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Abstract

An approach for coordination and control of 3D heterogeneous formations of unmanned aerial and ground vehicles under hawk-eye
like relative localization is presented in this paper. The core of the method lies in the use of visual top-view feedback from flying
robots for the stabilization of the entire group in a leader-follower formation. We formulate a novel Model Predictive Control
(MPC) based methodology for guiding the formation. The method is employed to solve the trajectory planning and control of a
virtual leader into a desired target region. In addition, the method is used for keeping the following vehicles in the desired shape
of the group. The approach is designed to ensure direct visibility between aerial and ground vehicles, which is crucial for the
formation stabilization using the hawk-eye like approach. The presented system is verified in numerous experiments inspired by
search and rescue applications, where the formation acts as a searching phalanx. In addition, stability and convergence analyses are
provided to explicitly determine the limitations of the method in real-world applications.
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1. Introduction

Precise relative localization within large teams of unmanned
vehicles is required in real-world Search And Rescue (SAR)
missions, where a multi-robot system has to cooperatively ex-
plore large areas in a short time. In these tasks, robots may not
rely on a pre-installed global localization infrastructure, which
is usually not available, or is damaged, in sites under SAR ex-
ploration. Worldwide available systems (like GPS) lack the re-
quired precision for compact formations of small robots, and
lose reliability in urban and indoor environments. A common
solution is to use systems of relative localization carried on-
board autonomous vehicles. This approach brings additional
movement constraints to the robotic team, which have to be in-
tegrated into the formation control and stabilization.

In this paper, we present a formation driving approach
adapted for onboard visual relative localization of heteroge-
neous teams of unmanned helicopters (quadrotors) and ground
robots. The localization is based on simple light-weight bottom
cameras mounted on unmanned Micro Aerial Vehicles (MAVs).
Identification patterns for the localization are placed on both
the Unmanned Ground Vehicles (UGVs) and the MAVs. With
this top-view approach, the problem of loss of direct visibility
can be better tackled. Such problem occurs if systems of the
visual relative localization are employed for ground robots op-
erating in a workspace with scattered objects/obstacles, as is
common in SAR scenarios. The possibility to localize robots
from the top view increases robustness and precision in deter-

mining the relative position. Additionally, the top view brings
another perspective for human operators supervising the mis-
sion. MAVs may also complement the team of UGVs with their
ability to visit/search places inaccessible for ground vehicles, as
we demonstrated in (Saska et al. 2012a). For more opportuni-
ties and advantages of MAVs, see the survey in (Kumar and
Michael 2012).

The proposed MAV-UGV standalone system provides a
light-weight, low-cost and efficient solution, which may act as
an enabling technique for extensive utilization of simple micro-
scale robots in demanding scenarios. This article focuses on
theoretical and implementation aspects of the formation driv-
ing mechanism suited for the real-world deployment of au-
tonomous robots relying on top-view relative localization (in
this paper referred to as the hawk-eye concept). Technical de-
tails on the visual relative localization of team members from
“flying cameras” are omitted, but they are available in (Saska
et al. 2012b). The main contribution of the work presented here
lies in the proposed incorporation of the hawk-eye concept into
the formation control and its shape stabilization. The idea of
using the hawk-eye relative localization of team members re-
quires new formation driving and robot control approaches that
are presented in the rest of the paper.

The aim of our research effort is to enable the deployment
of closely cooperating groups of MAVs outside laboratories
equipped with precise motion capture systems (e.g. the Vi-
con system) and, on the basis only of relative localization, to
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achieve the same results obtained using these systems nowa-
days (Turpin et al. 2011; Mellinger et al. 2012; Kushleyev et al.
2012).

1.1. State-of-the-art and progress beyond the current formation
driving approaches

Formation driving algorithms can be divided into three main
approaches: virtual structures (Ren 2008; Beard et al. 2001;
Liu and Jia 2012; Michael and Kumar 2009; Ghommam et al.
2010), behavioral techniques (Langer et al. 1994; Lawton et al.
2003; Olfati-saber 2006), and leader-follower methods (Mastel-
lone et al. 2008; Desai et al. 2001; Das et al. 2003; Fredslund
and Mataric 2002; Sira-Ramiandrez and Castro-Linares 2010;
Klančar et al. 2011; Min and Papanikolopoulos 2012; Yang
et al. 2010). For further references on distributed robotic con-
trol see (Bullo et al. 2008). In our work, we consider a modifica-
tion of the leader-follower method, in which all robots (MAVs
and UGVs) of the formation follow a virtual leader. Formation
stabilization is achieved by sharing knowledge of the virtual
leader’s position within the formation.

Recently, research endeavor in the formation driving commu-
nity has been aimed mainly at tasks of formation stabilization
(Dong 2011; Hengster-Movrić et al. 2010; Liu and Jia 2012)
and formation following a predefined path (Do and Lau 2011;
Ghommam et al. 2010; Sira-Ramiandrez and Castro-Linares
2010; Xiao et al. 2009). For example in (Dong 2011), the task
of the formation stabilization and convergence into a desired
pattern is tackled for formations with communication delays.
In (Hengster-Movrić et al. 2010), a multi-agent control system
using an artificial potential based on bell-shaped functions is
proposed. In (Liu and Jia 2012), a distributed iterative learn-
ing scheme is employed for solving the formation control with
a switching strategy in the virtual structure and virtual leader-
follower schemes.

The path following problem is tackled by designing a non-
linear formation control law in (Ghommam et al. 2010). The
method based on the virtual structure approach uses a propaga-
tion of a virtual target along the path. In (Do and Lau 2011),
path following is investigated for groups of robots with a lim-
ited sensing range. In (Sira-Ramiandrez and Castro-Linares
2010), according to the leader-follower concept, the leader
robot is forced to follow a given path, while the followers track
the leaders’s path with a fixed time delay. In (Xiao et al. 2009),
in addition to trajectory tracking, the autonomous design of a
desired geometric formation pattern is discussed.

In addition to methods of formation driving for UGVs,
we should mention some approaches designed for Unmanned
Aerial Vehicles (UAVs) (No et al. 2011; Saffarian and Fahimi
2009; Liu et al. 2011; Burdakov et al. 2010; Abdessameud and
Tayebi 2011). In (No et al. 2011), the formation stabilization
and desired shape keeping are treated as a dynamic 3-D track-
ing problem. The relative geometry of multiple UAVs is kept
via a cascade-type guidance law under the leader-follower con-
cept. A leader-follower approach for stabilizing helicopter for-
mations using a nonlinear model predictive control is proposed
in (Saffarian and Fahimi 2009). This method is optimized for
an on-line embedded solution enabling a response to the fast

dynamic of UAVs in (Liu et al. 2011). In (Burdakov et al.
2010), UAVs in a static formation form relay chains for commu-
nication in surveillance applications. The formation stabiliza-
tion of vertical take-off and landing unmanned aerial vehicles
in the presence of communication delays is addressed in (Ab-
dessameud and Tayebi 2011). Finally, let us mention (Tanner
and Christodoulakis 2007), which considers a heterogeneous
team of UAVs-UGVs. The aim of the approach is to stabilize
a formation of UAVs above UGVs in circular orbits using in-
terconnections of UAV and UGV groups via ground-to-air only
communication.

