Model Predictive Control

Introduced in the late seventies, [16] MPC algorithms have evolved to be used in a wide
range of applications and industries. Early iterations of the MPC algorithms were known as
Dynamic Matrix Control (DMC) [23] and Model Predictive Heuristic Control (MPHC) [80].
These methods built upon previous work done in minimum time optimal control, linear
programming and receding horizon optimal control [16]. These used a dynamic model
based on the response of the system to a step or impulse input. Using an optimization
algorithm, the inputs of the system were set to minimize the output error subject to
some process constraints. Later, in a formulation called General Predictive Control (GPC)
[19], to overcome stability problems, another penalty term was added to the control input,
creating the quadratic value function we see in modern implementations of MPC. GPC used
mostly Single-Input Single-Output (SISO) systems with polynomial based models which
aimed to minimize the number of parameters, example of which include Controlled Auto
Regressive Moving Average (CARMA) or Controlled Auto Regressive Integrated Moving
Average (CARIMA) [91] algorithms. Straightforward extensions of GPC to Multi-Input
Multi-Output (MIMO) systems are provided in [26] using a polynomial model and [52]
with a state-space model.
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Although this provides the basis of much of the MPC algorithms used in industry, it
still remained difficult to prove stability and robustness of these algorithms. Much of the
later research on MPC, including this thesis has been focused on proving stability [91]. We
review some of this research in Section 2.2.

MPC includes a broad range of control strategies that consider the following criteria:

1. Explicit use of a model to predict the process output over a control horizon.

2. Calculation of an optimal control sequence, by minimizing some cost.

3. The control input is determined in a receding fashion. In other words, the first control
input of the control sequence for a given horizon length is applied to the system. A
new optimal control sequence is calculated for the next time instance.

These algorithms are applied in a broad range of industries, from its early adoption for
chemical processes [75], to more recently extending among others to power electronics [92],
Heating Ventilation and Air Conditioning (HVAC) systems [86], aircraft control [36] and
robotics [34, 97].

2.1.1 Motivation

The widespread adoption of MPC is due to a number of distinct advantages which make
it appealing [16, 91], such as

1. It can be used to control a wide variety of processes, from systems with nonlinear
dynamics, long delay times, non-minimium phase and unstable ones.

2. Easily deals with multi-variable system.

3. Intrinsically compensates for dead times.

4. Naturally incorporates feed forward control to compensate for measurable distur-
bances.

5. The resulting controller is an easy to implement linear control law.

6. The treatment of constraints is conceptually simple and these can be systematically
included in the design process.
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7. Useful when future references are known.

8. All MPC algorithms are based on the same basic principles which are easily extended
to more complex cases.

Even with these advantages MPC is not ideal in all situations as it has some drawbacks.

1. The derivation of the control law is more complex than a classical Proportional-
Integral-Derivative (PID) controller. It can require the solution of a complex con-
strained optimization problem. This can be any issue for real time applications in
robotics.

2. An appropriate system model is required, as the performance of the MPC algorithm
depends on having an accurate model.

When considering mobile robotic applications, its ability to handle MIMO systems
and the ability to naturally incorporate constraints makes MPC especially advantageous,
as it restricts the position of the robot to a safe region and ensures that the actuator
outputs remain within their limits [53]. The heavier computational burden also needs
to be considered for a robotics applications as these applications typically require a high
control frequency and solving the nonlinear constrained OCP may be infeasible in real time
applications.

2.1.2 MPC Algorithm in Discrete Time

In this section we take a more in depth look at the three main components of MPC
algorithms, the predictive model, the objective function and the control law.

Predictive Model

Unlike other controls methods, such as PID controllers, MPC explicitly considers the future
implications of its control actions [83]. A model is needed to capture the dynamics of the
system we are trying to control and to be able to obtain future system states for the length
of the prediction horizon. Though there a number of different formulations of system
models [16], here we focus on the non-linear system model without disturbances as this is
what we use in the applications throughout this thesis. We formulate this system model
as
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ẋ(t) = f(x(t), u(t)), x(0) = x0 (2.1)

where x is our system state, u is the input to the system and x0 is the initial condition.
Here f(x(t), u(t)) is the system model, that relates the input to the change in state. We
can formulate the system dynamics in discrete time as

x(k + 1) = fd(x(k), u(k), τ), x(0) = x0 (2.2)

where k is time discretized by some constant time step τ . The discrete time system model
is often more useful in practice, as control inputs are generally applied in discretized time
steps.

The system dynamics are then propagated for the length of the prediction horizon, N.
For some initial state x0, the states over the prediction horizon can be defined as follows

xu(k, x0) =


x(0)
x(1)

...
x(N)

 =


x0

fd(x0, u(1), τ)
...

fd(x(N − 1), u(N), τ)

 (2.3)

Having an accurate model is important as this determines the input to the objective func-
tion, the next element of the MPC algorithm.

Objective Function

Let us consider a cost function at each time step in the prediction horizon. The usual
formulation of MPC penalizes the error between the predicted future states in (2.3) and
some reference signal x?(k) and the control input u(k). This leads to the running costs

`k(x(k), u(k)) = (x(k)− x?(k))>Q(k)(x(k)− x?(k)) + u(k)>R(k)u(k) (2.4)

at each time step k ∈ {0, . . . , N}. Q(k) and R(k) are positive definite weighing matrices,
either constant or some function of the time step for adaptive weights. Considering these
running costs over the entire prediction horizon N we obtain the objective function

JN(x, u) =
N∑
k=0

`k(x(k), u(k)). (2.5)
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Using the control sequence u as the optimization variable, we set up an optimal control
problem to minimize the objective function

VN(x0) = min
u∈UN

JN(xu(k, x0), u). (2.6)

In reality, the control problem will be subject to some constraints or limitations. This
could include limitation on the actuator outputs, such as position, velocity or force limits
for a robotic system. There can also be physical limits in the output space such as obstacles
or limits in speed for safety reasons. The advantage of MPC is that these constraints can be
directly accounted for as constraints on the optimization problem. We define the admissible
set of states and controls as

X := [
¯
x1, x̄1]× . . .× [

¯
xn, x̄n] and U := [

¯
u1, ū1]× . . .× [

¯
um, ūm] (2.7)

for x ∈ Rn and u ∈ Rm. Furthermore, a control sequence u = (u(0), u(1), . . . , u(N − 1)) ∈
UN of length N ∈ N is said to be admissible, for state x0, denoted by u ∈ UN(x0) if the
state trajectory xu(·;x0) from (2.3), satisfies xu(k, x0) ∈ X for all k ∈ {0, 1, . . . , N}.

We can set up the constrained optimization problem as

VN(xk) = min
u∈UN (xk)

JN(xu(k, xk), u) (2.8)

s.t. x(k) = xk,

x(i) ∈ X ∀i ∈ [k, k +N ]

u(i) ∈ U ∀i ∈ [k, k +N)

Note here that we a value function without terminal costs or constraints. Adding terminal
costs or constraints, as seen in Section 2.2, makes guaranteeing asymptotic stability more
straightforward. However these cause the algorithm to incur heavier computational costs
and requires a large prediction horizon in order to have a large feasible region and is
therefore not often used in practice [38].

Control Law

The solution to OCP (2.8) will be a control sequence u∗ which minimizes the value function
over the prediction horizon N , namely VN(x0) = JN(xu∗(k, x0), u∗). The control law µ
applied to the system will be the first m inputs in the sequence, where m is the control
horizon (setting m = 1 is common).

µN,m(k + i, xk) = u∗(i, xk), for i ∈ {0, . . . ,m− 1} (2.9)
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where xk = x(k) is the current state of the system. The control law is then applied
to system (2.2). We then increment k and repeat the process of solving OCP (2.8) and
applying the first control input of the solution.

2.1.3 Multiple Shooting Method

For nonlinear problems, the propagation of the control inputs through the system as shown
in (2.3) can become very complex especially with long prediction horizons. The method
shown here is referred to as single shooting [27]. An alternative, more efficient way of prop-
agating systems dynamics is to formulate the optimal control problem using the multiple
shooting method [13]. Here the dynamics of the system are enforced through constraints.
Adding the state as an optimization variable, the OCP becomes

VN(xk) = min
u∈UN (xk), x∈X

JN(xk, u) (2.10)

s.t. x(k) = xk,

x(i+ 1) = fd(x(i), u(i), τ) ∀i ∈ [k, k +N)

x(i) ∈ X ∀i ∈ [k, k +N ]

u(i) ∈ U ∀i ∈ [k, k +N)

In this manner, the optimization does not become increasingly complex further along the
prediction horizon. This method of formulating the OCP is used throughout the later
chapters of this thesis.

2.2 Stability

In the design of a controller, stability is an important consideration. Proving the stability
of a controller can be a challenging undertaking and has been the subject of much research.
Within this section we present some of the theories behind the stability of nonlinear MPC.
Grune’s work in [37, 39] on nonlinear MPC stability without terminal constraints or penalty
presented in Subsection 2.2.2 is especially important, as we use the theorems presented
therein to prove the stability of the nonlinear closed-loop MPC controllers in later chapters.

2.2.1 Stability of Constrained Nonlinear MPC

In this section we introduce the stability characteristics of systems under MPC feedback
control, we refer to Appendix A for a more general review of stability for nonautonomous
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nonlinear systems. Though the stability theorems used in this thesis are presented in
Sections 2.2.2 and 2.2.3, this section is meant to give context to these theorems. Theory
on constrained nonlinear MPC stability is preceded by significant contributions in stability
analysis for unconstrained linear systems [65]. In this section, we focus on the stability of
constrained non-linear systems with terminal constraints or costs.

Throughout this section, for a given function φ(x), φ∆(x, u) denotes the change in φ(·)
as the state moves from x to x+ = f(x, u), namely, we say that

φ∆(x, u) := φ(x+)− φ(x). (2.11)

Lyapunov stability was first introduced as a tool to prove stability in non-linear MPC
in [17], where the value function is used as a Lyapunov function to establish the stability
of an unconstrained receding horizon control scheme with a terminal equality constraint.
These results were extended by [64] [50] to discrete time non-linear systems, again using
the value function as a Lyapunov function for constrained nonlinear systems. From then on
using the value function as a Lyapunov function became the common method of showing
stability for an MPC control scheme.

Another formulation which instead of putting a terminal constraint on the final value
of the state, adds a terminal cost F (·) to the final state is introduced by [10]. The terminal
cost therein were chosen to be F (x) = 1/2x>Pfx, and where Pf is the terminal value of
the Riccati difference equation. Another proposal of terminal costs is presented in [78],
where the terminal cost F (·) is chosen to be the infinite horizon value function associated
with the stabilizing controller for a linear system subject to convex control constraints.
This is equivalent to having infinite horizon costs with a finite control horizon. This allows
us to take advantage of the benefits of infinite horizon control such as its robustness and
stability [65].

The next formulation of the stability proof combines the terminal costs with a terminal
constraint set, where ideally the terminal costs F (·) are the infinite horizon value function
V∞. Calculating these infinite costs for non-linear systems however is not possible. Instead
F (·) is chosen to approximate the value function V∞ in a suitable neighbourhood of the
origin. This approach is introduced in [89] and is finally used to characterize the stability
of constrained non-linear systems in [25] [18]. These are considered ‘quasi-infinite hori-
zon prediction control’ because they use approximate infinite horizon costs for their finite
horizon control problem.
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Problem Formulation

In this section, since we review stability work for MPC schemes with terminal constraints
and costs we consider an alternative value function to (2.5). Here terminal costs F (·) are
added such that

JN(x0, u) =
N∑
k=0

`(x(k), u(k)) + F (x(N)). (2.12)

This objective function is used in OCP (2.10) for some initial condition x0, from which the
optimal control sequence u∗(x0) and the corresponding value function VN(x0) are obtained
by solving (2.6). It follows that a corresponding optimal trajectory, xu∗(k, x0) for k ∈
{0, 1, . . . , N}, can be obtained by applying the optimal control sequence. We follow the
typical formulation for a feedback law µN(x) = u∗(0, x) which is propagated through the
system dynamics (2.2) abbreviated here as x+ = f(x, µN(x)).

Direct Method

Using the formulation in [65], we obtain conditions on the terminal costs F (·), the terminal
set Xf and the control function κf (·) which renders the terminal set Xf forward invariant,
such that

V ∆
N (x, µN(x)) + `(x, µN(x)) ≤ 0, (2.13)

In this method, rather than directly computing VN(x+) an upper bound is calculated
using a prolonged control sequence ũ(x). Let us first define an admissible control sequence
u which steers an initial state x0 ∈ Xn to a state xu(n, x0) ∈ Xf in n steps or less. For
this admissible sequence u = {u(0), . . . , u(n − 1)}, u(k) ∈ U for k ∈ {0, 1, . . . , n − 1} and
xu(k, x0) ∈ X for all k ∈ {0, 1, . . . , n}. We define another set XN as the set of states which
can be controlled to Xf by the solution to the OCP (2.10). We now wish to determine an
admissible (sub-optimal) control sequence ũ for x+, which is then used to find an upper
bound for the optimal value function VN(x).

Truncating the solution to the OCP, u∗(x), we obtain an admissible control sequence
steering x+ to xu∗(N, x0) ∈ Xf as {u∗(1, x0), . . . , u∗(N − 1, x0)}. Now to obtain a N -step
control law steering x+ to xũ(N, x

+) ∈ Xf , we can simply add an additional control input
to the aforementioned sequence, giving the sequence

ũ := {u∗(1, x), . . . , u∗(N − 1, x), κf (xu∗(N, x0))}
where a state x ∈ Xf is forward invariant under the control input κf (·), i.e. f(x, κf ) ∈
Xf , ∀x ∈ Xf . The trajectory generated from the control input ũ is denoted as x̃ where
x̃(0) = x+ = xu∗(1, x0).
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The cost associated with ũ and x̃ can be calculated as

JN(x̃, ũ) = VN(x0)− `(x0, µN(x0))− F (xu∗(N, x0))

+ `(xu∗(N, x0), κf (xu∗(N, x0))) + F (f(xu∗(N, x0), κf (xu∗(N, x0))).

We can now express our upper bound on the value function VN(x+) as

VN(x+) ≤ JN(x̃, ũ) ≤ VN(x0)− `(x0, µN(x0)) (2.14)

if F∆(x, κf (x)) + `(xu∗(N, x0), κf (xu∗(N, x0))) ≤ 0. In other words, the change in the
terminal costs plus the running costs for x to remain in Xf must be less than or equal to
zero. This holds if the terminal cost is a Lyapunov function where infu∈U(F (f(x, u)) −
F (x)) ≤ 0 in the neighborhood of the origin and κf (·) and Xf are chosen appropriately. If
this holds, then (2.13) also holds for x ∈ XN which is enough to ensure asymptotic stability
in that region given that the following assumptions hold:

A 1. Xf ∈ X, Xf is closed, 0 ∈ Xf (state constraints satisfied in Xf)

A 2. κf (x) ∈ U, ∀x ∈ Xf (control constraints satisfied in Xf)

A 3. f(x, κf (x)) ∈ Xf , ∀x ∈ Xf (Xf is forward invariant under κf)

A 4. F∆(x, κf (x)) + `(xu∗(N, x0), κf (xu∗(N, x0))) ≤ 0 (F (·) is a local Lyapunov function)

Using Terminal Constraints

This variant introduced in [50] constrains the terminal value of the OCP x(N) = 0 or
Xf = {0}. This formulation does not employ any terminal costs, so F (·) = 0. To maintain
an equilibrium point at Xf in this case we can say that no control input is required so,
κf = 0. This gives us a definition for F (·) and κf (·) on Xf , which allows us to check
assumptions A1-A4. Since 0 ∈ X and 0 ∈ U , A1 and A2 are satisfied. It is also easy to
see that f(x, κf (x)) = f(0, κf (0)) = 0 ∈ Xf , so assumption A3 is satisfied. Finally, since

F∆(x, κf (x)) + `(xu∗(N, x0), κf (xu∗(N, x0))) = F (0, κf (0))− F (x) + `(0, κ(0)) = 0

satisfies A4, asymptotic stability for x ∈ XN is ensured.
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Using a Terminal Constraint Set

In this formulation introduced in [70], MPC steers a system to the set Xf , then once in
Xf a local stabilizing controller κf (x) is employed. This formulation is sometimes called
‘dual mode MPC’.

To steer the system to Xf we can set a set a similar constraint to the terminal state
x(N) = {0}, but instead we use a set of terminal states Xf . Again here we use no
terminal penalty, so F (·) = 0. We can choose a local controller κf (·) and set Xf to satisfy
assumptions A1-A3. To satisfy A4, `(x, κf (x)) = 0 ∈ Xf . Satisfying these assumptions
will ensure that our controller satisfies (2.13) and that x ∈ XN will be steered by µN(·) to
Xf in finite time.

Using Terminal Costs and Constraint Set

Finally we consider an MPC scheme using both terminal costs and a constraint set for a
non-linear constrained system [18, 25]. For this system we choose κf (x) = Kfx to stabilize
the linearized system x+ = Ax + Bu. To satisfy assumptions A1 and A2, we choose
Xf ⊂ X and κf ⊂ U . Following the formulation in [18], Xf is chosen to be a level set of
F (·) = (1/2)x>Px, where F (x) is a Lyapunov function of the linearized system satisfying

F (Ax+Bκf (X))− F (x) + ¯̀(x, κf (X)) = 0

where
¯̀(x, u) = β`(x, u)

for `(x, u) = (1/2)(|x|2Q + |u|2R) and β ∈ (1,∞). In [18], this is achieved by replacing A

with A+ρI for the linearized system dynamics where ρ ∈ (0, 1). Using ¯̀provides sufficient
margin to ensure that A3 and A4 are satisfied, when Xf is a sufficiently small level set of
F (·). Satisfying these assumptions is enough to ensure asymptotic stability of the system.
The prediction horizon N is chosen to be sufficiently large so that the approximation error
is less than ρ|x|2Q and

V ∆
N (x, µN(x)) + (1− ρ)`(x, µN(x)) ≤ 0

for all x ∈ Xf . We use this relaxed Lyapunov inequality rather than (2.13) to ensure
closed-loop asymptotic stability.
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2.2.2 Stability of MPC without Terminal Constraints or Costs

In chapters 3 and 4 on point stabilization MPC and chapter 5 on path following MPC,
some of the main contributions are the proofs of asymptotic stability for these algorithms.
Both cases consider non-linear MPC schemes without terminal constraints or penalties.
Each case presents a proof based on the work done in Grune et al. in [37, 39]. In this
section we summarize the work presented in those papers.

Problem Formulation

Let us start by considering a nonlinear discrete time system given by (2.2) with x(k) ∈ X
and u(k) ∈ U for all k ∈ N. We denote the trajectory for some u ∈ U as xu(k) where
U is the space of allowable control sequences and X and U are the spaces of admissible
states and inputs, respectively. We begin by modifying the objective function presented in
Section 2.1 to be over an infinite prediction horizon

J∞(x0, u) =
∞∑
k=0

`(xu(k), u(k)) (2.15)

where ` ∈ R≥0 are the running costs in (2.4). The optimal value function obtained from
this minimization problem is

V∞(x0) = inf
u∈U

J∞(x0, u)

Knowing the optimal value function V∞, using Bellman’s optimality principle, we can show
that the optimal feedback law is given by

µ(x0, ·) := arg min
u∈Um

{
V∞(xu(m)) +

m−1∑
k=0

`(xu(k), u(k))

}
. (2.16)

Here µ is an m-step feedback control law. It is assumed that the minimum with respect to
u is attained. Since in practice we use a receding horizon controller, we now consider the
finite horizon costs where N ∈ N is the prediction horizon

JN(x0, u) =
N−1∑
k=0

`(xu(k), u(k)) (2.17)

with the optimal value function

VN(x0) = inf
u∈U

JN(x0, u) (2.18)
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Note that we are not using any terminal constraints or penalties in this formulation. Based
on this finite horizon optimal control problem, we define a feedback control µN,m where
m ≤ N , by picking the first m elements of the optimal control sequence u∗.

µN,m(x0, k) = u∗(k), k = 0, . . . ,m− 1

In [37] an estimate of the suboptimality of the feedback control law µN,m for the infinite
horizon problem is derived. For an m-step feedback control law µ and its corresponding
trajectory xµ we can define the optimal costs

V µ
∞(x0) :=

∞∑
k=0

`(xµ(k), µ(xµ(k), k))

The estimate of the degree of suboptimality for control feedback µN,m is derived by getting
an upper bound for V µ

∞. Using this estimate, results on the asymptotic stability of the
closed-loop system are derived using VN as a Lyapunov function. The results derived
therein rely on results on relaxed dynamic programming [58], adapted to the MPC problem.

Considering an m-step feedback law µ̃ and its corresponding trajectory xµ̃(k) with
xµ̃(0) = x0 and a value function Ṽ : X → R+ which satisfies

Ṽ (x0) ≥ Ṽ (xµ̃(m)) + α
m−1∑
k=0

`(xµ̃(k), µ̃(x0, k)) (2.19)

for some α ∈ (0, 1] and ∀x0 ∈ X. Then for all x ∈ X the following holds

αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x)

Herein we will present the key propositions for the proof of asymptotic stability. For full
proofs on these propositions see [37].

Asymptotic Controllability and Optimal Values

This subsection introduces an asymptotic controllability assumption followed by several
consequences for the optimal control problem. The controllability assumption here is pre-
sented not in terms of the trajectory but in terms of the running costs along the trajectory.