In most of the approaches cited above, it is supposed that the
desired trajectory followed by the formation is designed by a
human operator or by a standard path planning method modi-
fied for the formation requirements. The method presented in
this paper goes beyond these works. It does not rely on follow-
ing a given trajectory, as in most of the state-of-the-art methods.
The global trajectory planning is directly integrated into the for-
mation control mechanism. This is necessary for finding a fea-
sible solution for the hawk-eye concept, where the constraints
of direct visibility have to be satisfied. Direct incorporation of
trajectory planning and formation stabilization enables effective
operation of the group in an environment with obstacles, while
the hawk-eye relative localization is ensured.

In the literature, a direct inclusion of the trajectory planning
into the formation driving is rarely found. To the best of our
knowledge, we can mention only the leader-follower approach
based on potential fields presented in (Garrido et al. 2011) as
an appropriate example. This algorithm enables both forma-
tion stabilization and navigation of the formation into a de-
sired goal. Although the method provides interesting results
and seems to be computationally inexpensive, it has been de-
veloped for ground holonomic robots, and it suffers from the
usual problems of algorithms inspired by potential fields. The
authors state that their method behaved correctly in spite of the
suddenly changed direction of movement around the sequence
of points given by the planning method. However, it would be
difficult to explicitly involve follower mobility constraints for a
formation of nonholonomic robots. Further research would also
be necessary to incorporate the requirements of 3D formations,
and in particular the constraints given by the relative visual lo-
calization as proposed in the method presented here. Therefore,
this method cannot be used for direct comparison with results
achieved in this paper.

Finally, we should mention paper (Dorigo et al. 2012), which
is similar to our work in terms of deployment of eye-bots on the
ceiling with the aim to provide bird’s eye view. In (Dorigo et al.
2012), the eye-bots are not moving together with ground robots
if the top-view localization is in operation; they are fixed with
the ceiling. Therefore, the motion coordination and formation
driving of heterogeneous teams do not need to be solved there.

1.2. State-of-the-art and progress beyond the current MPC ap-
proaches for formation control

In our method, we rely on Model Predictive Control (MPC).
This allows us to involve constraints imposed by vehicles (mo-
bility constraints), by obstacles (environment constraints) and
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by inter-vehicle relations into the formation driving. The inter-
vehicle relations are specified mainly by the shape of the for-
mation feasible for the hawk-eye like relative localization.

The MPC approach is often used for stabilization of nonlin-
ear systems with control constraints. In (Saffarian and Fahimi
2009) and (Liu et al. 2011), it was shown that the computa-
tional power of microprocessors available onboard unmanned
helicopters enables the employment of MPC techniques also
for the formation control of these highly dynamic systems, as is
proposed here.

For descriptions and for a general survey of MPC methods,
see (Barambones and Etxebarria 2000; Alamir 2006; Mayne
et al. 2000) and the references reported therein. Early works
applying MPC for formation control are presented in (Dunbar
and Murray 2006; Franco et al. 2008). These papers utilized
MPC for formation forming in a workspace without obstacles.
Recently, researchers have taken advantage of MPC to respond
to changes in a dynamic environment, again mainly in tasks in-
cluding path tracking and formation stabilization (Chao et al.
2012; Defoort 2010; Zhang et al. 2010; Shin and Kim 2009;
Chen et al. 2010; Saffarian and Fahimi 2009; Liu et al. 2011). In
(Chao et al. 2012), the authors introduce a new cost penalty into
MPC optimization to guarantee obstacle avoidance. A prior-
ity strategy is employed to ensure inter-vehicle collision avoid-
ance. In (Defoort 2010), a decentralized receding horizon mo-
tion planner is developed to coordinate robots using neighbour-
independent planning. This is followed by adjusting the plans
with inter-team collisions using locally exchanged information.
The trajectory tracking mechanism developed in (Zhang et al.
2010) is based on integrating a differential evolution algorithm
into the MPC concept. In (Shin and Kim 2009), a heuristic ap-
proach is developed to reduce the required computational time
of MPC iterations and to enable path tracking with an obstacle
avoidance function. Formation stabilization on a pre-computed
path based on the MPC leader-follower concept is presented in
(Chen et al. 2010).

In our approach, we go beyond these works in several as-
pects. We apply the MPC technique for the stabilization of fol-
lowers in the desired positions behind the leader, as well as for
the trajectory planning into a desired goal area. We propose a
new MPC concept combining both the trajectory planning into
the desired goal region and the immediate control of the for-
mation in a single optimization process. The method can con-
tinuously respond to changes in the vicinity, while keeping the
cohesion of the immediate control inputs with the directions
of movement of the MAV-UGV formation in the future. Fur-
thermore, we propose a novel obstacle avoidance function for
multi-vehicle trajectory planning. The avoidance function in-
cludes a model of the group that respects the restrictions of the
hawk-eye concept.

The paper is structured as follows. The problem statement
is summarized in Section 2. In Section 3, necessary prelimi-
naries are given. The novel methodology is described in Sec-
tion 4, focusing on the utilization of a heterogeneous formation
of UGVs and MAVs under the hawk-eye concept. A proof of
the convergence of the formation into the desired target region,
together with discussion on the assumptions necessary to ensure

Table 1: List of variables and notation used in the preliminary part of the paper.
nr ∈ N number of followers
n0 ∈ N number of static and dynamic obstacles
L variables related to the virtual leader
i variables related to the i-th follower
j variables related to the j-th entity, a fol-

lower or the virtual leader
C configuration space of robots
Cobs subspace of configurations of robots collid-

ing with an obstacle
C f ree subspace of feasible configurations
ol the l-th obstacle
S F desired target region
ϕ j(t) ∈ R heading of the j-th entity at time t
ψ j(t) ∈ R4 configuration (position and heading) of the

j-th entity at time t
p̄ j(t) ∈ R3 position of the j-th entity at time t
(x j(t), y j(t), z j(t)) position in Cartesian coordinates at time t
(pi, qi, hi) position of the i-th follower within the for-

mation in curvilinear coordinates
v j(t) ∈ R forward velocity of the j-th entity at time t
K j(t) ∈ R curvature of the j-th entity at time t
w j(t) ∈ R ascent velocity of the j-th entity at time t
ū j(t) ∈ R3 control inputs (velocity and heading)
∆t(k) ∈ R time difference between the k-th and (k +

1)−th transition points

formation stability under the hawk-eye relative localization, is
shown in Section 5. Numerical and hardware experiments are
presented in Section 6, which is followed by our conclusions
in Section 7. A discussion on a controller for the AR-Drone,
which was designed to enable integration of the drone into the
proposed MPC formation stabilization scheme, can be found in
the appendix. For clarification purposes, lists of variables used
in this paper are summarized in Tables 1 and 2.

The basic ideas of the planning for heterogeneous MAV-
UGV formations under the hawk-eye relative localization were
presented in a conference paper (Saska et al. 2012c), which is
extended here. In comparison with (Saska et al. 2012c), we
provide here a more comprehensive description of the method,
accompanied by the proof of convergence. An additional exten-
sion is the real-world experiment and numerical analysis veri-
fying the robustness of the proposed methodology.

2. Problem statement

In this paper, we consider the formation driving problem in
scenarios motivated by search and rescue applications. We are
interested in scenarios where a team of robots has to reach a
desired target region or a sequence of target regions given by a
supervising expert. During the movement between these given
areas, the robots have to keep a fixed-shape formation satisfying
the mission requirements. The robots can form a searching pha-
lanx (a line formation) to be able to search for victims in large
areas or they can form a compact fleet of vehicles (a formation
of a general shape) for transportation purposes.
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We assume a group of simple ground nonholonomic robots
without any onboard sensors for their localization. In addition,
we assume a group of unmanned micro aerial vehicles (quadro-
tors) equipped with a bottom camera and an image processing
system (Saska et al. 2012b). The image processing system pro-
vides information on the relative position between the camera
and the center of an identification pattern. The patterns are car-
ried by all UGVs and MAVs except the one flying at the highest
altitude. We assume that one of the robots (UGV or MAV) is
equipped with a global localization (e.g. the vision based navi-
gation in (Krajnı́k et al. 2010)). Precision and reliability of the
system in (Krajnı́k et al. 2010) enables a rough estimation of
the position of the formation in the map, but it is not sufficient
for the coordination of the robots in a compact formation.

We assume that the required relative distances between the
robots are significantly bigger than the precision of the visual
relative localization. The precision of the employed system (de-
scribed in (Saska et al. 2012b)) is ∼ 1 cm. Therefore the min-
imal allowed distance between the robots is 10 centimetres in
the experiments. Between two UAVs, the spacing usually has
to be enlarged, due to airflow effects that depend on the utilized
platform. Moreover, we assume that the shape of the formation
is designed in such a way that all robots, except the MAV fol-
lower flying at the highest altitude, are in the field of view of at
least one bottom camera mounted on MAVs.

In the assumed scenario, the map of the environment is partly
known by all robots. The group is capable of detecting un-
known and dynamic obstacles by their onboard sensors. These
updates of the map are shared by the robots via Wi-Fi com-
munication. The position of the target region or a sequence of
target regions and the desired shape of the formation are also
known.

In this paper, we solve the task in which the 3D formations
of MAVs and UGVs have to reach a target region or a sequence
of target regions, while the requirements given by hawk-eye rel-
ative localization are satisfied. This means that direct visibility
between the vehicles has to be maintained during deployment
of the formation.

3. Preliminaries

Let ψ j(t) = {x j(t), y j(t), z j(t), ϕ j(t)} ∈ C, with j ∈

{L, 1, . . . , nr}, denote configurations of a virtual leader L and
nr followers at time t. The virtual leader is positioned in front
of the formation and on the axis of the formation, which is im-
portant for the symmetric obstacle avoidance function. C is the
configuration space of the robots. The Cartesian coordinates
x j(t), y j(t) and z j(t) define the positions p̄ j(t) of the robots, and
ϕ j(t) denotes their heading. All MAVs and UGVs are denoted
as followers in the approach presented here. For the MAVs, the
heading ϕ j(t) becomes directly the yaw (see Fig. 1 for the coor-
dinates system of the MAVs). The roll and the pitch do not need
to be included directly in the kinematic model employed in the
MPC. They depend on the velocity and the turning curvature,
as shown for a quadrotor helicopter in Appendix A.

Let us assume that the environment of the robots contains
a finite number n0 of compact obstacles ol, l ∈ {1, . . . , n0}.

The configuration space C can then be divided into two seg-
ments: Cobs, representing the configurations of the robots col-
liding with an obstacle; and C f ree, representing the subspace of
the feasible configurations as C f ree = C\Cobs.

Definition 3.1. (Target Region) Let us define a target region
S F as a convex compact region such that, for any robot with
position p̄ j(·) ∈ S F , the relation ψ j(·) ∈ C f ree is satisfied.

The kinematics for any robot j in 3D is described by the sim-
ple nonholonomic kinematic model:

ẋ j(t) = v j(t) cosϕ j(t),
ẏ j(t) = v j(t) sinϕ j(t),
ż j(t) = w j(t),
ϕ̇ j(t) = K j(t)v j(t).

(1)

Forward velocity v j(t), curvature K j(t) and ascent ve-
locity w j(t) represent control inputs denoted as ū j(t) =

{v j(t),K j(t),w j(t)}. For UGVs (in the presented results for car-
like robots), these control inputs can be directly employed for
steering them1. In case of MAVs, v j(·), K j(·) and w j(·) values
are inputs for the controller shown in Appendix A.

Let us now define a time interval [t0, tend] containing a finite
sequence of elements of increasing time {t0, t1, . . . , tend−1, tend},
such that t0 < t1 < . . . < tend−1 < tend. The control in-
puts are held constant in each time interval [tk, tk+1), where
k ∈ {0, . . . , end − 1}. From this point we may refer to tk by
using its index k. By integrating the kinematic model over the
interval [t0, tend], we can derive the following model for transi-
tion points at which the control inputs change:

x j(k + 1) =



x j(k) + 1
K j(k+1)

[
sin

(
ϕ j(k)+

K j(k + 1)v j(k + 1)∆t(k + 1)
)
−

sin
(
ϕ j(k)

)]
, if K j(k + 1) , 0;

x j(k) + v j(k + 1) cos
(
ϕ j(k)

)
∆t(k + 1),

if K j(k + 1) = 0

y j(k + 1) =



y j(k) − 1
K j(k+1)

[
cos

(
ϕ j(k)+

K j(k + 1)v j(k + 1)∆t(k + 1)
)
−

cos
(
ϕ j(k)

)]
, if K j(k + 1) , 0;

y j(k) + v j(k + 1) sin
(
ϕ j(k)

)
∆t(k + 1),

if K j(k + 1) = 0
z j(k + 1) = z j(k) + w j(k + 1)∆t(k + 1)
ϕ j(k + 1) = ϕ j(k) + K j(k + 1)v j(k + 1)∆t(k + 1),

(2)

where x j(k), y j(k) and z j(k) are Cartesian coordinates and ϕ j(k)
is the heading angle at the transition point with index k for any
robot j ∈ {L, 1, . . . , nr}. The sampling time ∆t(k + 1) may not
be uniform in the whole interval [t0, tend], as shown below. The
control inputs v j(k + 1), K j(k + 1) and w j(k + 1) are constant
between the transition points with indexes k and k + 1. For each
follower i ∈ {1, . . . , nr}, the control inputs are limited by vehicle
kinematic constraints (i.e., implied by the steering limitations

1We assume that UGVs operate on a flat surface and that z j(·) = 0 and
w j(·) = 0 for each of the UGVs.
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(a) (b)

Figure 1: (a) The desired shape of the formation described in curvilinear coor-
dinates. (b) Coordination system of the quadrocopter.

and the drive system) as vmin,i ≤ vi(k) ≤ vmax,i, |Ki(k)| ≤ Kmax,i

and for the MAVs also wmin,i ≤ wi(k) ≤ wmax,i. These values
may differ for each of the followers.

Finally, we need to define a spherical detection boundary
with radius rs and a spherical avoidance boundary with radius
ra, where rs > ra. Single robots should not respond to obstacles
detected outside the region with radius rs. On the contrary, a
distance between the robots and obstacles less than ra is con-
sidered as inadmissible.