Here we recall the definitions of K and KL class functions presented in Definitions A.2.1
and A.2.2 respectively. We also define `∗(x) := minu∈U `(x, u).
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A 5. We begin by making the assumption that for a given function β ∈ KL0, for each
x0 ∈ X there exists a control function ux0 ∈ U which satisfies

`(xux0 (k), ux0(k)) ≤ β(`∗(x0), k)

for all k ∈ N.

Some special cases for β ∈ KL0 include exponential controllability,

β(r, k) = Cσkr (2.20)

for constant C ≥ 1 and σ ∈ (0, 1). And finite time controllability

β(r, k) = ckr (2.21)

for some sequence (ck)k∈N with ck ≥ 0 and ck = 0 for all k ≥ k0. We also define the
following property for β

β(r, k +m) ≤ β(β(r, k),m) ∀ r ≥ 0, k,m ∈ N (2.22)

In other works, [51] [60] β is obtained using a suitable Lyapunov function as we see in
Appendix A where we review comparison functions. In [37], however, a precise function β
is not identified, rather the properties of β are used to guarantee the performance of the
closed-loop MPC algorithm. Under the assumption A5, for any r ≥ 0 and N ≥ 1 we define

BN(r) :=
N−1∑
k=0

β(r, k) (2.23)

which produces the following inequality

VN(x0) ≤ BN(`∗(x0)). (2.24)

This is a direct consequence of A5 as

VN(x0) ≤ JN(x0, ux0) =
N−1∑
k=0

`(xux0 (k), ux0(k)) ≤
N−1∑
k=0

β(`∗(x0), k) = BN(`∗(x0))

Using the fact that the final piece of an optimal trajectory is also an optimal trajectory, we
use (2.24) to create a bound on the finite horizon functional along the optimal trajectory.
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Under Assumption 5, for an x0 ∈ X and a finite horizon optimal control sequence u∗ on
some prediction horizon N ≥ 1, the following holds for BN from (2.23)

JN−n(xu∗(n), u∗(n) ≤ BN−n(`∗(xu∗(n)) (2.25)

for each n ∈ {0, 1, . . . , N − 1}.
Similarly, considering a two part trajectory, we can obtain an expression for VN using

(2.24). Under assumption A5 we consider an x0 ∈ X and a finite horizon optimal control
sequence u∗ with an optimization horizon N ≥ 1. For each m = 1, . . . , N − 1 and each
j = 0, . . . , N −m− 1 the following holds for BN from (2.23).

VN(xu∗) ≤ Jj(xu∗(m), u∗(m) +BN−j(`
∗(xu∗(m+ j)) (2.26)

Computation of Performance Bounds

Using the results from the previous section, the constructive approach to computing α
in (2.19) in [37] is presented here. To begin, we introduce a sequence λ0, . . . , λN−1 > 0
which corresponds to an optimal running cost sequence `(xu∗(k), u∗(k)) and a value v > 0
corresponding to the optimal value function VN(xu∗(m)).

Under A5 we consider an x0 ∈ X with the finite horizon optimal control sequence
u∗ ∈ U for a prediction horizon N ≥ 1 and a control horizon m ∈ {1, . . . , N − 1}. Given
that

λk := `(xu∗(k), u∗(k)), k = 0, . . . , N − 1

following from (2.25)

N−1∑
k=n

λk ≤ BN−n(λn), n = 0, . . . , N − 2 (2.27)

holds. Furthermore, given that
v = VN(xu∗(m)),

following from (2.26),

v ≤
j−1∑
k=0

λk+m +BN−j(λj+m), j = 0, . . . , N −m− 1 (2.28)

holds. Using the expressions in (2.25) and (2.26), we can present an expression for inequal-
ity (2.19). This gives sufficient conditions for the suboptimality of the finite horizon MPC
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feedback law µN−m. Assuming that the sequence λk > 0, k = 0 . . . , N − 1 and value v > 0,
fulfilling expressions (2.25) and (2.26) satisfy

N−1∑
k=0

λk − v ≥ α

m−1∑
k=0

λk (2.29)

for some α ∈ (0, 1]. Then the m-step MPC control feedback law µN,m, which is the solution
to optimal control problem, (2.18) satisfying A5 meets the conditions for (2.19) to hold for
all x ∈ X. Explicitly, inequality

αV∞(x) ≤ αV µN.m
∞ (x) ≤ VN(x) (2.30)

holds. Examining (2.29), we can interpret α as a performance bound, which indicates how
well the receding horizon MPC approximates the infinite horizon problem. We now focus
on building an expression to compute α. An optimization approach to computing α can
now be presented. Given that β ∈ KL0, N ≥ 1 and m ∈ {1, . . . , N − 1}

α := inf
λ0,...λN−1,v

∑N−1
n=0 λk − v∑m−1
n=0 λk

(2.31)

subject to constraints (2.25) and (2.26) and λ0, . . . λN−1, v > 0.

For the remainder of this section, we follow the analysis from [39] to find an explicit
expression for α. Therein, the analysis is done to a more general case where an additional
weight w on the final term is included, described in [37, Remark 4.3]. The cost function
(2.17) becomes

JwN(x0, u) =
N−2∑
k=0

`(xu(k), u(k)) + w`(xu(N − 1), u(N − 1))

for some w ≥ 1. Note that for the presentation herein, we will stick to the simpler case
where w = 1 and we recover the original cost function in (2.17), in other words J1

N = JN .
To obtain an expression for α, we look at optimization problem (2.31), which is still in
general a non-linear optimization problem. However, if we consider functions β(r, n) which
are linear in r, problem (2.31) becomes a linear program. If β(r, t) is linear in r, then
problem (2.31) as shown in [39] yields the same optimal value α as

α := min
λ0,...λN−1,v

N−1∑
k=0

λk − v (2.32)
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subject to constraints (2.25) and (2.26) which are now linear and

λ0, . . . λN−1, v ≥ 0,
N−1∑
k=0

λk = 1.

We can now show that the optimal value for problem (2.31) can be found from the following.
We first define a new variable γk = Bk(r)/r. Let β(·, ·) be linear in its first argument and
satisfy property (2.22). The optimal value α of (2.31) for a given optimization horizon
N ≥ 1 and control horizon m ∈ {0, . . . , N − 1} satisfies α = 1 if and only if γm+1 ≤ 1,
otherwise

α = 1−
(γm+1 − 1)

N∏
i=m+2

(γi − 1)
N∏

i=N−m+1

(γi − 1)(
N∏

i=m+1

γi − (γm+1 − 1)
N∏

i=m+2

(γi − 1)

)(
N∏

i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)

) (2.33)

Asymptotic Stability

Using the value of the performance bound α, conclusions can be drawn about the asymp-
totic stability of the closed-loop MPC algorithm. Following the method in [37], the follow-
ing assumption is made.

A 6. There exists a closed set Xf ⊂ X satisfying:

i) For each x ∈ Xf there exists u ∈ U with f(x, u) ∈ Xf and `(x, u) = 0; i.e. there
exists a state and input in Xf at which the system can stay at no cost, in the usual
formulation this is at the desired state and with zero input.

ii) There exists K∞ functions α1, α2 such that inequality

α1(‖x‖Xf ) ≤ `∗(x) ≤ α2(‖x‖Xf )

holds for each x ∈ X where ‖x‖Xf := miny∈Xf ‖x− y‖.

This assumption assures the global asymptotic stability of Xf under optimal feedback
for the infinite horizon problem, provided β(r, k) is summable. The assumptions presented
build on A1 - A4 used in the previous section. Following these assumptions the main
stability result can be presented.
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Theorem 2.1. We consider an optimal control problem (2.18), where the assumptions 5
and 6 hold. Then if β ∈ KL0, prediction horizon N ≥ 1, control horizon m ∈ {1, . . . , N−1}
and that α ∈ (0, 1] as obtained from (2.33). We can say that the MPC feedback law
µN,m asymptotically stabilizes the set Xf and that VN is a corresponding m-step Lyapunov
function in the sense that

VN(xµN,m(m)) ≤ VN(x)− αVm(x). (2.34)

This expression guarantees that VN decreases with every m-step control input, [37] and
it also decreases to 0 as k →∞.

The presented theorem, gives a conservative criterion for stability. It is possible for
a system satisfying Assumptions 5 and 6 but for which α < 0 to still be asymptotically
stable. We can however say that for any system which violates the conditions in Theorem
2.2.2, we can always find a problem which is not stabilized by the MPC feedback law. This
is expressed and proved in the [37][Theorem 5.3].

Asymptotic Stability for Control Horizon, m = 1

In later chapters, we use a simplified version of Theorem 2.1, where we only consider a
control horizon of m = 1. The simplified theorem which we use to conclude the asymptotic
stability of discrete time MPC schemes for a system with dynamics (2.2) without terminal
conditions is presented below.

Theorem 2.2. Let a monotonically increasing and bounded sequence (γi)i∈N bound the
value function Vi over a horizon i such that the inequality

Vi(x0) ≤ γi · `∗(x0) ∀ i ∈ N and x0 ∈ X (2.35)

holds. Additionally, let the performance index αN for the prediction horizon N , be given
by

αN := 1− (γN − 1)
∏N

k=2(γk − 1)∏N
k=2 γk −

∏N
k=2(γk − 1)

. (2.36)

Then, if αN > 0 holds, the relaxed Lyapunov inequality

VN(f(x, µN(x))) ≤ VN(x)− αN`τ (x, µN(x)) (2.37)
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holds for all x ∈ X and the MPC closed-loop with prediction horizon N is asymptotically
stable. Moreover, the performance bound

V µN
∞ (x) :=

∞∑
k=0

`τ (xµN (k, x), µN(k, x)) ≤ α−1
N V∞(x) (2.38)

is guaranteed, where µN(k, x) := u?(0, xµN (k, x)) and V µN
∞ (x) are the MPC closed-loop

control and closed-loop costs on the infinite horizon, respectively. �

One of the key challenges in later chapters is to calculate the bounded sequence γi which
allows us to calculate the performance bound αN from which we can confirm asymptotic
stability.

2.2.3 Stability of MPC Without Terminal Constraints or Penalty
in Continuous Time

Without going through the same level of detail as presented in Section 2.2.2, in this section
we present a theorem analogous to Theorem 2.1 in continuous time. The asymptotic
stability of system (2.1) under the employed MPC scheme, without terminal conditions,
can be summarized by the following theorem, see [79, Theorem 9] for details and the proof.

Theorem 2.3. For the dynamics given by (2.1) and the running costs given by (4.8), let
a given growth bound B : R≥0 → R≥0 be a monotonically increasing and bounded such that
the estimate

Vt(x0) ≤ B(t) · `∗(x0) (2.39)

holds for the value function Vt over the horizon t for all x0 ∈ Xf and t ≥ 0, where

`?(x0) := inf
u∈U1(x0)

`(x0, u).

Furthermore, let there exist K∞-functions η, η̄ satisfying

η(‖x− x?‖) ≤ `?(x) ≤ η̄(‖x− x?‖) ∀ x ∈ X. (2.40)

Additionally, for a given control horizon δ > 0 and prediction horizon T > δ let the
performance index αT,δ be given by

αT,δ := 1− e−
∫ T
δ B(t)−1dt · e−

∫ T
T−δ B(t)−1dt[

1− e−
∫ T
δ B(t)−1dt

] [
1− e−

∫ T
T−δ B(t)−1dt

] , (2.41)
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then, if αT,δ > 0 holds, the relaxed Lyapunov inequality

VT (xµ(t;x)) ≤ VT (x)− αT,δ
∫ δ

0

`(xµ(t;x), µ(t;x))dt (2.42)

holds for all x ∈ X and the MPC closed-loop with control horizon δ and prediction horizon
T is asymptotically stable. �

Inequality (2.39) relates the growth of the MPC value function and the running costs
w.r.t. the initial condition x0; the verification of this Inequality is referred to as cost
controllability verification (a term coined in the study [21]), which is a sufficient condition
for asymptotic stability.

2.3 Kinematics of Holonomic Robots

Chapters 3, 4 and 5 deal with the control of a holonomic mobile robot. Each of these
chapters use a kinematic model of the robot for MPC, the various forms of the kinematic
model used throughout this thesis are presented in this section.

2.3.1 Higher Level Kinematic Model

The holonomic robot state is described by the state vector x = (x1, x2, x3)> ∈ X ( R3,
which consists of the (spatial) position (x1, x2)> [m] and the orientation angle x3 [rad] of
the robot. Additionally, the robot control input is defined by the vector u = (u1, u2, u3)> ∈
U ( R3, where u1 [m/s], u2 [m/s], and u3 [rad/s] are the linear, the lateral, and the angular
speeds of the robot, respectively. At time t ∈ R≥0 [seconds], the continuous time kinematic
model of a holonomic mobile robot is given by

ẋ(t) = f(x(t),u(t)) = R(x3(t)) · u(t), (2.43)

where f : R3 ×R3 → R3 is an analytic mapping and R(x3) ∈ R3×3 is the following matrix

R(x3) =

cos(x3) − sin(x3) 0
sin(x3) cos(x3) 0

0 0 1

 . (2.44)
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2.3.2 Acceleration Control Kinematic Model

When considering the higher level kinematics of a holonomic robot, using velocity control
defined in (2.43) is generally sufficient. However, in cases such as the acceleration con-
strained MPC controller presented in Chapter 4, an acceleration controlled model may be
more useful. We can obtain this model by modifying (2.43) to give

ẋ(t) = f(x,u) =

(
03×3 R(x3(t))
03×3 03×3

)
x +

(
03×3

I3×3

)
u, (2.45)

where R(x3) is matrix (2.44). Here, the state of the robot is described by the vector
x = (x1, x2, x3, x4, x5, x6)> ∈ R6, which consists of the (spatial) position (x1, x2)> [m], the
orientation of the robot x3 [rad], and the robot speeds x4 [m/s], x5 [m/s], and x6 [rad/s].
Additionally, the robot control input is defined by the vector u = (u1, u2, u3)> ∈ U ( R3,
where u1 [m/s2], u2 [m/s2], and u3 [rad/s2] are the linear, the lateral, and the angular
accelerations of the robot, respectively.

2.3.3 Lower Level Kinematics

Though robots will often accept a control u which is based on the higher level kinematics,
this is not always the case and understanding the lower level kinematics is still important.
It also allows as seen in Chapter 3 to add constraints on wheel speed to ensure we do not
exceed the motor saturation limits. We consider a holonomic robot with design parameters
shown in Fig. 2.1. The lower level kinematics model relates the robot’s speeds u and the
robot wheels’ speeds, uw ∈ R4 for robots with mecanum wheels. This relation is given by:

uw(t) =
1

r
·Hu(t), (2.46)

where

H =


1 −1 −a− b
1 1 a+ b
1 −1 a+ b
1 1 −a− b


for mecanum wheels robots. Here, r [m] is the radius of the robot wheels, and the dimen-
sions a and b [m] are shown in Fig. 1.2, see Appendix B for the derivation of the matrix
H
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Figure 2.1: Holonomic mobile robot with mecanum wheels. The driving and the free sliding
directions for each wheel type is shown by corresponding vectors. The figure is reprinted
from [59].

2.3.4 Discrete Time Kinematics

Since in practice controllers are typically applied in a zero-order hold fashion, we consider
the discrete time formulation of the holonomic robot kinematics. Here, model (2.43) is
discretized by the sampling period τ > 0, and assuming piecewise constant control during
each sampling interval; thus, the resulting (exact) discrete-time model is written as

x+ = fe,τ (x,u) = x +Re(τ, x3, u3)u, (2.47)

where the superscript (·)+ denotes the next state and

Re(τ, x3,u3) =

 sin(x3+τu3)−sin(x3)
u3

cos(x3+τu3)−cos(x3)
u3

0
cos(x3)−cos(x3+τu3)

u3

sin(x3+τu3)−sin(x3)
u3

0

0 0 τ

 . (2.48)

We remark that for u3 = 0 the model given by Eq. (2.47) reduces to

x+ = x + lim
u3→0
Re(τ, x3, u3)u = x + τ

u1 cos(x3)− u2 sin(x3)
u1 sin(x3) + u2 cos(x3)

0

 .
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2.4 Path Following Problem

The point stabilization problem can be extended to a trajectory tracking problem by
making the desired reference point time dependent. It has been shown in [2, 3] that the
trajectory tracking method has limitations which prevent it from achieving perfect tracking
due to its unstable zero dynamics. In contrast to trajectory tracking, the path-following
problem has an objective to follow a geometric path without a predefined speed assignment
[2]. With the additional degree of freedom provided by the ability to select a timing law,
the path following problem does not suffer from the same limitations as the trajectory
tracking problem and the deviation from the path can be made arbitrarily small.

A common way of formulating the path following problem is by parametrizing the de-
sired reference path with an additional (virtual) variable, referred to as the path parameter.
This formulation was introduced in the form of maneuver regulation in [41]. Therein, a
maneuver is defined as a curve in the state space that is consistent with system dynamics.
A feedback control law is developed as a trajectory tracking problem, using a projection
mapping which selects an appropriate trajectory timing for the maneuver; then, the ma-
neuver regulation control law is obtained. This idea is applied to flight control in [4], where
a Linear Quadratic Regulator (LQR) is used to control the nonminimum phase part of the
system.

Another approach for path following based on nonlinear feedback control is proposed
in [85] for mobile robots to follow a path parametrized by curvilinear coordinates. This
method is extended to systems with large disturbances such as marine vehicles [28]. Build-
ing upon the previously highlighted work, a general approach for robust output maneu-
vering is presented in [88]. Therein, a path-following algorithm is divided into two tasks:
first to force the output of the system to follow a geometric path, and second to satisfy the
dynamic task of following the path with a given timing for velocity or acceleration. Further
advancements in path-following algorithms are made in [72, 73]. Here, the path-following
control problem for a magnetic levitation positioning system is divided into two parts: a
transversal control which stabilizes the output to the path-following manifold (the set of
geometric trajectories which satisfy the path following problem) and a tangential control
of the motion along the desired path.

In the following section we present the path parametrization formulation of the path
following which is used to set up an MPC controller in Chapter 5.
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2.4.1 Problem Formulation

The path following problem requires steering system (2.47) along a geometric reference
path P ∈ X. Here, the negative parameterization p : [θ̄, 0]→ R3 with p(0) = 0 is used to
define P , i.e.

P =
{
x ∈ R3|∃θ ∈ [θ̄, 0] : p(θ) = x

}
.

The scalar variable θ ∈ [θ̄, 0] is referred to as the path parameter, we note that θ ≤ 0 and
the end of the path is reached at θ = 0. For holonomic mobile robots, we can choose the
path p(θ) as three independent reference curves, one for each state in x, as

p(θ) =
(
p1(θ) p2(θ) p3(θ)

)>
, (2.49)

where p1, p2 and p3 are piece-wise continuous and differentiable functions of the path pa-
rameter θ. In path following, the path parameter θ is not given an explicit time dependency.
However, the path parameter θ is treated as a virtual state and is given the dynamics θ̇ = v,
which when discretized, becomes

θ+ = θ + τv, (2.50)

where the control v ∈ V := [0, v̄] governs the time evolution of θ and is treated as an extra
degree of freedom for the controller. The chosen dynamics of the path parameter is a single
integrator in the discrete time; we refer to [31, Chapter 4] for more details. The controls u
and v can now be chosen such that the path P is followed as closely as possible. We note
here that v is non-negative, ensuring forward motion along the path P . The path following
problem can be summarized, as described in [35], as

Problem 1. (State-Space Path following)

1. Convergence to path: The robot state x converges to the path P such that

lim
k→∞
||x(k)− p(θ(k))|| = 0. (2.51)

2. Convergence to end of path: The robot moves in the direction of increasing θ along
P such that v ≥ 0 and limk→∞ θ(k) = 0.

3. Constraint satisfaction: The state and control constraints X and U are satisfied for
all time steps.
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Using the path dynamics in Equation (2.50), we treat θ as a virtual state which we can
add to the robot kinematics described in Equation (2.47). The path following problem can
now be analyzed by the following augmented system [33]

z+ = faug(z,w) = z +Raug(τ, x3, u3)w, (2.52)

where

z :=

(
x
θ

)
, w :=

(
u
v

)
. (2.53)

z ∈ Z is the augmented system state vector, which includes the state of the robot x and
the virtual state θ. w ∈ W is the augmented control vector, which includes the robot
control input u and the virtual control v. Here, the sets Z and W for the augmented
system (2.52) are defined as

Z := X × [θ̄, 0], and W := U × V .

Moreover, Raug(·) is given by

Raug(τ, x3, u3) =

(
Re(τ, x3, u3) 0

0 τ

)
. (2.54)

It is now straightforward to set up the path-following control problem as the point stabi-
lization of the augmented system (2.52), see [33].

For the augmented system (2.52), we use zw(·; z0) to denote a trajectory emanating
from z0 and driven by the control sequence

w = (w(0),w(1), . . . ,w(N − 1)) ∈ WN , N ∈ N

Moreover, a control sequence w is said to be admissible, denoted by w ∈ WN(z0) if, for a
given state z0 ∈ Z, the state trajectory

zw(·; z0) = (zw(0; z0), zw(1; z0), . . . , zw(N ; z0))

generated from the system dynamics (2.52), where zw(0; z0) = z0, satisfies zw(k; z0) ∈ Z
for all k ∈ {0, 1, . . . , N}.
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Chapter 3

MPC without Terminal Constraints
or Cost for Holonomic Mobile Robots

This chapter is an excerpt from Model predictive control without terminal constraints or
costs for holonomic mobile robot [67], which was published in the journal of Robotics and
Autonomous Systems. This excerpt though not exclusively authored by myself is meant
to give context and to represent my contribution to the publication. These contributions
include the adaptation of the stability proof for a holonomic robot and the development
of growth bounds in discrete time. I am also responsible for developing the algorithms for
and conducting simulations and experiments then analyzing the obtained results.