3.1. Formation driving concept

The shape of the entire formation is maintained with a leader-
follower technique based on the method presented in (Barfoot
and Clark 2004). The approach in (Barfoot and Clark 2004)
was designed for formations of UGVs working in a planar en-
vironment. Later, it was employed in an airport snow shoveling
project by formations of autonomous ploughs in (Saska et al.
2011; Hess et al. 2009). Here, we extend the notation from
(Barfoot and Clark 2004) to 3D.

In the proposed method, both types of followers, MAVs and
UGVs, follow the same trajectory of the virtual leader in dis-
tances defined in the p, q, h curvilinear coordinate system, as vi-
sualized in Fig.1(a). The position of each follower i is uniquely
determined: 1) by states ψL(tpi ) in the travelled distance pi from
the actual position of the virtual leader along the leader’s tra-
jectory, 2) by the offset distance qi from the trajectory in the
perpendicular direction and, 3) by the elevation hi above the
trajectory. tpi denotes the time when the virtual leader was at
the travelled distance pi behind the actual position.

To convert the state of the followers in curvilinear coordi-
nates to a state in Cartesian coordinates, the following equations
can be applied:

xi(t) = xL(tpi ) − qi sin(ϕL(tpi )),
yi(t) = yL(tpi ) + qi cos(ϕL(tpi )),
zi(t) = zL(tpi ) + hi,

ϕi(t) = ϕL(tpi ),

(3)

where ψL(tpi ) =
{
xL(tpi ), yL(tpi ), zL(tpi ), ϕL(tpi )

}
is the state of

the virtual leader at time tpi .

Figure 2: Scheme of the complete planning and control system.

The virtual leader has no constraints given by its mechanical
capabilities. It is a virtual point, but it must respect the con-
straints of the guided formation. For the virtual leader, the ad-
missible control set can be determined by applying the leader-
follower approach as

Kmax,L = min
i=1,...,nr

(
Kmax,i

1 + qiKmax,i

)
,

Kmin,L = max
i=1,...,nr

(
−Kmax,i

1 − qiKmax,i

)
,

vmax,L(t) = min
i=1,...,nr

(
vmax,i

1 + qiKL(t)

)
,

vmin,L(t) = max
i=1,...,nr

(
vmin,i

1 + qiKL(t)

)
,

wmax,L = min
i=1,...,nr

(
wmax,i

)
,

wmin,L = max
i=1,...,nr

(
wmin,i

)
.

(4)

These restrictions must be applied to satisfy different values for
the curvature and the speed of the robots in different positions
within the formation. Intuitively, the robot following the inner
track during turning goes more slowly but with a bigger curva-
ture than the robot further from the center of the turning. The
equations arise from the fact that the followers turn around the
same Instantaneous Center of Curvature (ICC) and at the same
angular speed. These restrictions ensure that the formation re-
mains compact while turning.

The common ICC implies that robots with different posi-
tions within the formation have to turn with different curvatures.
Therefore, the limits on the curvature of the leader’s trajectory
must ensure that all of the robots are capable of following a cur-
vature that depends on their position within the formation. The
constant angular speed of robots turning with a different cur-
vature forces the followers to move at different velocities to be
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able to pass the curve at the same time. Again, the limits on the
leader’s velocity must ensure that all of the robots are capable
of going with the velocity that is determined by their position
within the formation.

4. Integrated trajectory planning and formation stabiliza-
tion under the hawk-eye concept

4.1. Method overview

The proposed formation driving system is divided into two
blocks, see the scheme depicted in Fig. 2. In the Virtual Leader
part, the Trajectory Planning block provides the complete tra-
jectory into the target region for the virtual leader. The result is
feasible for the entire formation and respects the requirements
of the hawk-eye localization via the model of the formation.
For this trajectory planning and control task, we have devel-
oped a novel method based on the model predictive control.
The standard MPC solves a finite horizon optimization control
problem for the system represented by the kinematic model.
The MPC plan starts from the current states over the time inter-
val 〈t0, t0 + N∆t〉. This interval is known as the control horizon.
The sampling time ∆t inbetween the N transition points is con-
stant in this interval. We denote this horizon as TN . We have
extended this standard scheme with an additional time inter-
val 〈t0 + N∆t, t0 + (N + M)∆t〉. This planning horizon is used
for planning the trajectory of the leader into the desired target
region. The time difference between the M transition points
is variable in this time interval, which is denoted as TM . This
planning algorithm respects the constraints given by the desired
shape of the formation, by the hawk-eye localization and by the
kinematics of the followers. In our approach, the entire hori-
zon is divided into two segments: i) the control horizon with a
constant sampling rate used to obtain a refined immediate con-
trol, and ii) the planning horizon, where the time differences
between the transition points are also variables that take part in
the planning problem. Details on construction of the horizons,
with emphasis on the incorporation of the 3D formation, are
presented in Section 4.3.

The resulting trajectory obtained in the Trajectory Planning
block is described by a sequence of configurations of the virtual
leader ψL(k), k ∈ {1, . . . ,N + M}, and by constant control inputs
applied in the intervals between the transition points. Accord-
ing to the MPC concept, only a portion of the computed control
actions is applied. This utilized interval, 〈t0, t0 + n∆t〉, is known
as the receding step. In the next planning step, this process is
repeated on the interval 〈t0 + n∆t, t0 + n∆t + N∆t〉 as the finite
horizon moves by the time steps n∆t, yielding a state feedback
control scheme strategy. The output trajectory is used as an in-
put for the Formation Driving module in the proposed system.
In this module, the plan is transformed to the desired configu-
rations of the followers (using eq. (3)). Additionally, the plan
is adapted for re-initialization of the optimization in the next
planning step.

The core of the second main block is the Trajectory Follow-
ing module. This part enables the design of appropriate colli-
sion free control inputs for each of the MAV and UGV follow-

Table 2: List of variables used for describing the method.
()max, j index denoting the upper bound of the con-

trol inputs of the j-th entity
()min, j index denoting the lower bound of the con-

trol inputs of the j-th entity
rs ∈ R radius of a spherical detection boundary
ra ∈ R radius of a spherical avoidance boundary
TN first part of the control horizon with a

constant time difference between transition
points - it provides the local control

TM second part of the control horizon with a
variable time difference between transition
points - it provides the global planning

N ∈ N number of transition points on TN

M ∈ N number of transition points on TM

n ∈ N number of transition points (on TN), which
are applied in each receding step

∆t(·) ∈ R variable time difference between transition
points on the time interval TM

∆t constant sampling time between transition
points on the time interval TN

T ∆
L,M ∈ R

M set of varying values of time difference
between neighbouring transition points on
the interval TM

ΨL,N ∈ R4N set of states (transition points) on TN

ΨL,M ∈ R4M set of states (transition points) on TM

UL,N ∈ R3N set of control inputs applied between the
transition points on interval TN

UL,M ∈ R3M set of control inputs applied between the
transition points on interval TM

ΩL ∈ R7N+8M optimization vector used for trajectory
planning of the virtual leader

()◦ denotes results of the optimization process
Ψd,i ∈ R3N set of desired states derived from Ω◦L for

the i − th follower
Ψi ∈ R3N set of states (transition points) of the i − th

follower
Ui ∈ R2N set of control inputs of the i − th follower

applied between the transition points
Ωi ∈ R5N optimization vector used for trajectory

tracking of the i − th follower
{xL; yL} coordinate system in the plane orthogonal

to the trajectory of the virtual leader in its
current position

CH convex hull of points, in which the follow-
ers intersect the plane orthogonal to the tra-
jectory of the virtual leader in its actual po-
sition

DCH the convex hull CH dilated by the detection
boundary radius rs

PDCH projection of the dilated convex hull PDCH
along the leader’s trajectory

RDCH half of the maximal width of the DCH
measured in the xL coordinate

D(·) the perturbations given by the imprecise
model and actuators between two MPC
planning steps
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Figure 3: Two examples of convex hulls of asymmetric formations. The forma-
tion on the right side is utilized in the experiment in Fig. 6. The shaded contours
represent projections of MAVs and UGVs into the plane of the virtual leader.

ers. It is responsible for avoiding impending collisions with ob-
stacles or with other members of the team, and it corrects devi-
ations from the desired trajectory provided by the virtual leader.
Again this is ensured by the MPC concept using the actual data
- states of neighbours and the map - which is shared within the
team. Details on the control of followers can be found in Sec-
tion 4.4.

4.2. Convex hull representing the formation in the trajectory
planning

An important issue, which arises with the trajectory planning
for heterogeneous 3D formations using the hawk-eye relative
localization, is the need to design a valuable representation of
the entire group. The aim of the representation is to incorporate
the requirement of direct visibility between the robots into the
concept of the trajectory planning with obstacle avoidance and
formation stabilization functionalities.

We propose to model the entire shape of the 3D formation de-
fined in curvilinear coordinates with a convex hull of points rep-
resenting the positions of the followers. The points are obtained
by projecting the followers’ positions into the plane, which is
orthogonal to the trajectory of the virtual leader in its actual po-
sition (see Fig. 3). To describe how to acquire these points, let
us define a coordinate system {xL; yL} in this plane, as sketched
in Fig. 4. The projection of the i-th follower’s position can then
be obtained as xL

i := qi and yL
i := hi. The convex hull of the

set of points {xL
i ; yL

i }, i ∈ {1, . . . , nr}, is an appropriate repre-
sentation of the 3D formation in the proposed leader-follower
constellation for two reasons. 1) Each follower i intersects the
plane orthogonal to the trajectory of the virtual leader at the
point {xL

i ; yL
i } in future. 2) The convex hull of this set of points

denotes the borders of the area that should remain obstacle free.
It ensures the direct visibility between MAVs and UGVs that is
crucial for the presented formation driving using the hawk-eye
localization.

Moreover, for the obstacle avoidance function presented in
Section 4.3, the convex hull needs to be dilated by the detection
boundary radius rs. This ensures that obstacles are kept at a suf-
ficient distance from the followers. An example of the dilated
convex hull (DCH) of a formation is depicted in Fig. 4.

4.3. Trajectory planning and control for the virtual leader
As mentioned above, we propose to solve in a single opti-

mization step two problems that are usually separated: long-
term trajectory planning feasible for the formation, and compu-
tation of the immediate control sequences. To define the trajec-
tory planning problem over the two time intervals (the control
horizon and the planning horizon) in a compact form, we need
to gather states ψL(k), where k ∈ {1, . . . ,N}, and ψL(k), where
k ∈ {N + 1, . . . ,N + M}, into vectors ΨL,N ∈ R4N and ΨL,M ∈

R4M . Similarly, the control inputs ūL(k), where k ∈ {1, . . . ,N},
and ūL(k), where k ∈ {N + 1, . . . ,N + M}, can be gathered into
vectorsUL,N ∈ R3N andUL,M ∈ R3M , one for each of the hori-
zons. Finally, the values ∆t(k), where k ∈ {N + 1, . . . ,N + M},
which become variables in the planning horizon, can be gath-
ered into a vector T ∆

L,M ∈ R. All variables describing the com-
plete trajectory from the actual position of the virtual leader un-
til the target region can be collected into the optimization vector
ΩL = [ΨL,N ,UL,N ,ΨL,M ,UL,M ,T

∆
L,M] ∈ R7N+8M .

The trajectory planning and the dynamic obstacle avoidance
problem can then be transformed to minimization of the cost
function JL(·). The function is subject to sets of equality con-
straints h(·) and inequality constraints gTN (·), gTM (·), gS F (·):

min JL(ΩL), s.t. h(k) = 0,∀k ∈ {0, . . . ,N + M − 1},
gTN (k) ≤ 0,∀k ∈ {1, . . . ,N},
gTM (k) ≤ 0,∀k ∈ {N + 1, . . . ,N + M},

gS F (ψL(N + M)) ≤ 0.

(5)

The cost function JL(ΩL) is given by

JL(ΩL) = JL,time(ΩL) + αJL,obstacles(ΩL) =

N∆t +

N+M∑
k=N+1

∆t(k)

 +

+ α

no∑
l=1

(
min

{
0,

dDCH(ΩL, ol)
dDCH(ΩL, ol) − RDCH

})2

.

(6)

The first part JL,time(ΩL) minimizes the total time to the target
region. The second term JL,obstacles(ΩL) is an avoidance func-
tion motivated by (Stipanović et al. 2007), where a similar ap-
proach was used for cooperative collision avoidance in multi-
agent systems. In our case, the term JL,obstacles(ΩL) contributes
to the final cost when an obstacle is inside the dilated convex
hull (DCH) representing the formation. Its value (the penal-
ization) increases as the obstacle approaches the centre of the
convex hull. The aim of this term is to penalize solutions of
the virtual leader trajectory planning in which an obstacle is
inside DCH projected along the trajectory that corresponds to
the solution. This is to prevent collisions or breakages of direct
visibility between robots by the obstacle. A breakage of direct
visibility could interrupt the relative localization necessary for
steering the followers. Let us denote the projection of the di-
lated convex hull along the leader’s trajectory ΩL as PDCH. An
example of PDCH is depicted in Fig. 5. The decrease of the pe-
nalization value with distance from the centre of PDCH and its
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Figure 4: A color map of the function that ensures collision free trajectories
for a formation operating under the hawk-eye concept. The color map was
composed for the second formation introduced in Fig. 3.

zero value at the borders of PDCH are required properties nec-
essary for optimization convergence into a feasible solution.

These properties are obtained as follows. The constant RDCH

is equal to half of the maximal width of DCH measured in the
xL coordinate. The meaning of RDCH is also denoted in Fig. 4
and 5. The function dDCH(ΩL, ol) provides the shortest distance
in the direction of the xL coordinate from the furthermost part of
obstacle ol to the borders of PDCH. See the obstacle o1 and the
denoted value dDCH(·, o1) for illustration in Fig. 5. The func-
tion value is positive if the obstacle is in PDCH and negative
if the obstacle is completely outside the projected hull. If an
obstacle occurs in several projections of DCH along ΩL (e.g.
in a sharp curve of the trajectory), it is counted only once in
eq. (6). Always, only the largest value of the set of the shortest
distances from the obstacle to the border of the relevant projec-
tion of DCH is used (see obstacle o2 in Fig. 5). The direction
of the gradient of such defined avoidance function (see the val-
ues of this function depending on the position of an obstacle in
Fig. 4) is to the side of DCH in the xL coordinate. This feature is
important for the convergence of the optimization process into
an obstacle free solution. If the resulting trajectory changes its
shape during the optimization with the aim to have the obstacle
outside DCH, the value of JL,obstacles(ΩL) decreases smoothly.
This is important for the convergence of the optimization into a
feasible solution.