3.1 Introduction

In this chapter, we focus on the point-stabilization problem of holonomic mobile robot prob-
lem using MPC without stabilizing constraints or costs. Although several studies employed
MPC for the control of holonomic mobile robots, only a few considered the closed-loop
asymptotic stability of the system under MPC. In all of these studies, stabilizing terminal
conditions were adopted, see, e.g. [7, 46, 48]. MPC schemes without stabilizing constraints
are easier to design, require less computational effort in implementation, and are the pre-
ferred MPC variant in industrial applications when compared to the MPC schemes with
stabilizing constraints. Moreover, for a fixed prediction horizon, MPC schemes without
stabilizing constraints provide larger stability regions than schemes with stabilizing con-
straints. Finally, when the control effort in the MPC cost function is largely penalized,
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schemes without stabilizing conditions lead to better closed-loop performance in contrast
to schemes with stabilizing constraints; we refer to [38, Chapter 8] for a more thorough
comparison of the variant MPC schemes.

In this chapter, the closed-loop asymptotic stability of MPC without stabilizing con-
straints or costs is analyzed for the regulation (or point stabilization) control of holonomic
mobile robots. In particular, we verify cost controllability, i.e. a sufficient stability condi-
tion, which relates the growth of the MPC value function and the running costs uniformly
w.r.t. the initial state; for details on the general framework, see [21]. This is achieved
by deriving a growth function bounding the MPC value function. This growth function
allows to precisely determine the length of the prediction horizon such that asymptotic sta-
bility of the desired set-point w.r.t. the MPC closed-loop is guaranteed and, in addition, a
suboptimality estimate on the infinite horizon can be determined. The latter provides a rel-
ative measure on the holonomic robot’s performance compared to the optimal performance
provided from the infinite horizon case.

Similar to the work of Worthmann et al. [96], an open-loop control maneuver, which
stabilizes the considered system to a reference set point is designed and then used to
derive a growth function of the MPC value function and calculate a stabilizing prediction
horizon length. The special structure of the resulting growth function is used to show that
the point stabilization of holonomic mobile robots can be guaranteed to be asymptotically
stable, under the employed MPC with the shortest prediction horizon length. Additionally,
we derive an estimate on the MPC performance (suboptimality) index in this case. The
analysis is performed in the discrete-time settings. We verify the theoretical results by
numerical and real-time lab experiments.

The author of this thesis can claim at least in part the following contributions which
are presented in this chapter: 1) the adaptation from continuous time to discrete time of a
growth function for the MPC value function used for the point stabilization of holonomic
mobile robots. 2) employing the derived growth function to rigorously prove that the
shortest possible prediction horizon is sufficient to ensure closed-loop asymptotic stability
using the employed MPC scheme. 3) verifying the theoretical results throughout numerical
simulations and experiments.

This chapter is organized as follows: in Section 3.2, the kinematics model of holonomic
mobile robots is presented. In Section 3.3, the proposed control scheme is introduced.
Stability results are investigated in the discrete-time setting in Section 3.4, where it is shown
that closed-loop asymptotic stability is guaranteed by the shortest prediction horizon,
additinally the performance bound of MPC is computed. Simulation and experimental
results employing a mecanum wheel holonomic robot are shown in Section 3.5. Finally,
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Figure 3.1: Visualization of the set U for mecanum wheels robots. Translation only con-
straints, for u3 = 0, are shown on the right. The figure is reprinted from [59].

concluding remarks and the outlook of the contribution are discussed in Section 3.6.

3.2 State and Control Input Constraint Sets

Let us start by considering the kinematic model for a holonomic robot in (2.43). The
compact and convex state constraint set X is defined as

X := [−x̄1, x̄1]× [−x̄2, x̄2]× S,

for x̄1 > 0 and x̄2 > 0, with the origin in its interior. S is the compact set of angles on
circle.

In order to derive the control input set U , we must also consider the lower level kine-
matics (2.46). Now, for a given speed limit on the wheels, ūw, the control input set U can
be defined as

U :=
{
u ∈ R3| ‖Hu‖∞ ≤ rūw

}
. (3.1)

For robots with mecanum wheels, we have

‖Hu‖∞ := |u1|+ |u2|+ (a+ b)|u3|.

The reason ‖Hu‖∞ reduces to one term for robots with mecanum wheels is the symmetry
of the robot configuration around x̂1-axis and x̂2-axis, see Fig. 1.2. The set U is convex
with the origin in its interior, see Fig. 3.1. In summary, we have (0, 0, 0)> × (0, 0, 0)> ∈
int(X)× int(U).
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3.3 Model Predictive Control in Discrete Time

In this section, we present the discrete time formulation of the MPC Algorithm from
Section 2.1.2 applied to the position regulation of a holonomic robot. As the proposed MPC
controller is applied in a zero-order hold fashion, we consider the discrete time formulation
of this problem. Going forward, we therefore consider the discrete time model of the
holonomic robot kinematics in (2.47).

A control sequence u = (u(0),u(1), . . . ,u(N − 1)) ∈ UN of length N ∈ N is said to be
admissible, for state x0, denoted by u ∈ UN(x0) if the state trajectory

xu(·; x0) = (xu(0; x0), xu(1; x0), . . . , xu(N ; x0)) ,

generated iteratively by the model (2.47) and stemming from x0 =: xu(0,x0), satisfies
xu(k,x0) ∈ X for all k ∈ {0, 1, . . . , N}.

Now, we present the MPC Algorithm in discrete-time. Here, the prediction horizon
and the control horizon are defined by N and m. Moreover, we define the discrete-time
running costs `τ (x,u) : X × U → R≥0 by

`τ (x,u) = ‖x‖2
Q + ‖u‖2

R (3.2)

As a result, at a sampling step k ∈ N0, the discrete-time cost function JN : X×UN → R≥0

and the corresponding value function VN : X → R≥0 are

JN(xk, u) :=
k+N−1∑
n=k

`τ (xu(n,xk),u(n)) (3.3)

VN(xk) := inf
u∈UN (xk)

JN(xk, u) (3.4)

s.t. x(k) = xk,

x(i+ 1) = f(x(i),u(i)) ∀i ∈ [k, k +N)

x(i) ∈ X ∀i ∈ [k, k +N ]

u(i) ∈ U ∀i ∈ [k, k +N)

for N ∈ N ∪ {∞}. For the further analysis in this section, we set m = 1. Thus, at the
sampling step k ∈ N0, the MPC feedback law in the discrete-time setting, denoted by
µN : X → U , is given by µN(k,xk) = u?(0,xk), where u?= u?(·,xk) ∈ UN(xk) satisfies
VN(xk) = JN(xk, u

?).

34



3.4 Stability Results in Discrete Time

Here we prove that the closed-loop asymptotic stability of the considered holonomic mobile
robot is guaranteed for the shortest prediction horizon length. We achieve this by referring
to Theorem 2.2 and developing a sequence γi which bounds the value function and for which
αN calculated from (2.36) is contained in interval (0,1). The system dynamics considered
are that of the holonomic robot (2.47) starting from some x0 ∈ X.

We note that the required assumption on the boundedness of `τ (x,u) for Theorem 2.2
holds for the chosen running costs.

3.4.1 Growth Bounds γi

The growth bound γi in Inequality (2.35) can be obtained using γi =
∑i−1

j=0 cj, i ∈ N≥2,
where the sequence cj ≥ 0, j ∈ N0, is summable, i.e.

∑∞
j=0 cj < ∞. cj is calculated such

that the inequality

`τ (xux0 (j; x0),ux0(j))

‖x0‖2
Q

≤ cj, ∀j ∈ N0 and x0 ∈ X (3.5)

holds for an admissible sequence of control actions ux0 = ux0(j), j ∈ N0, see, e.g. [96] for
more details. The following proposition summarizes the procedure of computing cj in
Inequality (3.5) and, thus, the growth bound γi in Theorem 2.2.

Proposition 1. Given positive definite diagonal weighting matrices Q = diag(q1, q2, q3)
and R = diag(r1, r2, r3) in Eq. (3.2). Let the following assumptions

r1 = r2, q1 = q2, r1 ≤ λq1/2, and r3 ≤ λq3, (3.6)

hold for some constant λ. Then, there exists a sufficiently long maneuver length km cal-
culated from the maneuver time in Eq. (3.8) such that cost controllability, i.e. Inequal-
ity (2.35), holds with γi =

∑i−1
j=0 cj, i ∈ N≥2, where cj is defined by

cj :=

[(
km − j
km

)2

+
λ

τ 2k2
m

]
(3.7)

for j ∈ {0, 1, . . . , km − 1}. �
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Proof. We choose the following straight trajectories for each initial state x0 = (x0,1, x0,2, x0,3)>

in X to the origin:

x(j) =

(
km − j
km

)
x0, x0 := x(0), ∀j ∈ {0, . . . , km − 1},

where km ∈ N≥2 is chosen sufficiently large such that the constraints U given by Eq. (3.1)
are satisfied for all x0 ∈ X.

If we consider a maneuver time, tm lower bounded by t̄m corresponding to the initial
condition x0 = (x̄1, x̄2, π)>, i.e. the farthest initial condition in the state set X from the
origin x? = (0, 0, 0)>. t̄m can be calculated via the following formula

t̄m =
maxx3(t)∈[0,π] ‖tm ·Hu(t)‖∞

r · ūw
, (3.8)

where u(t) is given by Eq. (3.9). For simplicity, maximizing the numerator of Eq. (3.8)
can be performed via a line-search. In the special case of x̄1 = x̄2, t̄m reduces to

t̄m =
x̄1 + x̄2 + π · (a+ b)

r · ūw
,

for a holonomic robot with mecanum wheels. Choosing the maneuver length km such that
km ≥ dt̄m/τe will satisfy the control constraints for any initial condition x0 ∈ X. The
resulting open-loop control actions required to achieve the maneuver can be calculated by

ux0(j) = Re(τ, x3(j), u3(j))−1

(
− 1

km
x0

)
, (3.9)

for all j ∈ {0, . . . , km − 1}, where

Re(τ, x3, u3)−1 =
u3

4


sin(x3+τu3)−sin(x3)

sin2(0.5τu3)

cos(x3+τu3)−cos(x3)

sin2(0.5τu3)
0

cos(x3)−cos(x3+τu3)

sin2(0.5τu3)

sin(x3+τu3)−sin(x3)

sin2(0.5τu3)
0

0 0 4
τu3

 ;

moreover, later in this proof, we drop the subscript x0 from all the elements of ux0(j) to
keep the presentation technically simple. By inspecting Eq. (3.9), it is straightforward to
obtain u3(j) as

u3(j) = − x3,0

τkm
, ∀j ∈ {0, . . . , km − 1}.
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Now, applying the open-loop control actions defined by Eq. (3.9) and using the first as-
sumption in (3.6) on the weighting matrix R, lead to the following running costs along the
resulting open-loop trajectories

`τ (xux0 (j; x0),ux0(j)) =

(
km − j
km

)2 3∑
i=1

qix
2
0,i + r1

(
u1(j)2 + u2(j)2

)
+ r3

x2
0,3

τ 2k2
m

,

where the term r1 (u1(j)2 + u2(j)2) can be calculated by squaring then adding the first two
equations in (3.9); thus, we have

r1

(
u1(j)2 + u2(j)2

)
=

r1u3(j)2

4 sin2(0.5τu3(j))

(
x2

0,1

k2
m

+
x2

0,2

k2
m

)
.

Using the Taylor series expansion of sin2(0.5τu3(j)), we have

sin2(0.5τu3(j)) ≥
(
τ 2u3(j)2

4
− τ 4u3(j)4

48

)
=
τ 2u3(j)2

4

(
1− τ 2u3(j)2

12

)
> 0,

which is valid for all u3(j)2 := (x0,3/τkm)2 ≤ (π/τkm)2. This leads to the estimate

r1

(
u1(j)2 + u2(j)2

)
≤ 12 · r1

12−
(
x20,3
k2m

)( x2
0,1

τ 2k2
m

+
x2

0,2

τ 2k2
m

)
≤ 12 · r1

12−
(
π2

k2m

)( x2
0,1

τ 2k2
m

+
x2

0,2

τ 2k2
m

)
. (3.10)

The term 12/
(

12− π2

k2m

)
has an upper bound of 1.26 for km ≥ 2. Choosing now the weight

r1 as in Assumption (3.6), leads to the estimate

r1

(
u1(j)2 + u2(j)2

)
≤ λ · q1

(
x2

0,1

τ 2k2
m

+
x2

0,2

τ 2k2
m

)
. (3.11)

We note that the term u3(j)2/4 sin2(0.5τu3(j)) can be defined for u3(j) = 0 as

lim
u3(j)→0

u3(j)2

4 sin2(0.5τu3(j))
=

1

τ 2
.

Therefore, the estimate (3.11) holds for u3(j) = 0 too.

As a result, using the assumption r3 ≤ λq3 from Eq. (3.6), the running costs `τ (xux0 (j; x0),ux0(j))
can be estimated by

`τ (xux0 (j; x0),ux0(j)) ≤

[(
km − j
km

)2

+
λ

τ 2k2
m

]
3∑
i=1

qix
2
0,i︸ ︷︷ ︸

‖x0‖2Q

,
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for all j ∈ {0, . . . , km}. The sequence cj in Inequality (3.5) can now be obtained as in
Eq. (3.7), where the cj ≡ 0 for all j > km.

Now the growth bound γk, k ∈ N0 can be computed as

γk :=
k−1∑
j=0

cj =
1

k2
m

k−1∑
j=0

[
j2 − 2km · j + k2

m +
λ

τ 2

]
=

1

k2
m

[(
k2
m +

λ

τ 2

)
k +

k−1∑
j=0

j2 − 2km ·
k−1∑
j=0

j

]
.

Using the sum formulas

k−1∑
j=0

j =
k(k − 1)

2
and

k−1∑
j=0

j2 =
k(k − 1)(2k − 1)

6
,

γk reduces to

γk =
1

k2
m

[
k3

3
−
(
km +

1

2

)
k2 +

(
k2
m + km +

λ

τ 2
+

1

6

)
k

]
. (3.12)

Similar to the continuous-time case, γk only depends on the number of steps km, the
sampling time τ , and the weight ratio λ.

3.4.2 Asymptotic Stability for the Shortest Prediction Horizon

The shortest possible prediction horizon of discrete-time MPC without terminal constraints
or costs is N = 2. In this case, one control and the successor state are dominating the cost
function given by Eq. (3.3). As a result, the special structure of γk, given by Eq. (3.12),
leads to the following theorem.

Theorem 3.1. Given N = 2, the weight ratio λ of Assumption (3.6) and the sampling
time τ , there exists a maneuver length k?m such that for all km > k?m, the performance
index αN = α2 given by (2.36), is ensured to be positive; thus, the closed-loop asymptotic
stability of the considered holonomic mobile robot under MPC without terminal conditions
is guaranteed for the shortest possible prediction horizon. Moreover, for the same maneuver
length an upper bound on the performance index α2, denoted by ᾱ2, can be computed and,
thus, a lower bound on the MPC closed-loop performance is estimated via Inequality (2.38)
as

V µ2
∞ (x) ≤ ᾱ−1

2 V∞(x). (3.13)

�
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Proof. For N = 2, the performance estimate αN in Eq. (2.36) reduces to

α2 = 1− (γ2 − 1)2. (3.14)

Thus, the asymptotic stability condition can be written as

0 < γ2 < 2. (3.15)

From Eq. (3.12), γ2 is given by

γ2 =
1

k2
m

[
2k2

m − 2km +

(
2λ

τ 2
+ 1

)]
. (3.16)

Then, as γ2 > 0 for all km ≥ 1, the left inequality of (3.15) is ensured. Moreover, choosing
km as

km > k?m :=

⌈
λ

τ 2
+

1

2

⌉
(3.17)

satisfies the right inequality of (3.15).

The upper bound on α2 can be computed by finding km such that ∂α2

∂km
= 0. This reduces

to finding km such that ∂γ2
∂km

= 0. Differentiating γ2 given by Eq. (3.16) with respect to km
results in

∂γ2

∂km
=

2

k2
m

[
1− 1

km

(
2λ

τ 2
+ 1

)]
.

For ∂γ2
∂km

= 0, we have

km =
2λ

τ 2
+ 1 > k?m.

Using this value, we can then compute an upper bound on α2 and, thus, a lower bound on
the MPC closed-loop performance, via Eq. (3.14) as

ᾱ2 :=
λ/τ 2 + 1/4

(λ/τ 2 + 1/2)2 . (3.18)
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It is therefore shown by Theorem 3.1 that the closed-loop asymptotic stability can
be guaranteed by sufficiently increasing the number of open-loop maneuver steps km.
Moreover, it can be inferred from the lower bound on the MPC performance ᾱ2 given
by Eq. (3.18) that the index is always positive and converges to 1 as λ/τ 2 is chosen small.
Therefore, by means of Inequality (3.13), infinite horizon MPC performance can be ap-
proached by reducing λ/τ 2 despite using the shortest prediction horizon, i.e. N = 2.

We remark that prolonging the open-loop maneuver time/steps leads to more conser-
vative growth bound γi in Eq. (2.35). Therefore, prolonging the open-loop time does not
affect the MPC algorithm.

3.5 Numerical and Experimental Results

In this section, we show the numerical and the experimental results of implementing the
MPC algorithm presented in Section 3.3. Herein, the kinematic equation of the holonomic
robot shown in (2.47) is used for state prediction. The mecanum wheels robot (Summit-
XL-Steel [81]) is used in the experiments, see Fig. 1.2. States are constrained to

X := [−2, 2]2 × [−π, π].

The input constraints are as described in Eq. (3.1), where r = 0.127 m is the wheel radius,
ūw = 12 rad/s is the maximum wheel speed, a = 0.223 m is half the wheel base length
and b = 0.205 m is half the wheel base width, see Fig. 1.2 and the specification of the
experimental platform [81]. This results in the maneuver time t̄m = 3.5 s, which ensures
control constraints satisfaction for all initial conditions in X, by means of Eq. (3.8).

The simulations as well as the experiments were conducted until the following condition
is met

||x(n)− x?|| ≤ 0.05,

where x(n) is the state measurement at time step n ∈ N and x? = (0, 0, 0)> is the reference
set point.

3.5.1 Numerical Results

The simulations were run for a series of eight different initial conditions, which were all
then stabilized to the origin. The initial orientation was set to x0,3 =π for each of the
initial conditions, as this is the maximum deviation form the reference orientation x?3 = 0.
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Simulations were conducted using MATLAB; the OCP (3.4) was set up symbolically using
CasADi toolbox [5]. Here, the multiple-shooting discretization method [55] is used to
convert the OCP to a Nonlinear Programming Problem (NLP). The NLP is then solved
using the Interior-Point method implemented in IPOPT [93]. The running costs are defined
by the way of using Eq. (3.2) with λ = 0.05. Additionally, the prediction horizon is set
to N = 2 and the sampling time to τ = 0.025 s. Here, the time shift δ = mτ = τ ; the
maneuver length k?m required for asymptotic stability is k?m = 81 by means of Theorem 3.1;
and, by means of Eq. (3.18), we have the performance index ᾱ2 = 0.01238.

The resulting closed-loop paths can be seen in Fig. 3.2 (left). It can be noted from
these results that the optimal path for the holonomic mobile robot in each case is to take
an almost straight path to the origin while the orientation of the robot changes as the
robot moves towards the desired position.

Figure 3.2: Left: Closed-loop paths for the simulation results for N = 2; the dashed line
represents the robot’s path and the arrow represent its orientation along the path. Right:
value function evolution in simulation for N = 2.

The maximum wheel speed for two of the initial conditions is shown in Fig. 3.3 (left).
The results confirm that the input constraints are not violated, i.e. Eq.(3.1) is satisfied for
all time steps; the same behavior is observed for the remaining initial conditions.

To show that the system is asymptotically stable, we can observe that the evolution of
the value function is monotonically decreasing with time, see Fig. 3.2 (right). Therefore,
we can verify that the conditions for Theorem 2.2 are met for each initial condition in the
simulation. Moreover, as the prediction horizon length is N = 2, we can find for each initial
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Figure 3.3: Left: maximum wheel speed for two initial conditions in simulation. Right:
evolution of value function at different prediction horizon length N where λ = 0.05, τ =
0.025 s, and x0 = (2, 2, π)>.

condition that V2(x0)/`?τ (x0) ≤ γ2 < 2, see Conditions (2.35) and (3.15). In Table 3.1, we
see that this holds for all initial conditions in the simulation.

Table 3.1: V2(x0)/`∗τ (x0) for each initial condition in simulations

x>0
V2(x0)
`?τ (x0)

x>0
V2(x0)
`?τ (x0)

(0, 2, π) 1.9877 (2, 2, π) 1.9887
(0,−2, π) 1.9877 (−2, 2, π) 1.9887
(2, 0, π) 1.9877 (−2,−2, π) 1.9887
(−2, 0, π) 1.9877 (2,−2, π) 1.9887

Through running these simulations, we observed some interesting results of varying
parameters such as λ, the prediction horizon N , and the sampling time τ on the evolution
of the value function VN . First, a lower λ resulted in a faster convergence of the mobile
robot to the set point, which is fairly intuitive; a lower λ means a lower ratio on the weights
for the control inputs compared to the weights for the state. This will result in a solution
of the OCP (3.4) with less conservative control actions, and therefore faster convergence
of the robot to the set point. What is less intuitive is the effect of the prediction horizon
and the sampling time, we explore both here. For these simulations, we used an initial
condition of x0 = (2, 2, π)>. Fig. 3.3 (right) shows the effect of the prediction horizon
length. Here, we see that larger prediction horizons produce a faster convergence of the
robot to the set point. We also see that the evolution of the value function for N = 2
is roughly linear in the logarithmic scale, where for longer prediction horizon lengths the

42



Figure 3.4: Left: evolution of the value function for different prediction horizon lengths N ,
where λ = 1 and τ = 0.025 s. Right: evolution of the value function for different sampling
intervals τ , where λ = 0.05 and N = 2. For the two figures, we have x0 = (2, 2, π)>.

value function evolution becomes steeper. Finally, we can also observe diminishing returns
in terms of faster convergence to the set point for increasing the prediction horizon; going
from N = 2 to N = 3 reduces convergence time by about 15 s, while going from N = 10
to N = 20 has a difference of less than 1 s.