The influence of both parts of the cost function is adjusted by
the constant α. The value of α needs to be set empirically de-
pending on the particular application. A value within the range
of 100-1000 is recommended if safeness of the system is pre-
ferred. Values in the range of 0.01-1 should be used in appli-
cations requiring short and fast solutions. A compromise value
α = 1 is used for the experimental results presented in this pa-
per.

The equality constraints h(k), ∀k ∈ {0, . . . ,N + M − 1}, rep-
resent the kinematic model in eq. (2) with the initial condi-
tions given by the actual state of the leader. This ensures that
the obtained trajectory stays feasible with respect to the kine-
matics of the utilized robots. The sets of inequality constraints
gTN (k), ∀k ∈ {1, . . . ,N}, for the control horizon, and gTM (k),

(a) Contours of the PDCH with denoted obstacles.

(b) 3D visualization of the PDCH (the obstacles are hidden).

Figure 5: An example of the dilated convex hull projected along a trajectory.
This trajectory would be infeasible for the formation under the approach pre-
sented here, since two obstacles appear inside the PDCH. This is penalized by
the dDCH(·, o1) and dDCH(·, o2) values in the cost function. The hull is overlap-
ping due to the sharp curve of the trajectory and therefore obstacle o2 occurs
in the hull twice. As marked, only the occurrence of the obstacle that is the
furthermost from the border of the hull contributes to the penalization function
dDCH(·, o2).
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∀k ∈ {N + 1, . . . ,N + M}, for the planning horizon, charac-
terize the limits on the control inputs (eq. (4)) of the virtual
leader. Furthermore, the constraints gTM (k) ensure that inequal-
ities ∆t(k) ≥ 0 are satisfied for ∀k ∈ {N + 1, . . . ,N + M}.

Finally, gS F (ψL(N + M)) is a convergence constraint guaran-
teeing that the found trajectory enters the target region S F . For
simplification, it is supposed that the target region is a sphere
with radius rS F and center CS F . Then, the convergence con-
straint is given by

gS F (ψL(N + M)) := ‖p̄L(N + M) −CS F ‖ − rS F . (7)

Let us denote the solution of the optimization problem in eq.
(5) with the symbol (·)◦. As mentioned above, the vector Ω◦L
represents a continuous trajectory with the beginning at time t1
and the end at time t2. The trajectory reaches the desired target
region and it is feasible for the formation using the hawk eye rel-
ative localization. Let us denote such a trajectory as ΩL(t1; t2)◦,
if necessary for further analysis.

Once we have obtained a feasible trajectory as a result of the
optimization process, we can write the following remark.

Remark 4.1. Each trajectory ΩL(t1; t3)◦ can be split into two
parts ΩL(t1; t2)◦ and ΩL(t2; t3)◦, where t1 < t2 < t3.

This is possible due to the fact that the trajectory consists
of a sequence of transition points and a sequence of constant
control inputs applied between the points. The splitting can
be simply realized by placing a new transition point at time
t2 on the trajectory ΩL(t1; t3)◦. This transition point is part of
both arising trajectories, which satisfy the constraints in eq. (5),
except the gS F (·) convergence constraint, which is not satisfied
for the ΩL(t1; t2)◦ part.

Remark 4.1 is important for the convergence analysis of the
formation movement into the desired target region presented
in Section 5. During the movement, always only a part of the
trajectory is followed by the formation in the MPC concept.
It is important to show that this splitting is feasible and that
the group of robots will approach the target in a sequence of
replanning steps of the optimization problem considered in eq.
(5).

4.4. Trajectory Tracking for Followers

In accordance with the leader-follower concept, the trajec-
tory of the virtual leader, which is computed as the result of
the previous section, is used as an input for trajectory track-
ing for the followers. First of all, the solution needs to be
transformed for each of the following vehicles using the trans-
formation in eq. (3). This transformation takes place in the
Formation Driving block in Fig. 2. The obtained sequences
ψd,i(k) = ( p̄d,i(k), ϕd,i(k)), where k ∈ {1, . . . ,N}, are then uti-
lized as the desired states for the trajectory tracking algorithm
with the obstacle avoidance function for each of the followers
(MAVs and UGVs). This approach (realized in the Path Fol-
lowing block in Fig 2) enables responses to events that occur in
the environment behind the actual position of the leader, and to
incorrect movement of a neighbor in the formation.

Similarly to the leader planning in Section 4.3, the states
ψi(k) and the control vectors ūi(k), where k ∈ {1, . . . ,N}, de-
scribing the trajectory of the i-th follower, can be gathered as
vectors Ψi ∈ R4N and Ui ∈ R3N . The optimization vector
Ωi = [Ψi,Ui] ∈ R7N is then used to capture the dynamic be-
havior of the discrete trajectory tracking with a collision avoid-
ance ability as a static optimization process under the receding
horizon scheme.

The discrete-time trajectory tracking for each follower is then
transformed to an optimization problem with the cost function
Ji(·). The function is subject to a number of equality constraints
hi(·) and inequality constraints gi(·):

min Ji(Ωi), i ∈ {1, . . . , nr},

s.t. hi(k) = 0,∀k ∈ {0, . . . ,N − 1},
gi(k) ≤ 0,∀k ∈ {1, . . . ,N}.

(8)

The proposed cost function Ji(·) consists of three components
with their influence adjusted by constants αi and βi (used as
αi = 1 and βi = 1 in the experimental part of this paper):

Ji(Ωi) =

N∑
k=1

∥∥∥( p̄d,i (k) − p̄i (k)
)∥∥∥2

+ αi

(
min

{
0,

dist(Ωi) − rs

dist(Ωi) − ra

})2

+ βi

∑
j∈n̄n

min

0,
di, j(Ωi,Ω

◦
j) − rs

di, j(Ωi,Ω
◦
j) − ra


2

.

(9)

The first component penalizes deviations of the positions p̄i(k)
from the desired positions p̄d,i(k), ∀k ∈ {1, . . . ,N}. As men-
tioned above, the desired positions are derived from the result
of the virtual leader planning using the formation driving ap-
proach presented in Section 3.1. The second term in Ji(·) en-
sures that dynamic or lately detected obstacles are avoided. The
function dist(Ωi) provides the Euclidean distance between the
closest obstacle and the follower’s trajectory. The third compo-
nent of Ji(·) is the sum of the avoidance functions in which the
other members of the team are considered also as dynamic ob-
stacles. This part protects the robots in the case of unexpected
behaviour of defective neighbours. Function di, j(Ωi,Ω

◦
j) returns

the minimal distance between the planned trajectory of follower
i and the actually used plan of other followers j ∈ n̄n, where
n̄n = {1, . . . , i − 1, i + 1, . . . , nr}. The equality constraints hi(·)
are identical to the equality constraints h(·) from Section 4.3.
The inequality constraints gi(·) are identical to the constraints
gTN (·).

The shape of Ji(Ωi) allows the repositioning of followers
(UGVs and MAVs) with the aim of obstacle avoidance, com-
pensation of actuators and sensors uncertainty or collision
avoidance within neighbours. Each UGV follower i can change
its position and heading by optimizing its curvature Ki and ve-
locity vi. The MAV followers may also change their altitude zi

by optimizing their ascent velocity wi.
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Finally, we should highlight that only the first n control in-
puts of the obtained solutions Ω◦i are used for steering of robots
in the MPC concept. The rest of these solutions can be recy-
cled via the Follower Initialization module (depicted in Fig. 2)
in the next iteration. This approach significantly decreases the
computational time required for optimization, since the unused
remainder of the solution needs to be changed only due to
movement of dynamic obstacles or due to diminishing of dis-
turbances. The influence of the initialization is even more per-
ceivable in the leader trajectory planning. Not only the part of
control inputs on the control horizon, but the complete solution
on the planning horizon can be re-utilized there.

5. Analysis of formation convergence from a feasible initial
solution

This section aims to verify that the formation driving method
is capable to navigate the formation into the target region if fea-
sible solutions ΩL(·; ·)◦ and Ωi(·; ·)◦, with i ∈ {1, . . . , nr}, are
known at initial time t0. The initial feasible solutions, which
satisfy the constraints given by equations (5) and (8), can be
found by the optimization method proposed herein, or provided
by a high-level planning system. In particular, this section sug-
gests a proof that the formation will reach the target region with
solution ΩL(·; ·)◦ that is always replanned after every n control
steps. In addition, it shows that the followers will be stabilized
in their positions within the formation by using plans Ωi(·; ·)◦,
which are updated with the period of n control steps. This pe-
riodic replanning is important for compensation of sensor and
actuator uncertainties and for dynamic obstacle avoidance.

We should emphasise that the aim of this section is not to
prove convergence to feasible solutions for the optimization
problems introduced by equations (5) and (8). The local con-
vergence of these optimization processes is guaranteed by prop-
erties of the cost functions, which decrease smoothly and con-
tain local extremes that correspond to sub-optimal trajectories.
However, a global optimization method that is always able to
find the globally optimal solutions of problems in (5) and (8) at
a reasonable time is not available. Therefore, it is not possible
to guarantee that feasible initial solutions of problems (5) and
(8) will be found even if such feasible solutions do exist.

The aim of this analysis is specification of conditions nec-
essary for reaching the desired equilibrium by the formation.
It enables to guarantee that the obtained initial plan is feasible
for the group. To be able to show the convergence of the en-
tire formation into the desired target region under the approach
presented here, let us first specify an assumption on the desired
reachability.

Assumption 1. (Desired Reachability) At the initial time t0,
there exists a feasible solution of the optimization problem in-
troduced in eq. (5). The solution represents the trajectory for
the formation to reach the target region. It guarantees that the
trajectory is situated at a sufficient distance from obstacles and
that direct visibility between the robots is ensured, which is a
crucial aspect of the relative localization under the hawk-eye

concept. In addition, the utilized optimization method is capa-
ble of finding such a solution, not necessarily globally optimal,
from the initial configuration ψL(t0) ∈ C f ree to any configura-
tion ψL(t f ), with t f > t0, which is inside the target region.

Besides, we need to show that the following lemmas hold for
the cost function introduced in eq. (6).

Lemma 5.1. Splitting any trajectory ΩL(t1; t3) with the be-
ginning at time t1 and the end at time t3, which satisfies the
constraints given in eq. (5), into two parts ΩL(t1; t2) and
ΩL(t2; t3), where t1 < t2 < t3, the following inequality holds:
JL(ΩL(t1; t3)) ≤ JL(ΩL(t1; t2)) + JL(ΩL(t2; t3)).

Proof. Let us suppose that the new transition point added at
time t2 (as described in Remark 4.1) lies on the trajectory
ΩL(t1; t3) inbetween the K - th and (K + 1) - th transition points.
Thus, tK < t2 < tK+1, where tK and tK+1 are times of the K - th
and (K + 1) - th transition points, respectively.

As introduced in eq. (6), the value of the first part of the cost
function of ΩL(t1; t3) is obtained as

JL,time(ΩL(t1; t3)) = N∆t +

N+M∑
k=N+1

∆t(k). (10)

If K < N, which means that the new transition point is placed
within the interval TN , the first part of the cost function of the
split trajectories can be expressed as

JL,time(ΩL(t1; t2)) = K∆t + (t2 − tK) (11)

and

JL,time(ΩL(t2; t3)) = (N−K−1)∆t+(tK+1−t2)+
N+M∑

k=N+1

∆t(k). (12)

Combining equations (10), (11) and (12) together with equation
∆t = tK+1 − tK , we can write that

JL,time(ΩL(t1; t2)) + JL,time(ΩL(t2; t3)) = K∆t + ∆t+

+ N∆t − K∆t − ∆t +

N+M∑
k=N+1

∆t(k) = JL,time(ΩL(t1; t3)).
(13)

If K ≥ N, which means that the new transition point is placed
within the interval TM , the first part of the cost function of the
split trajectories can be expressed as

JL,time(ΩL(t1; t2)) = N∆t + (t2 − tK) +

K−1∑
k=N+1

∆t(k) (14)

and

JL,time(ΩL(t2; t3)) = (tK+1 − t2) +

N+M∑
k=K+1

∆t(k). (15)

Considering equations (10), (14) and (15) together with
equation ∆t(K) = tK+1 − tK , we can again write that
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JL,time(ΩL(t1; t2)) + JL,time(ΩL(t2; t3)) = N∆t + ∆t(K)+

+

K−1∑
k=N+1

∆t(k) +

N+M∑
k=K+1

∆t(k) = JL,time(ΩL(t1; t3)).

(16)

The second part of the cost function of ΩL(t1; t3) is expressed
as

JL,obstacles(ΩL(t1; t3)) =

=

no∑
l=1

(
min

{
0,

dDCH(ΩL(t1; t3), ol)
dDCH(ΩL(t1; t3), ol) − RDCH

})2 (17)

and similarly

JL,obstacles(ΩL(t1; t2)) + JL,obstacles(ΩL(t2; t3)) =

=

no∑
l=1

(
min

{
0,

dDCH(ΩL(t1; t2), ol)
dDCH(ΩL(t1; t2), ol) − RDCH

})2

+

+

no∑
l=1

(
min

{
0,

dDCH(ΩL(t2; t3), ol)
dDCH(ΩL(t2; t3), ol) − RDCH

})2

.

(18)

As already mentioned, obstacles contribute to the cost func-
tion if they are placed inside the dilated convex hull (DCH) pro-
jected along the trajectory. It is clear that obstacles appearing
in the projection of DCH along ΩL(t1; t3) must contribute with
the same value also in one of the split parts. Therefore, the
value of the sum JL,obstacles(ΩL(t1; t2)) + JL,obstacles(ΩL(t2; t3))
cannot be smaller than JL,obstacles(ΩL(t1; t3)). Nevertheless, it
may happen that an obstacle appears in the projection of DCH
along both parts, since these can overlap (e.g. in a sharp turn
of the trajectory, as shown in Fig. 5). In this case, the ob-
stacle contributes to the cost functions twice and the value of
the sum is increased. This multiple appearance is eliminated in
JL,obstacles(ΩL(t1; t3)) as follows. To obtain the value of the func-
tion dDCH(ΩL(t1; t3), ol), the shortest distance from the border of
DCH projected along ΩL(t1; t3) to obstacle ol in the direction of
the xL coordinate has to be computed. If obstacle ol occurs in
the projection of DCH multiple times (like e.g. obstacle o2 in
Fig. 5), all the shortest distances have to be obtained. The value
of the function dDCH(ΩL(t1; t3), ol) is then the largest value from
the set of these shortest distances.