Now, we investigate the evolution of the value function for λ = 1. In Fig. 3.4 (left), we
see the effect of having λ = 1 for different prediction horizon lengths; convergence to the
set point takes significantly longer time for smaller N . Additionally, we can see that the
evolution of VN in each case is nearly linear, not only for N = 2. Fig. 3.4 (right) shows
the results of our investigation for the effect of τ on the evolution of the value function
VN . Here, λ = 0.05 and N = 2 are kept constant and τ is varied. There is an apparent
tendency that increasing τ reduces the convergence time.

3.5.2 Experimental Results

Algorithm 1 was validated experimentally using a Summit-XL-Steel holonomic mobile plat-
form, see Fig. 1.2. In the experiments, the mobile platform is stabilized to the origin from
eight different initial positions. The experimental platform runs through the Robot Op-
erating System (ROS) [76]; thus, a ROS node was developed in Python to implement
Algorithm 1 in which CasADi toolbox was used to symbolically setup the MPC controller
with the same settings used in the simulations. Here, the running costs in Eq. (3.2) is used
with λ = 0.05. Additionally, the prediction horizon was set to N = 2 and the sampling
time to τ = 0.025 s.
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Figure 3.5: Block diagram of the experimental setup used to validate Algorithm 1.

To ensure that the localization of the robot would not affect our results, a Vicon motion
capture system adopting 12 cameras was used to localize the mobile platform. The position
of the robot from the Vicon system was transmitted to ROS using a Vicon bridge [1]. The
block diagram of the experimental setup is shown in Fig. 3.5.

Figure 3.6: Left: closed-loop paths for the experimental results with prediction horizon
length N = 2; the dashed line represents the robot’s path and the arrow represent its
orientation. Right: value function evolution in experiments for N = 2.

The results for eight different initial conditions can be seen in Fig. 3.6 (left). The value
function V2 evolution was tracked for each case. Moreover, a comparison of the closed-loop
paths in experiments and their simulations counterparts is presented in Fig. 3.7. In Fig. 3.6
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(right), we see that, in each case, V2 is monotonically decreasing towards zero until the
experiment is stopped, except for few moments for only three initial conditions; this is
because of the unmodeled dynamics of the robot and/or floor surface irregularities. The
results indicates the (inherent) robustness of the proposed controller.

Additionally, as can be seen in Fig. 3.7, the closed-loop paths of the experiments are
very similar to that for the simulations especially for the initial conditions on the horizontal
and vertical axes. Finally, we verify that the Conditions (2.35) and (3.15) are met for each
initial condition in the experiments. In Table 3.2, we see that V2(x0)/`?τ (x0) ≤ γ2 < 2
holds for all initial conditions in the experiments. In summary, experimental results show
very good alignment with theory and simulations.

Figure 3.7: Comparison of the experimental closed-loop paths (dashed line) and simulation
closed-loop paths (solid line); initial and final orientations are represented by arrows.

3.6 Conclusion

In this chapter, we rigorously show cost controllability in order to ensure asymptotic sta-
bility of a desired set point for holonomic mobile robots using MPC without stabilizing
terminal conditions. To this end, we construct a growth function by using suitably designed
open-loop control maneuvers. On the one hand, the conducted analysis allows to conclude
asymptotic stability for the shortest possible prediction horizon. On the other hand, we
also provide a bound on the MPC closed-loop costs in comparison to the infinite-horizon
optimal controller. Results are verified by a series of numerical simulations and real-time
lab experiments confirming the theoretical findings.
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Table 3.2: V2(x0)/`?τ (x0) for each initial condition in experiments

x>0
V2(x0)
`?τ (x0)

(0.00, 1.91, 3.11) 1.9876
(0.00,−1.90, 3.14) 1.9877
(1.89,−0.01, 3.14) 1.9886
(−1.88, 0.00, 3.13) 1.9869
(1.91, 1.90, 3.13) 1.9875

(−1.96, 1.87, 3.13) 1.9877
(−1.85,−1.83, 3.14) 1.9857
(1.89,−1.85, 3.13) 1.9887
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Chapter 4

Acceleration Constrained Model
Predictive Control

4.1 Introduction

In this chapter, we consider the regulation control of holonomic mobile robots with limits
on acceleration. Such constraints ensure the smooth operation of the robot and reduce
inertial forces on its components and payloads from sudden motions. This can be achieved
by using the dynamic model of the robot and constraining the torque applied by the wheel
motors [82] or by building time scaled trajectory to a desired point using segments with
restricted acceleration [15]. This has also been done by including an additional constraint
on acceleration in an MPC scheme [8]. The ability of MPC to handle constrained non-linear
systems makes it an ideal candidate for our acceleration constrained regulation control
problem.

The motion of mobile robots is normally analyzed by means of their kinematic models.
Under MPC, the acceleration limits of such systems can be considered by expanding the
kinematic model to include the actuator dynamics, which characterize the acceleration
limit [69]. Alternatively, acceleration constraints can be considered by limiting the change
in consecutive velocity commands of the MPC optimal control sequence [8]. For MPC
algorithms which only consider kinematic models with a velocity control input such as
Chapter 3, the optimal solution will often be to initially apply the maximum control effort
to quickly drive the system closer to the desired set point. This results in a large initial
acceleration of the system and, thus, an undesirable behavior.
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In this chapter, we study the closed-loop asymptotic stability of the acceleration-
constrained regulation of a holonomic mobile robot under MPC without stabilizing con-
straints or costs. This is an extension of the work presented in Chapter 3, where limits
on accelerations are not considered. Here, we provide a detailed analysis of the effect of
acceleration limits on the stability proof. This is achieved by, first, expanding the kine-
matic model of the robot to consider the vehicle’s acceleration. Second, by establishing an
admissible subset of the state space, where constraints on inputs and states are satisfied
for all times. This is achieved using the theory of barriers presented in [24].

The rest of the chapter is organized as follows: In Section 4.2, we describe the kinematic
model of holonomic mobile robots; the acceleration limit formulation; and the derivation of
the admissible states set via the theory of barriers; and the MPC algorithm. Using the MPC
stability results presented in Section 2.2.3, the open-loop control maneuvers are developed,
and an expression for the value function bound (growth function) is derived in Section
4.4. It is then shown that this growth function can be used to find a stabilizing prediction
horizon. Simulation results are presented in Section 4.5. Finally, the implications of the
results of this paper as well as future works are discussed in Section 4.6.

4.2 Problem Formulation and the Admissible Set

In this section, using the acceleration controlled kinematic model of a holonomic robot,
we define constraints on the states and inputs. We then show the detailed process (via
the theory of barriers) of deriving an admissible state set of the resulting kinematic model.
Finally, we show the set-point regulation problem for which we propose a model predictive
control scheme in continuous-time without stabilizing constraints or costs.

4.2.1 Holonomic Mobile Robot Kinematic Model

As we are designing an acceleration constrained model predictive controller, it becomes
advantageous to use the acceleration controlled kinematic model in (2.45) with x(t0) = x0

in order to directly constrain the acceleration.

We consider state constraints defined by the following functions

gi(x(t)) ≤ 0, ∀t ∈ [t0,∞] for i = 1, . . . , p. (4.1)
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Here, we have p = 12 constraints on the states, as each state in x has both an upper and
a lower bound. The bounds can be expressed as follows

g2j−1(x(t)) = xj(t)− x̄j, for j = 1, . . . , 6,

g2j(x(t)) = −xj(t)− x̄j, for j = 1, . . . , 6.

for x̄j ≥ 0, j = 1, . . . , 6.

Moreover, the control input (acceleration) constraints are defined by the set

U = [−ūa1, ūa1]× [−ūa2, ūa2]× [−ūa3, ūa3] (4.2)

with the saturation limits ūa1, ū
a
2, ū

a
3 > 0.

We remark that, unlike the case in which acceleration constraints are not considered
[67], if the robot starts with an initial position on the boundaries of the allowable states, for
example where g1(x) = 0 with an initial velocity away from the allowable states, x4 > 0, a
control function u(t) ∈ U for all t ≥ 0 for which the constraints are satisfied, i.e. gi(x) ≤ 0
for all i = 1, . . . , p does not exist. Therefore, it is essential to construct a set of admissible
states (formally defined later) which prohibits the aforementioned initial condition. In the
following subsection, we achieve this by applying the theory of barriers.

4.2.2 Theory of Barriers

Here, we briefly summarize the theory of barriers as presented in [24]. We look at this
theory as it applies to the considered holonomic mobile robot with acceleration constrains.
Herein, we denote by xu(·,x0) the trajectory generated by the control input u ∈ U via the
system dynamics (2.45) for the initial condition x0. Furthermore, we define the following
sets

X := {x ∈ R6 : gi(x) ≤ 0, ∀i ∈ {1, . . . , p}}
X− := {x ∈ R6 : gi(x) < 0, ∀i ∈ {1, . . . , p}}
X0 := {x ∈ X : ∃i ∈ {1, . . . , p} s.t. gi(x) = 0},

and denote by

I(x) = {i ∈ {1, . . . , p} : gi(x) = 0}

the indices of active constraints at a state x.
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We can now define the set of admissible initial conditions denoted by A. This is the
set of states x for which there exists a control function u ∈ U such that the solution of
system (2.45) with the initial condition x0 satisfies the constraints (4.1) for all future time.
A is formally expressed as

A := {x0 ∈ X : ∃u ∈ U,xu(t,x0) ∈ X ∀t ∈ [t0,∞)}

The boundary of the admissible set A is denoted by ∂A. Additionally, we introduce the
barrier set

[∂A]− = ∂A ∩X−.

For every point x ∈ [∂A]−, there exists an input ū ∈ U , such that the resulting integral
curve runs along [∂A]−, and satisfies a minimum/maximum like principle. If this curve in-
tersects the boundary of the constraint set X0, it must do so tangentially. These conditions
are expressed by the following theorem, see [24, Theorem 7.1] for the proof. In viability
theory, the admissible set A is called the viability kernel, see [84].

Theorem 4.1. Every integral curve xū(·,x0) with x0 on the boundary [∂A]− satisfies the
following necessary conditions.
There exists a continuous maximal solution to ξū to the adjoint equation

ξ̇ū(t) = −
(
∂f

∂x
(xū(t), ū(t))

)>
ξū(t), (4.3)

where if D denotes the differential derivative, we have

ξū(t̄) = (Dgi∗(y))>

such that
min
u∈U

{
ξū(t)>f(xū,u)

}
= ξū(t)>f(xū, ū(t)) = 0 (4.4)

at every point t ≥ 0. In Equation (4.3), t̄ denotes the time at which the states of the system
are tangent to a boundary, i.e. xū(t̄) = y, and y ∈ X0, so y satisfies

gi(y) = 0, i ∈ I(y)

and
min
u∈U

max
i∈I(y)

Lfgi(y,u) = Lfgi∗(y, ū(t̄)) = 0. (4.5)

Here, Lfg(x,u) := Dg(x)f(x,u) is the Lie derivative of the function g : Rn → R with
respect to f(·,u) at the point x.
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These conditions can be used to build the admissible set A. We start by identifying the
point y tangent to the constraint located on X0 via Condition (4.5). Then, using Condition
(4.4), the input ū corresponding to the integral curve along the barrier function [∂A]−
can be determined. Finally, the barrier function [∂A]− is calculated from the backward
integration of the system (2.45) and the adjoint dynamics (4.3), with starting points at
x(t̄) and ξ(t̄), respectively.

4.2.3 The Admissible Set A

Using Theorem 4.1, we can now derive the admissible set A of initial conditions x0. To
simplify the analysis of the derivation of A and the upcoming stability analysis, we consider
the bounds x̄3 = x̄6 = 0 on the constraints functions given by Inequality (4.1). This implies
that x3(t) = x6(t) = 0, giving a fixed orientation for all t ≥ 0. As a result, the mapping
f(x,u) of System (2.45) becomes

f(x,u) =
(
x4 x5 u1 u2

)>
, (4.6)

where x = (x1, x2, x4, x5)> and u = (u1, u2). The resulting system is a 2-dimensional
version of the double integrator system considered in [29]. Moreover, we redefine the set
U to be

U = [−ūa1, ūa1]× [−ūa2, ūa2].

Let us now consider the constraint g1(x) = x1(t) − x̄1 ≤ 0 as the active constraint;
thus, the active constraint set is I(x) = {1}. Using Condition (4.5), we can calculate
the state tangent to this boundary as x4 = 0. This corresponds to the set of states with
ẋ1 = 0, i.e. zero velocity perpendicular to the constraint g1(x). We can then obtain
the tangent point y = x(t̄) as y = (x̄1, x2(t̄), 0, x5(t̄))>, where x2(t̄) ∈ [−x̄2, x̄2] and
x5(t̄) ∈ [−x̄5, x̄5]. Intuitively, this indicates that the position along x2 and velocity x5

can be chosen arbitrarily, which is possible for a holonomic mobile robot as the control
along each direction can be controlled independently. Therefore, we set x5(t̄) = 0 as this
is independent of the boundary we are considering. In conclusion, looking at one point
x2(t̄) = 0 along the boundary of the considered function g1(x), i.e. give us the tangential
point y = (x̄1, 0, 0, 0)>.

In a similar fashion, we can find a tangential point on the negative x1 constraint, i.e.
g2(x(t)) = −x1 − x̄1. This gives the admissible set of x1 and x4 on R2, see Fig. 4.1 (left).
Furthermore, it is straightforward to extend this analysis to the set of allowable states in
R4 over x1, x2, x4 and x5. The resulting admissible set A is shown in Fig. 4.1 (right).

51



Figure 4.1: Left: Set of admissible initial states over x1 and x4 in R2. Right: Set of ad-
missible initial states A for the states x1, x2, x4, and x5. Here the arrows represent the
maximum allowable velocity in a given direction and location, the largest arrows repre-
senting a velocity of xi = 1 [m/s] for i = 4, 5.

With the admissible set A now defined, we denote by u|[0,T ] ∈ UT (x0) the admissible
control function for t ∈ [0, T ], where u ∈ PC([0, T, U), T ≥ 0 and

UT (x0) := {u(t) ∈ U | xu(t, x0) ∈ A ∀t ∈ [0, T ]}, (4.7)

where x0 ∈ A. Additionally, if the admissible control function u|[0,T ] ∈ UT (x0) satisfies
(4.7) for all T > 0, the resulting set of all admissible control functions u ∈ PC([0,∞], U)
is denoted by U∞(x0).

Now, the control objective is to regulate the robot posture to a (controlled) equilibrium
x?, where f(x?, 0) = x?. Without loss of generality, we choose the origin as the set-point,
i.e. x? = 0R4 . To achieve this objective, we use a model predictive control (MPC) scheme
without terminal constraints or costs presented in the next section.

52



4.3 MPC without Stabilizing Terminal Constraints or

Costs

In this Section, we propose a model predictive control (MPC) scheme without stabilizing
constraints or costs to regulate the system to the set point x?. We then use the stability
results of Theorem 2.3 in which the conditions for guaranteeing the closed-loop asymptotic
stability are stated. As standard in MPC, we use the quadratic stage costs ` : R4 × R2 →
R≥0

`(x,u) = ‖x− x?‖2
Q + ‖u‖2

R (4.8)

as a performance measure, where

Q = diag(q1, q2, q4, q5) and R = diag(r1, r2)

are positive definite weighting matrices. Note here that the indices of the weights match
that for the states and controls. By integrating the running costs (4.8) over a prediction
horizon T = Nτ , N ∈ N≥2 with the sampling period τ > 0, we obtain the MPC cost
function

JT (xk,u) :=

∫ tk+T

tk

`(xu(t; xk),u(t))dt, (4.9)

where tk = kτ , k ∈ N0 is the sampling instance and xk = x(tk). The MPC scheme control
input is determined by repeatedly the following OCP at each time instance tk.

VT (xk) := inf
u∈UT (xk)

JT (xk,u) (4.10a)

s.t. x(tk) = xk

ẋ(t) = f(x(t),u(t)) ∀t ∈ [tk, tk + T ) (4.10b)

x(t) ∈ A ∀t ∈ [tk, tk + T ] (4.10c)

u(t) ∈ U ∀t ∈ [tk, tk + T ) (4.10d)

The solution to OCP (4.10) is the optimal control function u?(t−tk; xk) , t ∈ [tk, tk+T )
with the optimal value function VT : A → R≥0 given by VT (xk) = JT (xk, u

?). In the OCP,
the system dynamics (2.45) are enforced by constraint (4.10b) and the state and input
constraints are enforced by (4.10c) and (4.10d) respectively. We now define a control
horizon δ = mτ , m ∈ [1, N − 1], on which we apply the MPC feedback law

µ(t,xk) = u?(t− tk;xk), t ∈ [tk, tk + δ)
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By applying the feedback law µ to system (2.45) we obtain the closed-loop trajectory
governed by

ẋµ(t,x0) = f(xµ(t; x0), µ(t− tδ, xδ)) (4.11)

with tδ = δ bt/δc and xδ = xµ(tδ, x0), i.e. t − tδ ∈ [0, δ). The proposed controller is
summarized in Algorithm 1. We remark that Algorithm 1 does not employ any stabilizing
terminal constraints or costs. The recursive feasibility of Algorithm 1 is assured if the

Algorithm 1 MPC Scheme

Given: sampling period τ , prediction horizon T , control horizon δ and initial state x0 ∈ A
Set: k = 0 and xk := x0.

1: Compute a minimizing control function u? ∈ UT (xk) such that JT (xk,u
?) = VT (xk)

holds.

2: Apply u?(t,xk), t ∈ [0, δ) to the mobile robot.

3: Set xk+1 := xµ(tk+1; x0), increment k, and go to step 1.

initial state x0 is contained within the admissible set A defined in Section 4.2.2 according
to the theory of boundaries. The recursive feasibility of the closed-loop MPC algorithm
for a constrained linear-quadratic case is addressed in [29, Section 4].

Now, to ensure the asymptotic stability of the system, we must show that there exists
some function β ∈ KL, where KL is defined in A.2.2, such that

‖xµ(t;x0)‖ ≤ β(‖x0‖, t), ∀t ≥ 0 (4.12)

is satisfied for all x0 ∈ A [51]. Where the closed-loop trajectory xµ(t;x0) is as defined by
Eq. (4.11). The asymptotic stability of system (4.6) under the employed MPC scheme,
without terminal conditions, can be summarized by Theorem 2.3. Note that where Theo-
rem 2.3 refers to the set of allowable states, X, here we consider the admissible setA. In the
following section, we derive a growth bound B(·) such that inequality (2.39) and condition
2.42 holds for the considered holonomic mobile robot with acceleration constraints.

4.4 Growth Bound

As shown by [66], a growth function B(t) which satisfies the cost controllability condition
given by Inequality (2.39), for all x0 ∈ A, can be obtained using an integrable and bounded
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function c(t), i.e.
∫∞

0
c(t) <∞, as

B(t) =

∫ t

0

c(s)ds. (4.13)

Here, we ensure that the function c(·) bounds the running costs at each time instance
t ≥ 0, i.e.

`(xux0
(t; x0),ux0(t)) ≤ c(t) · `∗(x0) ∀x0 ≥ A, (4.14)

for an admissible control function ux0 = U∞(x0) steering the robot from the initial condi-
tion x0 to the reference x? = (0, 0, 0, 0)>.

4.4.1 Trajectory Generation

The calculation of the growth bound B(·) is based on designing an open-loop control
maneuver from which the running costs ` can be evaluated and the function c(·) from
Inequality (4.14) can be estimated. For the initial condition x0 = (x0,1, x0,2, x0,4, x0,5)> ∈ A,
we design an open-loop control maneuver that steers the robot to the reference x? in a finite
time. The chosen input function ux0 , yields sub-optimal running costs `(xux0

(t; x0),ux0(t)),
t ≥ 0, ensuring Inequality (4.14) holds when the optimal control input u?x0 is applied, where
u?x0 is the applied control input from Algorithm 1. Since the considered system is holonomic
(and also differentially flat), it’s enough to choose independent trajectories xi(·), i ∈ {1, 2},
while deducing the trajectories xi(·), i ∈ {4, 5} and ux0(·) by inverting the dynamics of the
considered system. We refer to [56] for more details on differential flatness. The chosen
open-loop trajectory is defined over 3 segments:

I a segment with constant acceleration u(t) = uI ∈ U , for t ∈ [0, tk) in the direction of
x? resulting in the trajectories

xi(t) = x0,1 + x0,i+3t+ 0.5uI,it
2

xi+3(t) = x0,i+3 + uI,it, i ∈ {1, 2},

II a segment with constant velocity xi(t) ∈ A for i ∈ {4, 5} and t ∈ [tk, tk + tm) in the
direction of x? resulting in the trajectories

xi(t) = xi(tk) + xi+3(tk)(t− tk), i ∈ {1, 2},
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III a segment with constant deceleration u(t) = uIII ∈ U , for t ∈ [tk + tm, tk + tm + tn)
to slow the robot to a stop, i.e. x(tk + tm + tn) = x?; this results in the trajectories

xi(t) = xi(tk + tm) + xi+3(tk)(t− tk − tm) + 0.5uIII,i · (t− tk − tm)2

xi+3(t) = xi+3(tk + tm) + uIII,i · (t− tk − tm), i ∈ {1, 2}.

By solving for the maximum velocity xmax,i+3, i ∈ {1, 2} in a trajectory, we can find
the maneuver times. The maximum velocity is calculated as

xmax,i+3 = − sgn(x0,i) ·min
{√

ūai |x0,i|+ 1/2x2
0,i+3, x̄i+3

}
We note that if xmax,i+3 < x̄i+3, i ∈ {1, 2}, then tm = 0. Using this expression for xmax,i+3,
we calculate the maneuver times as

tk = max
i∈{1,2},x0∈A

(
xmax,i+3 − x0,i+3

ūai

)
,

tm = max
i∈{1,2}

(
xi(tk + tm)− xi(tk)

xmax,i+3

)
, (4.15)

tn = max
i∈{1,2}

(
−xmax,i+3

ūai

)
This choice of maneuver times ensures that the state and control input constraints will

not be violated. Three such trajectories are shown in Fig. 4.2 (right). The acceleration
(control) inputs for these trajectories are shown in Fig. 4.2 (left).

4.4.2 Growth Bound Derivation

Using the open-loop trajectory presented in the previous subsection, we summarize by
the following proposition the derivation of the function c(t) such that Inequality (4.14) is
satisfied.

Proposition 2. With the maneuver times developed in the previous subsection and the
following assumptions on the weighting matrices Q and R of the running costs (4.8)

qi+3 = qi, λ =
ri
qi
, i ∈ {1, 2},
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Figure 4.2: Left: Acceleration control inputs u1(t) and u2(t) and Mid: velocities x4(t) and
x5(t) for open loop maneuver with tk = 2[s], tm = 0[s] and tn = 1[s]. Right: Open-loop
maneuver based on the applied controls, with arrow representing the orientation of the
robot (which is fixed) and the dashed lines representing the path.

Inequality (2.39) holds with B(t) given by Equation (4.13) with the function c(t) given as

c(t) =



2 ·max

{[(
1− ψt2

tk

)2
+
(
−ψt
tk

)2
+
(
−ψ
tk

)
λ

]
,

[
t2
(

1− ψt
4 −

t
2tk

)2
+
(

1− t
tk
− ψt

2

)2

+ 1
4

(
ψ + 2

tk

)2
λ

]}
, t ∈ [0, tk)

κ
[(

1− ψ
(
tk
2 + (t− tk)

))2
+ ψ2

]
, t ∈ [tk, tk + tm)

κ

[(
1− ψ

(
t− 1

2 tk −
(t−tk−tm)2

2tn

))2
+ ψ2

(
t−tk−tm

tn
− 1
)2

+ ψ2

t2n
λ

]
,

t ∈ [tk + tm, tk + tm + tn)

0 otherwise,

(4.16)
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where the constants κ and ψ are defined as

ψ =

(
tk
2

+ tm +
tn
2

)−1

, κ = max

{
2,
t2k
2

}
�

Proof. The objective here, is to show that the growth function c(t) from Proposition 2 will
satisfy inequality (4.14) for all time instances t ≥ 0. We begin by noting that the trajectory
developed in Section 4.4.1 is sub-optimal in terms running costs (4.8) and therefore the
costs associated with this trajectory can be treated as an upper bound on the costs for the
optimal trajectory obtained from Algorithm 1. We, therefore, proceed to develop a bound
function c(t) for each part of the sub-optimal trajectory.

Part I

We begin by solving for the final velocity of trajectory I, xi+3(tk) and the acceleration, uI,i
for this part of the trajectory. Using the fact that

uI,i =
xi+3(tk)− x0,i+3

tk
, and uIII,i =

−xi+3(tk)

tn

it follows from

xi(t) = x0,1 + x0,i+3t+ 0.5

(
xi+3(tk)− x0,i+3

tk

)
t2

that

xi(tk) = x0,1 + 0.5x0,i+3tk + 0.5xi+3(tk)tk. (4.17)

We also show that since in trajectory III,

xi(t) = xi(tk + tm) + xi+3(tk)(t− tk − tm) + 0.5

(
−xi+3(tk)

tn

)
· (t− tk − tm)2

and that xi(tk + tm + tn) = 0

xi(tk + tm) = −0.5xi+3(tk)tn

58



And finally looking at trajectory II we determine that

xi(tk + tm) = xi(tk) + xi+3(tk)tm

which implies that

xi(tk) = −xi+3(tk) (tm + 0.5tn) (4.18)

Now equating (4.17) and (4.18) we can solve for

xi+3(tk) =
−
(
x0,i + 1

2
x0,i+3tk

)(
1
2
tk + tm + 1

2
tn
) = −ψ

(
x0,i + x0,i+3

tk
2

)
uI,i =

xi+3(tk)− x0,i+3

tk
= −x0,iψ

tk
− x0,i+3

2

(
ψ +

2

tk

)
for i ∈ {1, 2}. using this expression for uI,i, we can find expressions for xi(t) and xi+3(t),
i ∈ {1, 2}, for t ∈ [0, tk) as

xi(t) = x0,i

(
1− ψt2

2tk

)
+ x0,i+3t

(
1− ψt

4
− t

2tk

)
xi+3(t) = −x0,i

ψt

tk
+ x0,i+3

(
1− t

tk
− 1

2
ψt

)
Note that these expressions are now entirely dependent on the initial state x0 and the
maneuver time. The associated costs with this trajectory will be

`(xux0
(t;x0),ux0(t)) =

2∑
i=1

qixi(t)
2 +

5∑
i=4

qixi(t)
2 +

2∑
i=1

riu
2
I,i

for t ∈ [0, tk). In the interest of simplifying the presentation of the rest of the proof, we
use `(·) to denote `(xux0

(t; x0),ux0(t)).

Now, using the identity (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, an upper bound on the
running costs `(·) can be obtained, for t ∈ [0, tk), as

`(·) ≤
2∑
i=1

2qix
2
0,i

[(
1− ψt2

tk

)2

+

(
−ψt
tk

)2

+

(
−ψ
tk

)2

λ

]

+
5∑
i=4

2qix
2
0,i

[
t2
(

1− ψt

4
− t

2tk

)2

+

(
1− t

tk
− ψt

2

)2

+
1

4

(
ψ +

2

tk

)2

λ

]
for t ∈ [0, tk).

This leads to c(t) for t ∈ [0, tk) given by Eq. (4.16).
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Part II

The second part of the trajectory is with a constant velocity, i.e. uII,i = 0 and xi+3(t) =
xi+3(tk), i ∈ {1, 2} for t ∈ [tk, tk + tm), where we have the position

xi(tk) =

(
x0,i + x0,i+3

tk
2

)(
1− tkψ

2

)
.

Thus, the position trajectory over t ∈ [tk, tk + tm) can be defined as

xi(t) =

(
x0,i + x0,i+3

tk
2

)(
1− ψ

(
tk
2

+ (t− tk)
))

In a similar fashion to the first part of the trajectory, we obtain the following estimate on
the running costs for t ∈ [tk, tk + tm)

`(·) ≤
2∑
i=1

2qix
2
0,i

[(
1− ψ

(
tk
2

+ (t− tk)
))2

+ ψ2

]

+
5∑
i=4

qix
2
0,i

t2k
2

[(
1− ψ

(
tk
2

+ (t− tk)
))2

+ ψ2

]

for t ∈ [tk, tk + tm), which results in c(t) in Eq. (4.16) for the same time interval.

Part III

For the final part of the trajectory, we have a constant deceleration uIII for t ∈ [tk+tm, tk+
tm + tn], where the system stops at x?. uIII is given by

uIII,i =
−xi+3(tk)

tn
=

(
x0,i + x0,i+3

tk
2

)
ψ

tn
(4.19)

for i ∈ {1, 2}. This input results in the following velocity and position

xi+3(t) =

(
x0,i + x0,i+3

tk
2

)
ψ

(
t− tk − tm

tn
− 1

)
xi(t) =

(
x0,i + x0,i+3

tk
2

)(
1− ψ

(
t− 1

2
tk −

(t− tk − tm)2

2tn

))

60



Following similar to the first two parts, we have the estimate

`(·) ≤
2∑
i=1

2qix
2
0,i

[(
1− ψ

(
t− 1

2
tk −

(t− tk − tm)2

2tn

))2

+ ψ2

(
t− tk − tm

tn
− 1

)2

+
ψ2

t2n
λ

]

+
5∑
i=4

qix0,i
t2k
2

[(
1− ψ

(
t− 1

2
tk −

(t− tk − tm)2

2tn

))2

+ ψ2

(
t− tk − tm

tn
− 1

)2

+
ψ2

t2n
λ

]

for t ∈ [tk + tm, tk + tm + tn), which gives c(t) for the same time interval, in Eq. (4.16).

The calculated bound B(t), given by Equation (4.13) is used via Theorem 2.3 to find
a stabilizing horizon length T > δ for a control horizon δ > 0 such that the closed-loop
acceleration constrained control problem is asymptotically stable under the MPC scheme
presented in Algorithm 1. This will be shown via numerical simulation in the next section.

4.5 Numerical Analysis

In this section, the bound B(t), is used to determine a prediction horizon length T such
that the closed-loop MPC algorithm is asymptotically stable. The resulting prediction
horizon is then used in a closed-loop simulation where asymptotic stability conditions are
verified.

4.5.1 Computation of a Stabilizing Prediction Horizon

The objective here is to find conditions under which the relaxed Lyapunov inequality (2.42)
from Theorem 2.3 holds, this will ensure the asymptotic stability of the system under
closed-loop MPC. To satisfy this inequality, we require that αT,δ > 0. Given the bounds

B(·) from Proposition 2, we find a minimum prediction horizon length T̂ , such that

T̂ = min {T ∈ R≥δ : αT,δ > 0} , (4.20)

where αT,δ is calculated from Equation (2.41) by adopting the bounds B(t), given by
Equation (4.13).

We study the effects of varying parameters tk, tm, tn and λ on the performance index
αT,δ. Fig. 4.3 shows the effect of changing tk and λ, here we see that a shorter maneuver

time tk gives a smaller T̂ and a smaller λ has the same effect. We note that changing the
maneuver lengths tm and tn have little effect on the value of T̂ .
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Figure 4.3: Value of αT,δ for various values of tk (left) and λ (right), where the tm = tn = 1
s and δ = 0.1 s.

4.5.2 Closed-loop Simulations

In this section, we show the numerical results of implementing Algorithm 1. Herein, the
kinematic equation of the holonomic robot shown in (4.6) is used for state prediction.
The acceleration constraint for this simulation was set to ūai = 1 [m/s2], i ∈ {1, 2}. The
allowable states are set x̄i = 1m for i ∈ {1, 2}, x̄i = 1m/s for i ∈ {4, 5}. The simulations
are conducted until condition ||x(tf ) − x?|| ≤ 0.01m is met, where x(tf ) is the state
measurement at time tf and x? = (0, 0, 0)> is the reference set point.

The simulations are performed from 4 different initial conditions, x0 ∈ A. Simulations
are conducted using MATLAB; OCP (4.10) is set up symbolically using CasADi toolbox [5]
and the multiple-shooting discretization method [55]. The resulting nonlinear programming
problem is solved with the Interior-Point method implemented in IPOPT [93]. The running
costs are defined by (4.8) with λ = 0.01.

In order to determine the prediction horizon length which guarantees asymptotic stabil-
ity for all x0 ∈ A, maneuver times tk, tm and tn are calculated according to Equation (4.15)
for x0 as far as possible from x? in A. The resulting values are

tk = 2s, tm = 0.5s and tn = 1s

Moreover, using Equation (4.20), we obtain T̂ = 2.45 s. The resulting closed-loop paths
can be seen in Fig. 4.4. As can be seen, the robot position converged to the reference x?

for all the considered initial conditions. Additionally, the closed-loop paths do not leave
the admissible set A presented in 4.2.3.
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Figure 4.4: MPC closed-loop paths with initial states highlighted with bold arrows repre-
senting the overall initial speed of the robot. The paths are projected on the admissible
set A shown in Fig. 4.1.

The purpose of constraining the acceleration is to generate velocity commands which
produce a smoother motion. In Fig. 4.5 (left) we see that we we obtain smooth velocity
profiles for the system. In Fig. 4.5 we also verify that the input constraints, which in this
case is acceleration, are not violated.

Now that we have shown our constraints hold in simulation, it is also important to
verify that the system is asymptotically stable. In Section 4.4, we’ve developed conditions
for which Theorem 2.3 holds, to verify this is true in simulation, we look at the value
function and ensure that the relaxed Lyapunov inequality (2.42) holds. In Fig. 4.6 we see
that the value function is indeed monotonically decreasing for all cases shown in Fig. 4.4
and therefore Inequality (2.42) is verified.
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Figure 4.5: Left: Velocity profile and Right: acceleration profiles for the simulated trajec-
tories in Fig. 4.4.

Figure 4.6: Time evolution of the value function VT̂ for the trajectories presented in Fig.
4.4.
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4.6 Conclusion

In this chapter, the regulation of holonomic mobile robots with constraints on the accelera-
tion is studied. The control objective is achieved using MPC without stabilizing constraints
or costs. Herein, an admissible set of initial conditions for the considered system is derived
first using the theory of barriers. Then, the closed-loop asymptotic stability under MPC
is rigorously proven by verifying the cost controllability of the MPC controller. This is
accomplished by developing a growth function bounding the MPC value function from an
open-loop time scaled maneuver. With this growth function, a stabilizing prediction hori-
zon is determined. We verified the theoretical results by several numerical simulations.
In the future, this work will be extended to the case where the orientation of the holonomic
mobile robot is not constrained to zero values.
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Chapter 5

Model Predictive Path Following
Control

5.1 Introduction

In this chapter we apply a model predictive path following controller to tackle the path
following problem presented in Section 2.4. The solution of the path-following control
problem using MPC is introduced in [33] for constrained nonlinear systems. The resulting
control scheme, which we use in this chapter, is referred to as MPFC.

MPFC is used for holonomic mobile robots in [49]. Here, a decoupled version of the
kinematic model, where orientation and heading angles are considered separately, is used;
an MPFC algorithm is then developed for the linearized model. Using the idea of a virtual
robot, which perfectly follows the desired path, MPFC running costs penalize the deviation
of the controlled robot from the virtual robot. The authors build on this paper in [47],
where they solve the same problem for the nonlinear model. In these studies, terminal
constraints and costs are utilized to ensure the closed-loop asymptotic stability.

In this chapter, we develop a discrete-time MPFC controller [54] for holonomic mo-
bile robots. Rather than using terminal constraints or costs to guarantee the closed-loop
asymptotic stability of the MPFC scheme, we use the concept of cost controllability similar
to [68], which is based on the analysis developed in Section 2.2.2 and the generalization
in [21]. The cost controllability method does not employ terminal constraints or penalties
and is based on finding a growth function of the MPFC value function. The growth func-
tion is then used to compute a stabilizing prediction horizon and a performance index of
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the finite-horizon MPFC algorithm in relation to the infinite-horizon MPFC. The path-
following control of holonomic mobile robots presented here is an extension to the work in
Chapter 3, in which the analysis is dedicated to the point-stabilization control problem.

The rest of the chapter is organized as follows: in Section 5.2, we recall the exact
discrete-time kinematic model and the path-following control problem as they apply to
holonomic mobile robots. This is followed by formulating the MPFC scheme. In Sec-
tion 5.3, we revisit the stability results shown in Section 2.2.2. We follow this, in Section 5.4,
with the derivation of a growth bound for the MPFC value function for a holonomic mobile
robot, which allows us to compute a stabilizing prediction horizon. In Section 5.5, we show
results of our simulations, study the effect of the parameters in the MPFC algorithm and
present a path following formulation for a series of via points.

5.2 Problem Formulation

In this section, we consider the discrete time kinematic model for a holonomic robot (2.47)
and the path following problem presented in Problem 1, Section 2.4.. We then introduce
a model predictive path following control (MPFC) algorithm without terminal constraints
or costs.

The compact and convex state constraint set x is defined as

X := [
¯
x1, x̄1]× [

¯
x2, x̄2]× S,

for
¯
x1,

¯
x2 ≤ 0 and x̄1, x̄2 ≥ 0. S is the compact set of angles on circle. Moreover, the

saturation limits on the control inputs is defined by the set

U := [−ū1, ū1]× [−ū2, ū2]× [−ū3, ū3] (5.1)

with ū1, ū2, ū3 > 0.

5.2.1 Model Predictive Path-Following Control (MPFC)

Model predictive control (MPC) is proposed in [33] to tackle the path-following control
Problem 1; we apply this control scheme here for holonomic mobile robots. For output
path-following we refer to [32, 35]. To this end, we consider running costs ` : R4×R4 → R≥0

encoding the control objective and satisfying

`(z?, 0) = 0 and inf
w∈W

`(z,w) > 0 ∀z ∈ Z \ z?, (5.2)
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where z? is the end point of the path at which system (2.52) should be stabilized; z? and
is given by

z? :=
(
p(0)>, 0

)>
(5.3)

We choose ` as a quadratic function as

`(z,w) =

∥∥∥∥x− p(θ)
θ

∥∥∥∥2

Q

+

∥∥∥∥u− uref (θ, v)
v

∥∥∥∥2

R

, (5.4)

where Q = diag(q1, q2, q3, q̂) and R = diag(r1, r2, r3, r̂) are positive definite weighing ma-
trices. uref ∈ U is the reference control input required to exactly follow the path P . Since
the considered system given by Equation (2.47) is affine in the control u, the control uref
can be obtained via

uref (θ, v) = R−1
e (τ, x3, u3)

(
(p(θ+)− p(θ)

)
, (5.5)

where

p(θ+)− p(θ) =

∫ τ

0

ṗ(θ)dt =
∂p(θ)

∂θ
θ̇

∫ τ

0

dt =
∂p(θ)

∂θ
vτ,

where θ̇ = (θ+ − θ)/τ = v is used, see the path dynamics model given by Equation (2.50).
Since uref is a function of v, the largest admissible virtual control defining the set V by

v̄ := max
{
v ∈ R≥0|uref (θ, v) ∈ U,∀θ ∈ [θ̄, 0]

}
. (5.6)

At the sampling time k ∈ N0, the objective function to be minimized by the MPFC
scheme is defined as the summation of running costs over the prediction horizon, N ∈ N≥2,
as

JN(zk, w) :=
N∑
j=0

`(zw(j, zk),w(j)). (5.7)

The MPFC scheme is based on repeatedly solving the OCP

VN(zk) = min
w∈WN

JN(zk, w) (5.8)

s.t. z(k) = zk,

z(j + 1) = z(j) +Raug(·)w(j) ∀j ∈ {0, 1, . . . , N − 1},
z(j) ∈ Z ∀j ∈ {0, 1, . . . , N},

w(j) ∈ W ∀j ∈ {0, 1, . . . , N − 1},
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where the initial state z0 is given by

z0 = (x1,0, x2,0, x3,0, θ0)> ∈ Z. (5.9)

Following [34], the initial value of the path parameter θ0 is chosen such the initial
reference point on P , i.e. p(θ0), is the closest to x0, where x0 = (x1,0, x2,0, x3,0)>, i.e θ0 is
computed by

θ0 = arg min
θ0∈[θ̄,0]

‖x0 − p(θ0)‖.

The solution of OCP (5.8) is the optimal control sequence w? = w?(·,xk) ∈ WN(zk).
Moreover, VN(zk) = JN(zk, w

?) is the optimal value function. The MPFC feedback control
law denoted by µN : Z → W is given by µN(k, zk) = w?(1, zk). Here, the feedback control
applied to the robot is given by

u(k) =
(
w?1(1, zk) w?2(1, zk) w?3(1, zk)

)
(5.10)

while the feedback control to the path dynamics (2.50) is applied as v(k) = w?4(1, zk). The
closed-loop trajectory resulting from applying µ(·; zk) to the augmented system (2.52) is
denoted by zµ(·, z0) is generated by.

zµ(k + 1; z0) = faug (zµ(k; z0), µN(k; zµ(k; z0))) ,

where zµ(0; z0) = z0.

Existence of an admissible control sequence w? of OCP (5.8) can be inferred from the
continuity of the cost function and the compactness of the sets Z and W via Weierstrass
theorem [14]. Moreover, the recursive feasibility of the MPFC closed-loop holds since
0R4 ∈ W and, thus, WN(zk) 6= ∅. However, the asymptotic stability of the closed-loop
system does not trivially hold, especially that no terminal constraints or costs are employed
in OCP (5.8), see, e.g. [12, 77].

5.3 Stability and Performance Bounds

We recall MPC stability results presented in Theorem 2.2, we show that, if this stability
result holds for the MPFC controller, for all initial conditions, the solution of Problem 1
is ensured. We use Theorem 2.2 to show that the closed-loop asymptotic stability of the
MPFC scheme for the augmented system (2.52) can be concluded for an initial condition
z0 ∈ Z. We note that for the path following problem we replace x,u and fd with their
augmented system counterparts z,w and faug.
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Proposition 3. We let the prediction horizon N , and the weights Q and R of the running
costs (5.4) be selected such that the conditions of Theorem 2.2 are satisfied. Then, the
MPFC control input (5.10) solves the path following Problem 1. �

Proof. The chosen running costs (5.4) implies that, as z goes to z?, the robot state converges
to the path and θ converges to 0. Therefore, as the recursive feasibility of OCP (5.8) holds,
stabilizing z at z? in an admissible way implies solving Problem 1.

In essence, by constructing a growth bound sequence γi, i ∈ N of the MPFC value
function satisfying Condition (2.35), we can find a stabilizing horizon length N ensuring
that αN > 0 and thus the conditions necessary for Theorem 2.2 hold. In the following
section, we show a method for constructing the bound γi for the MPFC scheme of the
holonomic mobile robot.

5.4 Growth Bound γi

In this section, a bounded sequence γi, i ∈ N≥2 satisfying Condition (2.35) is computed.
As shown in [96], the bounds γi can be obtained using a summable sequence c(j) ≥ 0,
j ∈ N0, i.e.

∑∞
j=0 c(j) <∞, by

γi =
i−1∑
j=0

c(j), i ∈ N≥2,

where the sequence c(j) is calculated such that the inequality

`(zwz0
(j; z0),wz0(j))

`?(z0)
≤ c(j) ∀j ∈ N0 and z0 ∈ Z (5.11)

holds for an admissible sequence of control actions wz0 = wz0(j), j ∈ N0, which fulfills the
path-following control Problem 1. Moreover, as the control sequence wz0(j) = 0R3 , j ∈ N0

is admissible for all j ≥ 0, Condition (2.35) holds also for γi = i. In conclusion, the bounds
γi are calculated via

γi = min

{
i,
i−1∑
j=0

c(j)

}
, i ∈ N≥2, (5.12)

see [96] for more details. The following proposition shows a method for obtaining a pos-
sible sequence c(·), which satisfies Inequality (5.11) and used to calculate γi from Equa-
tion (5.12).
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Proposition 4. Let the weighting matrices Q and R of the running costs (5.4) be chosen
such that

q1 = q2, r1 = r2, r1 ≤ λq1/2, r3 ≤ λq1 and r̂ ≤ λ̂q̂. (5.13)

Then, Inequality (2.35) holds with γi given by Equation (5.12) with the sequence c(j) given
by

c(j) =



max

{
1,
(
km−j
km

)2

+ λ
τ2k2m

}
j ∈ {0, ..., km − 1}

(
km+kn−j

kn

)2

+ λ̂
τ2k2n

j ∈ {km, ..., km + kn − 1}

0 otherwise

(5.14)

for km ∈ N≥2 and kn ∈ N≥2 given by

km = max {km,tran, km,rot} , kn =
|θ̄|
τ v̄
, (5.15)

where

km,tran =

⌈
dmax

τ ·min{ū1, ū2}

⌉
where

dmax = max
θ∈[θ̄,0],x∈X

∥∥∥∥(x1

x2

)
−
(
p1(θ)
p2(θ)

)∥∥∥∥ and

km,rot =

⌈
π

τū3

⌉
.

�

Proof. The growth bound γi calculation is based on designing an open-loop control maneu-
ver, fulfilling the path-following control Problem 1, from which the running costs ` can be
evaluated and the sequence c(·) from Inequality (5.11) can be estimated [67, 96]. Thus, for
the initial condition z0 = (x0,1, x0,2, x0,3, θ0)> ∈ Z, we design an open-loop control maneu-
ver that steers the robot to the end point of the reference path P , i.e. z? as follows: first, the
robot is steered from its initial condition x0 to the nearest point on the path P , i.e. p(θ0).
This part can be designed as a straight-line trajectory with uniform linear and angular ve-
locities, see Chapter 3. Once the robot is on the path P , the second part of the maneuver
is to steer the robot such that it follows exactly the reference path until the path end point
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Figure 5.1: Two-steps proposed maneuver for any initial condition z0.

z?. The two-steps maneuver is illustrated in Fig. 5.1. The input sequence wz0 , designed to
follow the chosen maneuver yields sub-optimal running costs `(zwz0

(j; z0),wz0(j)), j ∈ N0

for the path following problem. This ensures that Inequality (5.11) holds when the optimal
control input µN is applied. We remark that the minimized cost `?(z0) of Inequality (2.35)
is given by

`?(z0) =
3∑
i=1

qi (x0,i − pi(θ0))2 + q̂θ2
0. (5.16)

Let us consider the first part of the maneuver; here, this part is achieved via a straight-
line trajectory between the points x0 and the nearest point on the path p(θ0), i.e.

x(j) = x0 +
j

km
(p(θ0)− x0) , j ∈ {0, . . . , km},

where km ∈ N≥2 is the required number of steps of the maneuver given by Equation (5.15).
For this part of the maneuver, the virtual state θ is kept stationary, i.e. θ(j) = θ0 for all
j ∈ {0, ..., km} and v = 0 for all j ∈ {0, ..., km − 1}; this ensures that the reference control
given by Equation (5.5) is uref (θ, v) = 0. Therefore, the control input required to follow
this trajectory is

wz0(j) =
(
ux0(j) 0

)>
, j ∈ {0, ..., km − 1},

where

ux0(j) = Re(τ, x3(j), u3(j))−1

(
e0

km

)
, (5.17)
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with e0 defined as e0 = p(θ0)− x0. Here, the matrix Re(τ, x3(j), u3(j))−1 is given by

Re(τ, x3, u3)−1 =
u3

4


sin(x3+τu3)−sin(x3)

sin2(0.5τu3)

cos(x3+τu3)−cos(x3)

sin2(0.5τu3)
0

cos(x3)−cos(x3+τu3)

sin2(0.5τu3)

sin(x3+τu3)−sin(x3)

sin2(0.5τu3)
0

0 0 4
τu3

 ,

where the subscript x0 is dropped from all the elements of ux0 to simplify the presentation;
we keep this simplification for the rest of the proof. Moreover, km is chosen sufficiently
large such that ux0(j) ∈ U , j ∈ {1, . . . , km − 1} is ensured for all x0 ∈ X.

From Equation (5.17), we obtain the control u3(j) as

u3(j) =
e0,3

τkm
, ∀j ∈ {0, ..., km − 1} (5.18)

Using the formulation of the running costs in Equation (5.4), and the first two assumptions
in (5.13), we obtain

`(zwz0
(j; z0),wz0(j)) = q̂θ2

0 +

(
km − j
km

)2 3∑
i=1

qie
2
0,i + r1

(
u1(j)2 + u2(j)2

)
+ r3

e2
0,3

τ 2k2
m

,

for j ∈ {0, . . . , km − 1}. Following a similar procedure to Chapter 3 [Proposition 4], the
term r1 (u1(j)2 + u2(j)2) can be calculated by squaring then adding the first two equations
in (5.17); thus, we have

r1

(
u1(j)2 + u2(j)2

)
=

r1u3(j)2

4 sin2(0.5τu3(j))

(
e2

0,1

k2
m

+
e2

0,2

k2
m

)
.

Taylor series expansion of sin2(0.5τu3(j)) leads to

sin2(0.5τu3(j)) ≥ τ 2u3(j)2

4

(
1− τ 2u3(j)2

12

)
> 0,

which is valid for all u3(j)2 := (e0,3/τkm)2 ≤ (π/τkm)2. As a result, we have the estimate

r1

(
u1(j)2 + u2(j)2

)
≤ 12 · r1

12−
(
e20,3
k2m

)( e2
0,1

τ 2k2
m

+
e2

0,2

τ 2k2
m

)
≤ 12 · r1

12−
(
π2

k2m

)( e2
0,1

τ 2k2
m

+
e2

0,2

τ 2k2
m

)
. (5.19)

The term 12/
(

12− π2

k2m

)
has an upper bound of ≈ 1.3 for km ≥ 2. Choosing the weight r1

to satisfy Assumption (5.13), leads to

r1

(
u1(j)2 + u2(j)2

)
≤ λ · q1

(
e2

0,1

τ 2k2
m

+
e2

0,2

τ 2k2
m

)
. (5.20)
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We remark that the term u3(j)2/4 sin2(0.5τu3(j)) reduces to 1/τ 2 for u3(j) = 0 as

lim
u3(j)→0

u3(j)2

4 sin2(0.5τu3(j))
=

1

τ 2
;

thus, the estimate (5.20) holds also for u3(j) = 0. Now, choosing r3 satisfying Assump-
tion (5.13), the running costs `(zwz0

(j; z0),wz0(j)), for j ∈ {0, . . . , km−1}, can be estimated
by

`(zwz0
(j; z0),wz0(j)) ≤ q̂θ2

0 +

[(
km − j
km

)2

+
λ

τ 2k2
m

]
3∑
i=1

qie
2
0,i.

As `?(z0) of Equation (5.16) can be written as `?(z0) =
∑3

i=1 qie
2
0,i + q̂θ2

0, Inequality (5.11)
is ensured with c(j) given by Equation (5.14) for j ∈ {0, . . . , km − 1}.

Now, we consider the second part of the maneuver, where the robot moves exactly
along the path until it reaches its end point z? at time step km + kn for kn ∈ N≥2 given by
Equation (5.15). This is achieved via applying the control

wz0(j) =
(
uref (θ(j), v(j)) v(j)

)>
, (5.21)

for j ∈ {km, . . . , km + kn − 1}, where v(j) = −θ0
τkn

, i.e. the path parameter θ is steered
from θ(km) = θ0 to θ(km + kn) = 0 while the robot follows the reference path exactly via
the control uref (θ(·), v(·)). Here, kn is chosen large enough such that v(·) ∈ V is ensured.
Moreover, applying uref (θ(·), v(·)), calculated via Equation (5.5), to the robot ensures that
it follows the path P exactly. Therefore, the running costs given be Equation (5.4) for this
part of the maneuver becomes

`(zwz0
(j; z0),wz0(j)) = q̂

(
θ0(km + kn − j)

kn

)2

+ r̂

(
θ0

τkn

)2

,

for j ∈ {km, . . . , km + kn − 1}. Now, using the assumption on r̂ in (5.13) and `?(z0) given
by Equation (5.16) lead to c(j) given by Equation (5.14) for j ∈ {km, . . . , km + kn − 1}.

For j ≥ km + kn we have c(j) = 0. Therefore, γi given by (5.12) is bounded for the
sequence c(j) given by Equation (5.14). We remark that the sequence c(j) is independent
from the initial condition z0 and depends only on the maneuver times km and kn, the
sampling time τ , and the weight ratios λ and λ̂.

The calculated bounds γi, i ∈ N≥2 given by Equation (5.12) can be used via Theorem 2.2
to find a stabilizing horizon length N ∈ N≥2 such the closed-loop path-following control
problem 1 is asymptotically stable under the MPFC scheme presented in Section 5.2.1.
This will be shown in details in the following section.
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5.5 Numerical Results

In this section, first, the bounds γi, i ∈ N≥2 are used to determine a prediction horizon
length N ∈ N≥2 such that the closed-loop MPFC is asymptotically stable. The result-
ing prediction horizon is then used for closed-loop simulation while asymptotic stability
conditions are verified.

5.5.1 Computation of a Stabilizing Prediction Horizon

Recalling Theorem 2.2, the key condition for asymptotic stability of the path following
problem under MPFC without terminal constraints or costs is for the relaxed Lyapunov
Inequality (2.37) to hold; this requires αN > 0. Therefore, a minimal stabilizing prediction
horizon N̂ can be calculated as

N̂ = min {N ∈ N≥2 : αN > 0} ,

where αN is calculated by means of Equation (2.36) by adopting the bounds γi, i ∈ N≥2

given by Equation (5.12). For different values of km, kn, λ and λ̂, Fig. 5.2 shows the effect
of these parameters on the performance index αN and, thus, on the stabilizing prediction
horizon N̂ . It is observed that altering kn has no significant effect on αN . However, larger
values of km results in longer stabilizing prediction horizons. Changing the values of λ and
λ̂ have a significant impact on αN . As shown in Fig. 5.2, we see that in both cases a smaller
λ or λ̂ gives a shorter stabilizing horizon N̂ . This means that by having a higher weight
Q on the state error than R on the controls we get a shorter N̂ . Though we see limited
gains from increasing Q once λ < 0.1 and λ̂ < 0.01. Finally, varying the time step τ has
simply the inverse relationship to the results of varying λ or λ̂ because τ 2 appears in the
denominator of the same term in Equation (5.14).

5.5.2 Simulations

The simulations are conducted using MATLAB for a holonomic mobile robot with the exact
discrete-time model (2.47). The OCP (5.8) is discretized over the prediction horizon using
the multiple shooting method [55]. This produces a NLP which is created symbolically
using CasADi toolbox [6]. The NLP is then solved using the interior point method (IPOPT)
implemented in [93].
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Figure 5.2: Left: Value of αN with respect to the prediction horizon N , various values of λ
are shown, with a fixed λ̂ = 0.1. Right: Value of αN with respect to the prediction horizon
N , various values of λ̂ are shown, with a fixed λ = 0.1. The maneuver length is fixed in
both cases at km = 10 and kn = 10.

Path Following of a Sinusoidal Function

The first simulation is for a path P given by

p(θ) = [θ, Asin(ωθ), 0]>, θ ∈ [−15, 0], (5.22)

where the amplitude A = 10 and the frequency ω = 0.5. The state and control input
constraints are set to

X := [−8, 2]× [−2, 2]× R, and U := [−2, 2]3,

respectively and the time step is set to τ = 0.2. For this set of allowable states and control
we can calculate the maneuver lengths, km = 27 and kn = 40 according to Equation (5.15).
By setting λ = 0.1 and λ̂ = 0.1, we get αN > 0 for all N ≥ 28.

Additionally, by setting the weights qi = 200 and ri = 10 for i = {1, 2, 3} and the
weights q̂ = 1 and r̂ = 0.1 we ensure that the assumption (5.13) holds for the chosen λ
and λ̂. Fig. 5.3 shows the results of the simulation for the path following algorithm for
4 different initial conditions. It is observed that the robot in all cases converges to the
nearest point on the path and remain there until it reaches the end of the prescribed path.
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Figure 5.3: Path following simulation of four initial conditions for a sinusoidal path (shown
in green). The orientation of the robot along each of the resulting paths is represented by
a color-filled triangle.

As seen in Theorem 2.2, the MPFC value function VN should satisfy the relaxed Lya-
punov inequality (2.37) for asymptotic stability; thus, VN should be strictly monotonically
decreasing over the closed-loop trajectory. Fig. 5.4 (left) shows that this is satisfied for all
initial conditions considered and the chosen prediction horizon. To verify the performance
of our algorithm, we measure the difference between the simulated position of the robot
and its desired reference trajectory. In Fig. 5.4 (right) we see that once the robot reaches
desired trajectory, it is able to remain on the path within 1× 10−2 m.

Path following given a set of via points

We further extend the application of the MPFC algorithm to the case where a set of
arbitrary via points are to be followed by the mobile robot. This in practice is more useful,
as it is more likely that the control objective for the robot be to follow a set of points
rather than to follow a function. Using linear interpolation between the given points, we
create a piece-wise continuous linear function, which using polynomial regression can be
used to develop a continuous differentiable reference path P . Given the following set of n
points

p̃i =
(
p̃i,1 p̃i,2 p̃i,3

)>
, ∀i ∈ {1, . . . , n},
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Figure 5.4: Left: Evolution of the value function VN for each of the trajectories shown in
Fig. 5.3, with prediction horizon N = 28. Right: Error between the simulated robot path
and the reference trajectory for each starting conditions shown in Fig. 5.3.

the piece-wise continuous function for the desired path can be obtained as

p̂j(θ) =

(
p̃i+1,j − p̃i,j
θi+1 − θi

)
(θ − θi) + p̃i,j, ∀j = {1, 2, 3}, (5.23)

where θi < θ ≤ θi+1. θ will be a negative parametrization of the linear distance between
points and is calculated as

θi = θi+1 −
∥∥∥∥(p̃1,i+1

p̃2,i+1

)
−
(
p̃1,i

p̃2,i

)∥∥∥∥ and θn = 0.

Since piece-wise linear functions are non-differentiable, we will use polynomial regres-
sion to transform the desired path to a differentiable polynomial. Here to ensure that
the emphasis is to follow the desired path rather than pass through all the given points,
additional points are added at an interval of ∆θ to discretize the linear Function (5.23);
essentially, filling in between the given points p̃i. We recognize that the piecewise function
p̂(θ) may not be well suited to be represented by a polynomial. Therefore we restrict the
polynomial regression to a horizon of the next M points along the discretized path. To
ensure that this horizon is long enough to accurately represent the desired trajectory path
for the entire prediction horizon of the MPFC controller, we set ∆θ = v̄τ and M = N .
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The equation over the regression horizon at any time step can be found as

pj(θ) = cmθ
m + . . .+ c1θ + c0, ∀j ∈ {1, 2, 3} (5.24)

where pj(θ) is a polynomial of degree m. And the following is satisfied
p̂j(θ1)
p̂j(θ2)

...
p̂j(θM)

 =


1 θ1 θ2

1 . . . θm1
1 θ2 θ2

2 . . . θm2
...

...
...

. . .
...

1 θM θ2
M . . . θmM



c1

c2
...
cM


for j = 1, 2, 3 and θi = θ0 + i · ∆θ for all i ∈ {1, 2, . . .M}, see, e.g. [30] for more details.
Here, θ0 refers to the current virtual state of the system along the path.

Fig. 5.5 shows a simulation for a set of via points given as the corners of a 4 [m]×4 [m]
square with a desired orientation at each point of p3(θ) = 0. The piece-wise continuous
linear function for the path is then calculated according to Equation (5.23) and is defined
for θ ∈ [−16, 0]. The state and control input constraints are set as

X := [−3, 3]× [−3, 3]× S, and U := [−2, 2]3,

respectively. A continuous and differentiable reference path function is calculated according
to (5.24) for each time step, set to τ = 0.1. For this set of allowable states and control we
can calculate the maneuver lengths, km = 34 and kn = 40 according to Equation (5.15).
By setting λ = 0.1 and λ̂ = 0.1, we get αN > 0 for all N ≥ 35. Additionally, we set the
weights qi = 200 and ri = 10 for i = {1, 2, 3} and the weights q̂ = 103 and r̂ = 0.1, for
which assumption (5.13) holds.

We note here that the error between the position of the robot and the desired path
shown in Fig. 5.5 (left) is in part due to approximating the path via the polynomial
regression. The evolution of the value function VN is shown in Fig. 5.5 (right), which
confirms that the value function for is monotonically decreasing and, thus, verifies the
relaxed Lyapunov inequality (2.37).

5.6 Conclusion

In this chapter the asymptotic stability of model predictive path following control (MPFC)
for holonomic mobile robots has been proven without employing any terminal constraints
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Figure 5.5: Left: Path following simulation with via points at each corner of a square,
the desired path is shown with the dashed black line, with the final desired position at
p(0) = (−5, 0, 0)>. Right: Evolution of the value function for the model predictive path
following controller for a set of via points shown on the left.

or costs. The analysis is based on verifying the cost controllability assumption in which a
bound on the MPFC value function is derived and then used to find a stabilizing prediction
horizon. The value function bound is obtained by constructing a sub-optimal maneuver
achieving the control objective along which the running costs are estimated. Results are
verified by numerical simulations in which two types of reference paths are considered, i.e.
references given by explicit functions and by a set of via points.
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Chapter 6

Joint Torque Minimization Model
Predictive Control

6.1 Introduction

In this chapter, we develop a novel MPC algorithm with dual objectives, the first being to
accurately reach a desired end effector position and the second to position the robot in a
way which minimizes the actuator effort throughout the maneuver. We look at the actuator
effort as the sum of the square all the joints torques in the robotic arm. Minimizing the
torque in the joints, reduces stress on the actuator motors, which helps extend the life of
the hardware.

Finding ways to minimize the joint torque in robotic arms through optimization is not
a new idea, there have been several applications of this in literature. Some of the early
works in joint torque minimization took advantage redundancy resolution to find torque
optimal pose for robots. Any redundant robot, will have a set of joint velocities which exist
in the null-space [42], this is a subspace of joint velocities which do not produce an end
effector velocity. Using the null-space control, joint commands can be found to minimize
the torque for a given trajectory without affecting the desired end effector pose. This work
is used as the basis for [95] where null space control is used to minimized torque for cases
with large external loading. This is done by moving in the direction of the gradient of a
torque weight function with respect to joint command inputs projected into the null space.
These null space joint commands, are added to the joint commands required to follow a
desired trajectory.

81



An alternate approach presented in [63] uses optimization with the objective of mini-
mizing the sum of the square of the joint torque. The optimization variable used here is a
discretized B-spline parametrization of the path. Using the Power of Exponential (POE)
to derive the system dynamics, the analytical gradient of the cost function with respect to
the control input is calculated and used to solve the optimization problem. This work is
extended in [11] where the torque term is applied to an OCP, here motion of the joints is
approximated with B-spline polynomials.

A number of researchers have applied MPC to open chain manipulators in the past.
Using computed torque control for feedback linearization, [9] implements an MPC scheme
to a control a PUMA 560 manipulator. Three methods of implementing nonlinear MPC
schemes for a 2-link vertical manipulator are presented in [94]. These methods based
on dynamic matrix control, include a adaptive controller, a PID based controller and a
simplified nonlinear MPC controller. Another formulation of MPC control for a 2 link
arm is presented in [40] using a combination of linearization control and MPC. For our
application, we consider dual objective formulation of MPC, which looks to both regulate
a system to a desired set point and achieve a secondary objective. Combined regulatory
and economic MPC is studied in [61], [44] to regulate chemical processes, while also trying
to achieve a secondary objective. By using a weight modifier a greater emphasis can be put
on the economic objective when possible, without compromising the regulatory objective.
This is the idea we look to apply in Section 6.5. Other advantages of using MPC for a
problem such as this one include that it allows constraints on joint actuation and velocity
and torque limits. It also leaves the possibility to include task space limits such as obstacles,
or other physical constraints in the environment.

The proposed algorithm has two main advantages. First, the POE formulation of the
system kinematics combined with the Newton-Euler inverse dynamics allow for an exact
nonlinear formulation of the dynamics which less computationally demanding than the
Lagrangian forward dynamics. This allows us to run an MPC scheme, without having to
take a linear approximation of the highly nonlinear dynamics of a robotic arm. Second, the
introduction of a preference function let us formulate an MPC scheme without terminal
constraints or costs, since we are able to reach zero running costs at the desired end effector
position.

The remainder of this chapter is structured as follows, we first set up the POE for-
mulation for an open chain manipulator in Section 6.2, we do this for a general n link
manipulator. A Newton-Euler recursive algorithm to calculate the system dynamics is
presented in Section 6.3 based on our model. Using the joint torques calculated from the
system dynamics, we set up a finite horizon optimal control problem in Section 6.4 and
examine the effects of changing the weights has on our solution. We then take results from
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the finite horizon case and apply them to the receding horizon case or MPC in Section
6.5. We develop an alternative model which uses the Lagrangian system dynamics and
compare the two approaches in Section 6.6. We conclude this chapter with comments on
stability and some closing remarks.

6.2 Open Chain Manipulator Model

The system of interest here is a serial or open chain robot arm. The power of exponential
formulation is used here to describe the system kinematics, this allows us to use an efficient
recursive Newton-Euler method to obtain the system’s inverse dynamics [74]. Let us con-
sider an open chain robot with n joints, where q, q̇ and q̈ are the joint positions, velocities
and accelerations respectively. The position and orientation of one frame with respect to
another can be represented by a transformation matrix in SE(3)

Ti,j =

[
Θ b
0 1

]
(6.1)

where Θ is a rotation matrix in SO(3) and b ∈ R3 is a relative position between frames i
and j. While a complete discussion on and derivation can be found in [74] [71], the product
of exponential formula gives a function between joint positions in a serial manipulator and
its transformation matrix.

Ti−1,i = f(qi) = e[Si]qiMi (6.2)

Where Mi ∈ SE(3) is defined by f(0), which is the transformation Ti−1,i when qi = 0, ie.
the joint is in its home position. Si is the screw axis

S =

[
ω
v

]
∈ R6 (6.3)

in the i−1 frame corresponding to joint motion at its home position. Here ω and v represent
the normalized angular and linear velocities respectively, where either (i) ‖ω‖ = 1 or (ii)
ω = 0 and ‖v‖ = 1. If (i) holds then v = −ω × r for pure rotation where r is a point on
the screw axis [59]. Here a × b denotes the cross product of vectors a and b. [Si] is the
se(3) representation of Si,

[Si] =

[
[ω] v
0 0

]
and [ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (6.4)
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By multiplying transformations together we are able to obtain the transformation from the
base frame to the end effector frame n, for a robot with n links.

T0,n = f(q1, ..., qn) = T0,1T1,2 . . . Tn−1,n (6.5)

6.3 Newton-Euler Recursive Dynamics

The ability to look at the transformation from one link to the next individually lets us use
a Newton-Euler recursive algorithm to obtain the kinematics and dynamics of our robot.
This algorithm is derived in [74, Section 3]. The algorithm first does a forward recursion
where the motion of each joint is propagated starting from the base link. Once we’ve
obtained the velocities and accelerations of each link, the torque through each link can be
calculated from backward propagation starting at the end effector, adding in any applied
forces and the forces due to gravity. This allows us to avoid solving the forward dynamics.
The following variables are defined for the purpose of this algorithm:

• Vi ∈ R6 is the generalized velocity of the link i frame in frame i coordinates.

• Ii ∈ R6 is the inertia mass matrix of link i about joint i.

• Wi ∈ R6 is the generalized force (or wrench) transmitted from link i − 1 to link i.
Wi = [m>i f>i ]>, where mi is a moment vector and fi is a force vector.

• Γi is the actuator torque at joint i.

The Newton-Euler recursive algorithm goes as follows:

• Initialization

V0 = V̇0 = Wn+1 = 0 (6.6)

• Forward recursion for i = 1 to n

Ti−1,i = e[Si]qiMi (6.7)

Vi = AdT −1
i−1,i

(Vi−1) + Siq̇i (6.8)

V̇i = Siq̈i + AdT −1
i−1,i

(V̇i−1) + adAdT −1
i−1,i

(Vi−1)(Siq̇i) (6.9)
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• Backward recursion for i = n to 1

Wi = Ad∗Ti,i+1
(Wi+1) + IiV̇i − ad∗Vi

(IiVi) (6.10)

Γi = S>i Wi (6.11)

Note that we make use of the adjoint and dual adjoint mappings in this algorithm, see
Appendix C for more details on the adjoint mappings.

6.4 Minimum Effort Optimal Control

Now that we have outlined an algorithm which enables efficient calculation of the torque
in each joint, we use this information to create a minimal effort optimal controller. For
the purpose of this chapter we define effort, E as the integral of the square of the torque
Γ = (Γ1, . . . ,Γn)>, where Γi denotes the torque at joint i. This is the definition used in
[63], and can be written as

E(Γ) =

∫ tf

0
‖Γ‖2Sdt (6.12)

where tf is the time required to complete the maneuver and S ∈ Rn×n is a positive definite
weighing matrix. Our system model must now include joints q as a state where

q+ = f(q,u) = q + τu (6.13)

x = g(q) (6.14)

where for a system with n joints, the joint positions q = (q1, ..., qn)> ∈ Q ⊂ Rn are our
system states, the joint velocity, u = (u1, ..., un)> ∈ U ⊂ Rn are the control input to the
system and the end effector position and orientation x = (x1, ..., x6)> ∈ X ⊂ R6. The
state constraint set Q can be defined as

Q ∈ [
¯
qi, q̄i], i ∈ {1, 2, ..., n}.

Similarly we set saturation limits on the control inputs such that

U ∈ [
¯
ui, ūi], i ∈ {1, 2, ..., n}.

where
¯
ui < 0 and ūi > 0. Finally we can define the constraint on the output state as

X ∈ [
¯
xi, x̄i], i ∈ {1, 2, ..., 6}.
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Before looking at an MPC algorithm, we study the simpler case of a finite horizon
non-linear control algorithm. We define the following running costs at any time instant as

`(q,u) :=
∥∥x(q)− x?

∥∥2

Q
+
∥∥u∥∥2

R
+
∥∥Γ(q,u, u̇)

∥∥2

S
(6.15)

where the torque Γ(q,u, u̇) = h(q,u, u̇) is calculated from the Newton-Euler algorithm in
Section 6.2 and Q,R and S are positive definite weighing matrices. Note that adding a
penalty term on the joint angular velocity serves two purposes here, it acts as a damping
term and drives the system away from singularities. Since singularities produce situations
with very large joint velocities, putting higher weight on the joint velocities drives the
optimal solution away from these. We now define the objective function for our optimal
control problem as the sum of the costs for a control horizon N .

JN(q0,u) :=
N∑
k=1

`(qu(k,q0),u(k))

where q0 is the initial joint position at k = 0 and qu(·,q0) is the sequence of joint positions
for some control input sequence u(·) ∈ U . Using this objective function, we can now set
up the OCP

V (q0) = min
u∈U

JN(q0,u) (6.16)

s.t. q(0) = q0, (6.17)

Γ(k) = h(q,u, u̇)

q(k + 1) = q(k) + τu(k)

x(k) = g(q(k))

q(k) ∈ Q
u(k) ∈ U
x(k) ∈ X

The constraints for the OCP include enforcing the torque in each joint according to the
Newton-Euler recursive algorithm in Section 6.2, the propagation of the control inputs in
the joint states and the forward kinematics to determine the end effector position from
the joint states. Note that this formulation differs from [63] as we do not use points on a
parametrized B-spline as an the optimization variable but instead use the control input u.
This provides the optimal control input over the prediction horizon instead of providing
an optimal trajectory for the joint pose.
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6.4.1 Effect of Weights on Optimal Solution

To set the weights for our the multi-objective optimization problem defined in (6.16),
we must first understand how the weights affect the solution to the OCP. Considering the
OCP as a Multi-objective optimization problem (MOOP) and with all of the weights being
positive, the solution to the OCP is Pareto optimal [62]. That is to say that the solution
we obtain must be strictly better than another solution in at least one objective. Changing
the weights of our objective function will provide us with different Pareto points. However,
we may not be able access all Pareto points by changing weights, since we have non-linear
constraints in both torque and position.

To study the effects of varying the weights we use an example of a three revolute
joint (3R) robot in 2D space shown in Fig. 6.1. A system with a redundant degree of
freedom is chosen deliberately as it gives the algorithm freedom to settles to a minimum
torque static configuration. The three joint arm is modeled as three thin rods of mass
m1 = m2 = m3 = 1 [kg] and length, l1 = l2 = l3 = 0.5 [m]. For the first simulations, the
robot has an initial joint position of q = (q1, q2, q3)> = [0, 0, 0]> and a desired end effector
pose for of x? = [0.5, 0.5]>. A desired orientation is not specified and there is no applied
force to the end effector. The simulation is implemented in MatLab. To solve the OCP,
the Casadi toolbox is used with an interior point optimization solver (IPOPT)[6]. The
visualization of the simulation is created through the MatLab robotics toolbox.

Figure 6.1: Model of a 3R planar robot used for simulation with an actuator at each joint,
this image is reprinted from [90].

The results of our first simulation are shown in Table 6.1. Where the values for Q,R
and S represent the diagonal entries in the respective weighting matrices, the error is the
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steady state position error defined by the Euclidean norm, the effort is the sum of the
square of the torque at each time instant as defined in 6.12 and the peak is the peak torque
for all the joints over the maneuver. The trajectories for Trial 1 and Trial 6 are shown in
Fig. 6.2 (Left) and (Right) respectively.

Table 6.1: Results of simulation trials with xd = [0.5, 0.5]>, with terminal constraints
added to trial 3.

Trial Q R S Error [m] Effort [Nm]2 Peak [Nm]
1 1000 1 0 0 2001 86.3
2 0 1 1 2.01 51.8 7.98
3 0 1 1 0 182 10.5
4 1 1 1 1.11 175 12
5 100 1 1 0.26 351.1 34.3
6 1000 1 1 0.106 247.2 18.3
7 1.00E+06 1 1 0.00016 2111 88.3

Though we try to minimize joint torque, the primary objective of the controller is still
to accurately move the end effector to a desired position. We note that with no weight on
the position error (Trial 2), the arm simply falls to a minimum torque position. We also
see in Trial 3 that adding a terminal constraint

x(N) = x? (6.18)

can force the arm to the desired end effector position. When the terminal constraint is
removed, we must add very large weights on the position error to drive the steady state
error to zero. We do however note that since the costs are not normalized, the significantly
larger weights on the position can be attributed in part to scaling since the torque costs
reach values much larger than the position costs.

These results highlight an issue as only one objective is satisfied at a time, the solution
where both objectives are met simultaneously is not found, i.e. the weights can be set to
either minimize the torques or have no steady state position error.

6.4.2 Preference Function

To address this issue, we use the idea of a preference function to add a time dependence
to the weights. This lets the weight be heavier on the torque costs at the beginning of
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Figure 6.2: Trajectory of the 3R arm stabilizing to xd = [0, 1.5]> using only regulation OCP
(Left) and using the dual objective OCP algorithm. (Right) The red diamonds represent
the desired end effector pose.

the maneuver, then reduces the weight later in the trajectory when an accurate position is
needed. The running costs become

`(q,u, k) :=
∥∥x(q)− x?

∥∥2

Q
+
∥∥u∥∥2

R
+ φ(k)

∥∥Γ(q,u, u̇)
∥∥2

S
(6.19)

where φ(k) is the preference function. We want the OCP to start with a heavier weight
on the torque term and reduce it to zero as time goes on to eliminate any position error.
Therefore we choose a sigmoid function

φ(k) =
1

1 + e−ρ(−k+σ)
(6.20)

as a preference function. Here ρ and σ are tuning parameters which stretch and shift the
function horizontally as shown in Fig. 6.3.

To appropriately tune φ(k) we must have some understanding of the desired system
behaviour. In this case, we want to ensure that ρ is sufficiently large so that the settling
time to the desired position isn’t too long, but not so large that we get a very sudden
change in φ(k). Through simulation trials a value of ρ = 0.2 was shown to be appropriate.
σ should be set in a way which reflects how long we anticipate the maneuver to be. If σ
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Figure 6.3: Left: Value of φ with σ = 20 and varying ρ. Right: Value of φ with ρ = 1 and
varying σ.

is set too small, the torque will only be minimized for a small part of the trajectory and
conversely if it is set too large there will again be longer than desired settling times. We
then set σ based on the distance from the desired position

σ(x0,x
?) = ν‖x0 − x?‖

where ν is a scaling constant. ν = 7 was found to give desirable behaviour in simulation.
The last simulation where x? = [0.5, 0.5]> is repeated with running costs (6.19). The results
are shown in Table 6.2. The improvement in the performance can be seen by comparing
trial 2 with trial 6 from Table 6.1 which has the same parameters. We see that the error
of 0.106m vanishes, the peak torque and effort are also less. The optimization problem
is also less sensitive to weights, the results not changing drastically with changes on the
torque weights. The trajectory of the arm using the preference function is compared to
the trajectory with weights only on the position error in Fig. 6.4.

Table 6.2: Results of simulation trials with xd = [0.5, 0.5]> and running costs (6.19)
Trial Q R S Error [m] Effort [Nm2] Peak [Nm]
1 1000 10 0.1 0 406 37.2
2 1000 10 1 0.002 296 19.1
3 1000 10 10 0.013 384 24.5
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Figure 6.4: Trajectory of the 3R arm stabilizing to xd = [0.5, 0.5]> using only regulation
OCP (Left) and using the dual objective OCP algorithm (Right). The red diamonds
represent the desired end effector position.

6.5 Torque Minimization MPC formulation

Our next task is to apply what we developed in the finite horizon OCP to the receding
horizon optimal control problem of MPC. An algorithm for enforcing convergence on com-
bined regulatory and economic MPC is presented in [61]. The method presented uses a
weighted dual-objective function.

`φ(x,u) := φ(x,u)`ē(x,u) + (1− φ(x,u))`r(x,u)

where φ(x,u) is a tunable weight. To relate this to our problem, `r are the regulatory
running costs

`r(q,u) :=
∥∥x(q)− x?

∥∥2

Q
+
∥∥u∥∥2

R
, and

`ē(q,u) := `e(q,u)− `e(qs,us)

where `e are the economic costs

`e(q,u) =
∥∥Γ(q,u, u̇)

∥∥2

S
(6.21)
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qs and us are the solution to the steady state economic optimization problem

(qs,us) := arg min
(q,u)
{`e(q,u)|q = f(q,u)}

s.t. q(k) ∈ Q
u(k) ∈ U
x(k) ∈ X

The main issue with this formulation is that since in general the torque at the desired
set point Γ(qs) 6= 0, which implies that `(qs,us) 6= 0 and therefore `ē(q,u) � 0 ∀ q ∈
Q and u ∈ U which violates the assumptions required for asymptotic stability in Theorem
2.2.2. Instead we simply use the economic cost `e with sigmoid function (6.20) to drive the
weight on the economic cost to zero as we move along the trajectory, so that there is no
penalty on torque by the end of the maneuver. Our weighted dual-objective running costs
become

`φ(x,u, k) := `r(x,u) + φ(k)`e(x,u).

The MPC algorithm is set to run until the states converge to some desired position x?

within some tolerance δ > 0. φ(i) will continue to shift more weight onto the position error
until either the system converges to x? or until φ(k) = 0. If φ(k) = 0 we are back to simply
having a point stabilization problem. For the optimal control problem, we can use (6.16)
with the value function

JN(q0,u) :=
N∑
k=1

`φ(qu(k,q0),u(k))

The solution to the OCP is a control sequence u∗N ∈ UN(x0). The first control input of
the sequence denoted as µx0 = u∗N(1,x0) is applied to the system. UN(x0) denotes all
admissible control sequences such that the constraints in (6.16) are satisfied. The OCP is
solved and µx0 is applied repeatedly until |x− x?| ≤ δ.

We study the performance of our new MPC algorithm, with a comparison to the results
of regulation MPC by setting φ(k) = 0 ∀k ∈ N. For this simulation Qi,i = 200 for i = 1, 2
and Ri,i = 20, Si,i = 1 for i = 1, 2, 3. The system in the simulation is the same as
Section 6.4.1. The results of the simulation are shown in Table 6.3. There is a clear
improvement in torque and overall effort for the dual-objective controller. It should be
noted that the algorithm stopped once |x − x?| ≤ 0.001 therefore both algorithms were
able to achieve the desired accuracy. The trajectories of the arm for both algorithms are
shown in Figs. 6.5.
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Table 6.3: Results of MPC Simulation
Trial Q R S Error [m] Effort [Nm2] Peak [Nm]
Dual 200 20 1 0.001 164.3 14.3
Regulation 200 20 0 0.0003 1929 89.8

Figure 6.5: Trajectory of the 3R arm stabilizing to xd = [0.5, 0.5]> using only regulation
MPC (Left) and using the dual objective MPC algorithm (Right).

It is also important to show that the algorithm can stabilize the system to the desired
position from any position in the allowable space. We therefore show in Fig. 6.6 that we
can stabilize the system to x? = [0.5, 0.5]> from a variety of initial conditions.

6.6 Alternate Dynamic Model Formulation

As an alternate formulation to Newton-Euler formulation used in previous sections, we
can also create a dynamic model of the system using the Lagrangian, for an example with
a 2-link planar robot see [40]. Here we consider the dynamic model obtained from the
Lagrangian of the system

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ (6.22)

where q, q̇ and q̈ are the joint angular position, velocity and acceleration respectively and
Γ is the torque applied at the joints. M(q) is the mass matrix, C(q, q̇) accounts for Coriolis
forces and G(q) accounts for forces due to gravity. Like the Newton Euler formulation, the
position of the end effector can be determined from the joint positions, i.e. x(q) = g(q).
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Figure 6.6: Trajectory of the 3R arm stabilizing to xd = [0.5, 0.5]> using the dual objective
MPC algorithm from various initial positions. The red diamonds represent the desired end
effector pose.

In this formulation, we treat the applied torque as the control input and can solve for joint
acceleration q̈ for a given torque Γ using forward dynamics

q̈ = M(q)−1 (Γ−C(q, q̇)−G(q)) .

Assuming a constant acceleration over a small time interval, we obtain an approximation
for the angular velocity and position of the joints at some future time t+ = t + τ by
integrating over the time step τ we obtain

q̇+ = q̇ + q̈ τ

q+ = q + q̇ τ +
1

2
q̈ τ 2

Using this dynamic model of the system, we set up an optimal control problem. We
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begin by defining the following running costs

`(q, q̇,Γ) :=
∥∥x(q)− x?

∥∥2

Q
+
∥∥q̇∥∥2

R
+
∥∥Γ
∥∥2

S
(6.23)

These are the same running costs as (6.15) reformulated with for the new model. We
define the objective function for the optimal control problem as the sum of the costs for a
prediction horizon N .

min
u∈U

JN(q, q̇,Γ) =
N∑
k=1

`(q, q̇,Γ) (6.24)

s.t. q(0) = q0, (6.25)

q̈(k) = M(q(k))−1 (Γ(k)−C(q(k), q̇(k))−G(q(k))) (6.26)

q̇(k + 1) = q̇(k) + q̈(k) τ (6.27)

q(k + 1) = q(k) + q̇(k) τ +
1

2
q̈(k) τ 2 (6.28)

x(k) = g(q(k))

q(k) ∈ Q
Γ(k) ∈ U

Here the system dynamics are enforced through constraint (6.26) and the system kinematics
are enforced through constraints (6.27) and (6.28). In a similar fashion to the Newton Euler
MPC formulation, the solution to the OCP (6.24) is applied to the system in a receding
fashion. Since the running costs are the same as the previous implementation, we again
cannot reach both objectives of minimizing torque and stabilizing the system to a desired
position simultaneously. We therefore modify the running costs with a preference function
again giving

`φ(q, q̇,Γ, k) :=
∥∥x(q)− x?

∥∥2

Q
+
∥∥q̇∥∥2

R
+ φ(k)

∥∥Γ
∥∥2

S
, (6.29)

where φ(k) is defined in Equation (6.20). The trajectories starting from various initial
joint positions are shown in Fig. 6.7. We note that this formulation produces different
trajectories from those using the Newton-Euler recursive algorithm shown in Fig. 6.6.
Though both these models provide a closed form solution to the system dynamics, the
Newton-Euler model considers the inverse dynamics where as the Lagrange model presented
in this section considers the forward dynamics. Due to the fact that we employ a discrete
time model of this system, propagating even a small difference over a prediction horizon
could cause the optimization algorithm to return different solutions. Regardless of these
differences, we note that the algorithm can still regulate the system to the desired position
from any of the initial positions shown.
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Figure 6.7: Trajectory of the 3R arm stabilizing to xd = [0.5, 0.5]> using the dual objective
MPC algorithm from various initial positions. The red diamonds represents the target end
effector pose.

We compare the two algorithms using three metrics, the peak torque over all the joints,
the total effort required to complete the trajectory as defined in (6.12) (with S = I3×3

and the time to solve one iteration of the receding horizon OCP. The results from both
algorithms are shown in Table 6.4. Some of the key takeaways from this comparison include
that due to their different solutions, the dynamic model formulation achieves slightly lower
peak torque and effort, but has significantly higher computing costs. The average time to
solve the OCP for the Lagrangian model is almost twice that of the Newton-Euler recursive
model. This difference is expected to get even more significant as the number of degrees
of freedom in the system increases.
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Table 6.4: Comparison of two dual-MPC algorithms for the trajectories shown in Figs. 6.6
and 6.7.

Dynamic Model Newton Euler Model

Pose [rad] Peak [Nm] Effort [Nm2] Time [s] Peak [Nm] Effort [Nm2] Time [s]

[0, 0, 0] 20.8 646 0.081 23.9 389 0.043

[π/3, 0, 0] 12.8 291 0.097 16.4 710 0.072

[2π/3, 0, 0] 16.9 198 0.049 12 159 0.040

[π, 0, 0] 15.3 408 0.137 20.8 293 0.042

[4π/3, 0, 0] 14 348 0.088 16.5 491 0.044

[5π/3, 0, 0] 18.4 486 0.088 13.8 707 0.038

6.7 Stability

No formal proof of stability is presented in this chapter, however, since the minimum
effort controller developed here classifies as an MPC scheme without terminal costs or
constraints. We can look at the stability of this system through the lens of the stability
review in Section 2.2.2. The main result of this Section state that for a system satisfying
assumptions 5 and 6 the value function will act as a Lyapunov function as described in
inequality 2.34. Without proving that Theorem 2.1 holds, we can verify the result of a
monotonically decreasing value function for the initial states shown in Figs. 6.6 and 6.7.
We see that this is indeed the case for our algorithm using either of the discussed model
in Fig. 6.8.

For a more complete analysis of stability, conditions for which Theorem 2.1 holds would
need to be developed, in a similar way to Chapters 4 and 5. This will be the subject of
future works, with the intent of establishing a minimum prediction horizon length and
weights for which stability is guaranteed.

6.8 Conclusion

In this chapter we develop the proof of concept for a dual-objective MPC algorithm for
torque minimization in an open chain robotic arm. Using the power of exponential formula,
to apply a fast recursive algorithm for the system dynamics, we calculate the torque in
each joint of the arm. By studying the effects of the cost function weights for a simpler
finite horizon optimal control problem, we are able to see that by setting the weights to a
single value, we are unable to reach a solution which both minimizes torque and position
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Figure 6.8: Left: Time evolution of the value function for Newton Euler formulation
of dynamics starting from various positions, Right: for the Dynamic Model formulation
starting from various positions.

error. To overcome this we introduce a time dependent preference function, which at the
start of the maneuver puts emphasis on minimizing torque and decreases this emphasis
as time goes on. Finally we extend this to MPC, which behaves in a similar way to the
finite horizon problem. This formulation provides us with a significant reduction in torque
and overall effort for the serial chain manipulator compared to point stabilization MPC.
In future works, this can be extended to more complex systems, such as a 7DOF robotic
manipulator or mobile manipulator operating in 3D space. Due to the nature of the POE
formula and the recursive algorithm for dynamics this can be done with relative ease.
We can also extend this method to cases where the robot is supporting some external
load at the end effector, as this is also easily incorporated in the Newton-Euler recursive
formulation. Finally, future works can also include developing a stability proof got this
algorithm.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, we developed four nonlinear model predictive controllers without terminal
constraints or costs. The first, a point stabilizing controller, is used as a basis for the next
two, an acceleration constrained point stabilizing controller and a path following controller.
The asymptotic stability of these three controllers is rigorously proven by using sub-optimal
open loop maneuver in order to build a bound on the closed-loop running costs of the MPC
algorithms.

For the point stabilizing controller in Chapter 3 we are able to prove that the stability
holds for the shortest possible prediction horizon of N=2. We additionally verify our results
through numerical simulation and experiment.

For the acceleration constrained point stabilizing algorithm, we extend current work in
the theory of barriers to a simplified model of a holonomic mobile robot. This allows us to
develop an admissible set in order to guarantee recursive feasibility, which is required to
guarantee asymptotic stability for a sufficiently long prediction horizon. These results are
verified through numeric simulation.

The path following controller we develop is designed to take advantage to take of the
three degrees of freedom of the holonomic mobile robot and can drive it to very accurately
follow paths defined by arbitrary functions or sets of via points. The asymptotic stability
of this algorithm is proven in a similar way for a sufficiently long prediction horizon. These
results are also verified through numeric simulation.
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Finally the fourth controller we propose is for the minimum effort control of a robotic
arm. This controller employs the power of exponent formula with an efficient recursive
Newton-Euler formulation of the inverse dynamics, this allows us to use the exact nonlinear
dynamics for MPC. This is combined with a time dependent preference function, which
at the start of the maneuver penalizes the joint torque but as time goes on reduces this
weight in order to ensure that the desired end effector position is reached. This allows us
to run MPC without terminal constraints or costs.

7.2 Future Works

The work on stability in this thesis, using Theorems 2.2 and 2.3 to prove asymptotic
stability with growth bound functions, can be extended to other MPC controllers. These
could include other controllers for mobile robots such as an obstacle avoidance controller.
It may also be used for other systems and control objectives such as the point stabilization
for a robotic arm or mobile manipulator.

The work done for acceleration constraint systems can be extended to other second
order differential systems. In robotics this could include any system where we want to
constrain the force or acceleration. For a holonomic robot, we can directly extend our case
to one where the orientation of the robot is not fixed.

The path following controller can be extended to an acceleration constrained system
using the method developed in Chapter 4 and to include obstacle avoidance.

The work on the minimum effort controller presented in Chapter 6 can also be extended.
First a proof of asymptotic stability can be developed, potentially using the same methods
as the other chapters in this thesis. The controller can also be used for higher dimensional
systems, such as a 7 degree of freedom robotic arm.

Finally, other than the point stabilization controller, none of these controllers have
been verified experimentally. Using a similar experimental method to the one presented in
Section 3.5.2 the other controllers in this thesis could also be validated.
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[7] Humberto X. Araújo, André G.S. Conceição, Gustavo H.C. Oliveira, and Jônatas
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APPENDICES

Appendix A

Stability of Nonlinear Systems

Using [51] as a guide, we present a summary of background work for the stability of non-
linear systems. Within this chapter of the Appendix we specifically look at the asymptotic
stability of a system. Stability is reviewed first for autonomous systems, then for non-linear
non-autonomous systems using Lyapunov’s theorems which are presented herein.

A.1 Lyapunov Stability for Autonomous Systems

We first consider an autonomous system, (autonomous here in the sense there is no control
input)

ẋ = f(x) (A.1)

where f : X → Rn is a locally Lipschitz map, where X ⊂ Rn is an open subset containing
x = 0. We can define an equilibrium point in Rn as follows

Definition A.1.1. An equilibrium point of (A.1), x = 0 is
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I stable if, for each ε > 0 there is ϕ = ϕ(ε) > 0 such that

‖x(0)‖ < ϕ =⇒ ‖x(t)‖ < ε, ∀t ≥ 0

II unstable otherwise.

III asymptotically stable, if it is stable and ϕ can be chosen such that

‖x(0)‖ < ϕ =⇒ lim
t→∞

x(t) = 0

Using definition A.1.1 of stability, we present Lyapunov’s stability theorem.

Theorem A.1. Consider an equilibrium point x = 0, for system (A.1) on a open and
connected set X ⊂ Rn which contains x = 0. Let a continuously differential function
V : X → R satisfy

V (0) = 0 and V (x) > 0 ∀x ∈ X \ {0} (A.2)

V̇ (x) ≤ 0, ∀x ∈ X (A.3)

Then, x=0 is a stable equilibrium point. Furthermore, if

V̇ (x) < 0, ∀x ∈ X \ {0} (A.4)

then x =0 is asymptotically stable.

We now want to examine the set of initial states in x0 ∈ X for which the equilibrium
point x = 0 is asymptotically stable.This set of points is known as the basin or region of
attraction. Using the Lyapunov function, this basin of attraction can be estimated. Given
the a Lyapunov function V which satisfies the conditions presented in Theorem A.1 for
asymptotic stability over a set X, if Ωc = {x ∈ Rn|V (x) ≤ c} is bounded and contained in
X, for some c > 0, then every trajectory starting in Ωc will remain in Ωc as t→∞. This
in general produces conservative estimate of the region of attraction. Moreover, we present
the Barbashin-Krasovskii theorem, which gives conditions where the region of attraction
will be the entire space Rn.

Theorem A.2. Let x = 0 be an equilibrium point for (A.1). Let V : Rn → R be a
continuously differentiable function which meets the condition for asymptotic stability in
Theorem A.1, additionally if

‖x‖ → ∞ =⇒ V (x)→∞

then x = 0 is globally asymptotically stable.
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A.2 Comparison Functions

Looking forward to non-autonomous systems, we see that system ẋ = f(t, x), starting at
x(t0) = x0 now depends on both t and t0. To ensure the asymptotic stability assumptions
hold in the initial time t0, we refine Definition A.1.1 with the use of comparison functions,
known as the K and KL functions.

Definition A.2.1. A continuous function η : [0, a)× → [0,∞) belongs to class K if it is
strictly increasing and η(0) = 0. It belongs to class K∞ if a =∞ and η(r)→∞ as r →∞.

Definition A.2.2. A continuous function β : [0, a)× [0,∞)→ [0,∞) belongs to class KL
if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r, and for each
fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s)→ 0 as s→∞.

By presenting the following lemmas, we prepare to use these K and KL class functions
stability analysis of nonautonomous systems.

Lemma 1. Consider a continuous positive definite function V : X → Rn defined over a
domain X ⊂ Rn that contains x = 0. Let a ball Br = {x ∈ X|d(x) < r} be defined for
some r > 0 and some distance function d. Then there exists class K functions, η1 and η2,
defined on [0, r] such that

η1(‖x‖) ≤ V (x) ≤ η2(‖x‖)

for all x ∈ Br. If X = Rn, functions η1 and η2 are defined over [0,∞) and the above
inequality holds for all x ∈ Rn. Additionally if V (x) is radially unbounded, then η1 and η2

can be chosen to be of class K∞.

Lemma 2. Consider the differential equation

ẏ = −η(y), y(t0) = y0 (A.5)

where η is a a locally Lipschitz class K function defined on [0, a, ). For all 0 ≤ y0 < a, this
equation has a unique solution y(t), defined for all t ≥ t0. Moreover,

y(t) = σ(y0, t− t0) (A.6)

where σ is a class KL function defined on [0, a)× [0,∞).

We expand the definition for uniform stability using K and KL class functions and
introduce uniform asymptotic stability, in the following Lemma.
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Lemma 3. The equilibrium point x = 0 of (A.1) is time invariant and

I uniformly stable iff there exists a class K function η and a positive constant c, inde-
pendent of t0 such that

‖x‖ ≤ η(‖x0‖), ∀t ≥ t0, ∀‖x(t0)‖ < c (A.7)

II uniformly asymptotically stable iff there exists a KL function β and a constant c > 0,
independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0, ∀‖x(t0)‖ < c (A.8)

III globally uniformly asymptotically stable iff (A.8) holds for any initial state x0.

A.3 Non-Autonomous Systems

In this section, the results for autonomous system are extended to non-autonomous systems
using comparison functions. Here we consider a non-autonomous system

ẋ = f(t, x) (A.9)

where f : [0,∞) ×X → Rn is a piece-wise continuous mapping in t and locally Lipschitz
in x on [0,∞) × X and X ⊂ Rn is an open and connected set which contains the origin
x = 0. Where the origin is an equilibrium point for (A.9) if

f(t, 0) = 0, ∀t ≥ 0.

Using this non-autonomous system, we can refine Definition A.1.1 to show the dependence
of the stability behavior on the initial time t0. We want to define stability of the origin as
a uniform property with respect to the initial time.

Definition A.3.1. The equilibrium point x = 0 of non-autonomous system (A.9) is

I stable if, for each ε > 0, there exists a ϕ = ϕ(ε, t0) for all t0 such that

‖x(t0)‖ < ϕ =⇒ ‖x(t)‖ < ε, ∀t ≥ t0 (A.10)

II uniformly stable if, for each ε > 0, there exists a ϕ = ϕ(ε) > 0, independent of t0,
such that (A.10) is satisfied.
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III unstable otherwise.

IV asymptotically stable if conditions (A.10) are met and there is a positive c = c(t0)
such that x(t)→ 0 as t→∞, for all ‖x0‖ < c.

Using these definitions and lemmas, we can now present theorems which deal with the
uniform stability and uniform asymptotic stability of these non-autonomous systems.

Theorem A.3. Given that x = 0 is an equilibirum point of (A.9) and is contained within
X ⊂ Rn. Let V : [0,∞)×X → Rn be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (A.11)

∂V

∂t
+
∂V

∂x
f(x, t) ≤ 0 (A.12)

∀t ≥ 0 and ∀x ∈ X, and where W1 and W2 are continuous positive definite functions.
Then x = 0 is uniformly stable.

Theorem A.4. Assuming that conditions on Theorem A.3 hold with inequality (A.3) con-
strained to

∂V

∂t
+
∂V

∂x
f(x, t) ≤ −W3(x) (A.13)

∀t ≥ 0 and ∀x ∈ X, where W3(x) is a continuous positive definte function on X. Then
equilibrium point x = 0 is uniformly asymptotically stable. Furthermore if r and c are
chosen such that ball Br = {‖x‖ ≤ r} ⊂ X and c < min‖x‖=rW1(x), then every trajectory
starting in {x ∈ Br|W2(x) ≤ c} satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 (A.14)

for some KL class function β. Finally if X = Rn and W1(x) is radially unbounded, then
x = 0 is globally uniformly asymptotically stable.

Though the theorems in this section are presented without proof, these can be found in
[51]. These theorems form the basis of Lyapunov stability for nonlinear, non-autonomous
systems which are dealt with in this paper. In the next sections we present stability works
which build on these theorems to describe the stability behaviour of systems using MPC.
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Appendix B

Holonomic Mobile Robot Lower
Kinematic Model

In this section of the appendix, we show the derivation of the mecanum wheel holonomic
robot lower level kinematics as presented in [59]. For the lower level forward kinematics,
the objective is to define an expression which gives the chassis velocities for given wheel
speeds. Let us first consider the wheel model shown in Fig. B.1, here we can express the
linear velocity of the wheel as[

vx
vy

]
= vdrive

[
1
0

]
+ vslide

[
− sin γ
cos γ

]
(B.1)

where γ = ±45◦ is the free sliding direction relative to the driven direction. By solving
these equations for the driven and sliding speeds, vdrive and vslide, we obtain

vdrive = vx + vy tan γ

vslide = vy/ cos γ.

We can obtain an expression for the angular speed of the wheel uw for a given wheel radius
r,

uw =
vdrive
r

=
1

r
(vx + vy tan γ) (B.2)

If we consider a wheel in relation to a body fixed frame on the robot {b}, the wheel i is
located at (xi, yi) and the relative orientation of the wheel’s drive direction to the body’s
orientation is β. We identify the robot’s frame {b} relative to a fixed frame {s} with
coordinates (x, y) and orientation φ. This is depicted in Fig. B.2. We express the robots
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Figure B.1: Left: The driving direction and the free sliding direction allowed by the rollers.
For a mecanum wheel we typically have γ = ±45◦ Right: A given wheel velocity v = (vx, vy)
expressed in terms of its driven and free sliding components. These are expressed in the
wheel frame. This figure is reprinted from [59].

position in the fixed frame as q = (φ, x, y)> and its corresponding velocity as q̇. We can
relate the velocity of the robot in the fixed frame with its velocity in the robot frame
Vb = (ωbz, vbx, vby)

>, with the following relationship

q̇ =

φ̇ẋ
ẏ

 =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

ωbzvbx
vby

 . (B.3)

We consider this the higher level kinematics for a holonomic robot. Next we consider the
relationship between the wheel input speeds and the robots velocity in the {b} frame. Here
we consider a holonomic robot with a four mecanum wheel configuration as shown in Fig.
B.3. For the considered robot the relative orientation of the wheels in {b} is βi = 0. We can
therefore define the relationship between the individual wheel speeds uw,i and the robot
velocity Vb as

uw,i = hiVb =
1

ri cos γi

xi sin γi + yi cos γi
cos γi
sin γi

> Vb (B.4)

For the considered robot shown in Fig. B.3, we have the parameters shown in Table B.
Using these parameters we can determine the relation ship hi for each of the four wheels.
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Figure B.2: A fixed frame {s}, chassis frame {b} located at (φ, x, y) in {s} and wheel i in
frame {b} located at (xi, yi) and driving direction βi and sliding direction γi. This figure
is reprinted from [59].

Once we determine the relationship hi, we can stack these vectors together to build a
matrixH, this relates the velocity Vb to a vector of wheel speeds uw = (uw,1, uw,2, uw,3, uw,4)>.
This produces the lower level kinematic model

uw =


uw,1
uw,2
uw,3
uw,4

 = HVb =
1

r


−`− w 1 −1
`+ w 1 1
`+ w 1 −1
−`− w 1 1


ωbzvbx
vby

 . (B.5)

Having a lower level kinematic model of the robot is important as we can use it for control
at the individual motor level, alternatively if we use the higher level kinematic model (B.3),
the lower level kinematics can still be used to ensure that the individual motors do not
exceed their rated speeds.

117



Figure B.3: Kinematic models for a mobile robot with four mecanum wheels. This figure
is reprinted from [59].

Table B.1: Parameters for holonomic robot with 4 mecanum wheels.
Wheel (i) γi xi yi ri
1 −π/4 ` w r
2 π/4 ` −w r
3 −π/4 −` −w r
4 π/4 −` w r
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Appendix C

Geometric Background for Robot
Dynamics

In this section of the appendix, we present some of the geometric background informa-
tion on the Special Euclidean Group SE(3), its adjoint mappings and how they relate to
generalized velocities and torques. This follows the presentation in [74].

C.1 SE(3) and se(3)

For the purpose of this thesis, we consider SE(3) as a group of rigid body motion described
by [

Θ b
0 1

]
(C.1)

where Θ ∈ SO(3) is a 3× 3 rotation matrix in the Special Orthogonal Group and b ∈ R3

is a translation. We will employ a simplified notation for SE(3) denoted by the ordered
pair (Θ,b), with the group multiplication (Θ1,b1) · (Θ2,b2) = (Θ1Θ2,Θ1b2 +b1). The Lie
algebra of SE(3), denoted se(3) is in the form[

[ω] v
0 0

]
where [ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (C.2)

We note that [ω] ∈ so(3) denotes the Lie algebra of SO(3). [ω] ∈ so(3) can also be regarded
as a vector ω ∈ R3 and is commonly denoted as ω. Elements of se(3) will be denoted as
(ω,v) ∈ R6.
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An element of a Lie group has a linear mapping to its Lie algebra through the adjoint
representation. For a given matrix Lie group, G with Lie algebra g, for every X ∈ G the
adjoint map AdX : g → g is defined by AdX(x) = XxX−1. If X = (Θ,b) ∈ SE(3) then
its adjoint map acting on x = (ω,v) ∈ se(3) is

AdX(x) = (Θω,b×Θω + Θv) =

[
Θ 0

[b]Θ Θ

] [
ω
v

]
. (C.3)

Other useful properties of the adjoint mapping include that Ad−1
X = AdX−1 and AdXAdY =

AdXY for any X,Y ∈ SE(3). We also consider the dual adjoint operator Ad∗X : se(3)∗ →
se(3)∗, where se(3)∗ denotes the the dual basis on se(3), given by the transpose of AdX.
For a given z = (m, f) ∈ se(3)∗,

Ad∗X(z) =

[
Θ> Θ>[b]>

0 Θ>

] [
m
f

]
. (C.4)

There also exists a linear map between an element of a Lie algebra and its Lie algebra
using the Lie bracket. We consider an element x ∈ g, the adjoint representation is the
map adx : g → g defined by adx(y) = [x,y], where [·, ·] denotes the Lie bracket. For a
given x = (ω1,v1),y = (ω2,v2) ∈ se(3)

adx(y) = (ω1 × ω2, ω1 × v2 − ω2 × v1) =

[
[ω1] 0
[v1] [ω1]

] [
ω2

v2

]
. (C.5)

In a similar way the dual adjoint operator ad∗x : se(3)∗ → se(3)∗ is defined as a

ad∗x(z) =

[
−[ω1] −[v1]

0 −[ω1]

] [
m
f

]
. (C.6)

C.2 Generalized Velocities and Forces

We now consider the tangent vector Ẋ(t) of a curve X = (Θ(t),b(t)) ∈ SE(3) which is
an element of se(3). Given a described motion X(t) for a rigid body in reference to an
inertial reference frame, the body-fixed velocity representation of Ẋ is given by X−1Ẋ =
(Θ−1Θ̇,Θ−1ḃ). Here the angular and translational velocities of the rigid body relative
to its fixed frame are Θ−1Θ̇ and Θ−1ḃ respectively. If X(t) undergoes a transformation
T ∈ SE(3) such that X(t) 7→ X(t)T , then its transformed body-fixed velocity Vb is

Vb = T −1X−1ẊT = AdT −1(X−1Ẋ) (C.7)
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Conversely, forces and moments can be considered elements of the dual set se(3)∗. We
view a moment-force pair (m, f) ∈ se(3)∗ as consisting of a skew symmetric matrix of
moments and a three-vector of forces

[m] =

 0 −m3 m2

m3 0 −m1

−m2 m1 0

 , f =

f1

f2

f3

 (C.8)

If we want to consider this moment-force pair under a right transformation T (Θ,b) ∈
SE(3), we can express the transformed pair (m′, f ′) as[

m′

f ′

]
=

[
Θ> Θ>[b]>]
0 Θ>

] [
m
f

]
= Ad∗T (m, f) (C.9)

Having identified these relationships we can now use the adjoint maps to transform gener-
alized velocities (twists) and generalized forces (wrenches) between coordinate frames.
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