Considering these observations together with eq. (13) and
eq. (16), we can conclude that

JL(ΩL(t1; t3)) ≤ JL(ΩL(t1; t2)) + JL(ΩL(t2; t3)) (19)

Lemma 5.2. Splitting any trajectory ΩL(t1; t3), with t1 < t3,
which satisfies the constraints given in eq. (5), at the time tT of
entering into the target region, the following inequality holds:
JL(ΩL(t1; t3)) ≥ JL(ΩL(t1; tT )).

Proof. Since the trajectory ΩL(t1; t3) satisfies the constraints in
eq. (5), the following inequality holds: t1 < tT ≤ t3.

If tT = t3, one can directly write that JL(ΩL(t1; t3)) =

JL(ΩL(t1; tT )).
If tT < t3, considering eq. (10) for t2 := tT and the ev-

ident fact that JL,time(ΩL(tT ; t3)) > 0 (see for example eq.
(12)), one can write that JL,time(ΩL(t1; t3)) > JL,time(ΩL(t1; tT )).
Taking into account the fact that only the obstacles con-
tributing to JL,obstacles(ΩL(t1; t3)) may also contribute to
JL,obstacles(ΩL(t1; tT )), one can write that JL,obstacles(ΩL(t1; t3)) ≥
JL,obstacles(ΩL(t1; tT )). Combining the inequalities for JL,time

and JL,obstacles, we obtain the inequality JL(ΩL(t1; t3)) >
JL(ΩL(t1; tT )) for situations with tT < t3.

Remark 5.3. Considering Remark 4.1 and Lemma 5.2, we can
conclude that by splitting any trajectory, which satisfies the
constraints in eq. (5), at the time of crossing the border of the
target region a feasible solution of the formation to the target
region problem, evaluated by a lower (or the same) value of the
cost function, is obtained.

Now, we are prepared to show the convergence of the forma-
tion into the target region.

Theorem 5.4. Under Assumption 1, having a feasible solution
of the problem in eq. (5) at time t0, the formation is guided
by the MPC scheme towards the target region if the inequality
D(k) < JL(ΩL(τ; n∆t + τ)◦), where τ = kn∆t + t0, k ∈ Z+ and
k < (tT − t0)/n∆t, is satisfied. D(k) denotes the perturbations
on JL(ΩL(·)◦). tT is the time at which the formation approaches
the target region.

Proof. Being inspired by the theory of nonlinear systems in
chapter 4 of (Khalil 2001), we can prove the convergence of
the formation into the target region if we show the decrease in
the value of the cost function introduced in eq. (6) over time.
This means that we have to show the conditions in which the
following inequality holds:

JL(ΩL(n∆t + τ; t2)◦) − JL(ΩL(τ; t1)◦) < 0. (20)

In this equation, the term JL(ΩL(·; ·)◦) is the cost of the solu-
tion found by the optimization method. The vector ΩL(τ; t1)◦

represents the computed trajectory of the virtual leader with
the beginning at time τ and the end at time t1. The term
JL(ΩL(n∆t + τ; t2)◦) represents the cost of the optimization vec-
tor found in the next control step. This solution is used after
applying the first n elements of the trajectory with the begin-
ning at time τ. Using an ideal optimization method, which is
always capable of finding the global optimal solution, both so-
lutions would end directly on the border of the target region.
Any trajectory containing a part inside the target region may
not be optimal, which is obvious from Remark 5.3 and Lemma
5.2. With real optimization algorithms working in a finite time,
it is impossible to find the global optimal solution. The ob-
tained solutions that satisfy the constraints from eq. (5) always
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terminate inside the target region (not exactly on the border).
The length of the part of the trajectory inside the desired target
region can differ in each planning step of the MPC algorithm.
Therefore, we have to omit this part inside the region to be able
to show the convergence of the formation into the target region
by analysing the contraction of the trajectory between conse-
quent MPC planning steps.

This means that we have to split the trajectories ΩL(τ; t1)◦

and ΩL(n∆t + τ; t2)◦ at the time when they enter the target re-
gion. In Remarks 4.1, 5.3 and Lemma 5.2 it is shown that such
shortened trajectories satisfy the constraints from eq. (5), and
they represent solutions of the optimization problem with lower
values of the cost function. Eq. (20) may then be rewritten as:

JL(ΩL(n∆t + τ; tT2)◦) − JL(ΩL(τ; tT1)◦) < 0, (21)

where tT1 and tT2 are the time instants at which the trajectories
ΩL(τ; t1)◦ and ΩL(n∆t + τ; t2)◦ enter the target region. Besides,
let us split the trajectory ΩL(τ; tT1)◦ at time n∆t + τ, as shown
in Remark 4.1. Using Lemma 5.1, we can write that

JL(ΩL(τ; tT1)◦) ≤ JL(ΩL(τ; n∆t + τ)◦) + JL(ΩL(n∆t + τ; tT1)◦).
(22)

Collecting equations (21) and (22) we obtain

− JL(ΩL(τ; n∆t + τ)◦) − JL(ΩL(n∆t + τ; tT1)◦)+
+ JL(ΩL(n∆t + τ; tT2)◦) < 0.

(23)

Let us substitute

−JL(ΩL(n∆t + τ; tT1)◦) + JL(ΩL(n∆t + τ; tT2)◦) := D(k) (24)

in eq. (23), so that we obtain the inequality D(k) <
JL(ΩL(τ; n∆t + τ)◦), which represents limits on perturbations.
The inequality is satisfied if the formation is outside the target
region, which agrees with the limitation τ = kn∆t + t0, where
k ∈ Z+ and k < (t̄ − t0)/n∆t, as stated in Theorem 5.4.

5.1. Analysis of results of the convergence proof
The aim of this subsection is to show the meaning of the

perturbations D(k) and a practical utilization of the results of
the convergence analysis presented in the previous section.

Analysing eq. (24), one can see that perturbations D(k) rep-
resent changes (usually an increase) in the values of the cost
function that evaluates the trajectories found in two consequent
MPC planning steps. The trajectories, both beginning at time
n∆t + τ and ending on the border of the target region, are found
by the optimization method, one at time τ and one at time
n∆t + τ.

1) Let us first consider a situation without dynamic or
unknown obstacles. In this case, the increase in the sec-
ond term value of the cost function (6) may be neglected:

JL,obstacles(ΩL(n∆t + τ; tT2)) − JL,obstacles(ΩL(n∆t + τ; tT1)) .
= 0,

and D(k) .= JL,time(ΩL(n∆t +τ; tT2)◦)− JL,time(ΩL(n∆t +τ; tT1)◦).
The perturbations are therefore caused mainly by imprecise
actuators and by the simplification of the kinematic model.
This results in deviations in the position of the formation af-
ter each MPC step. These deviations need to be compensated,
and they prolong the total time to the goal by the time dif-
ference T2 − T1. In situations without dynamic or unknown
obstacles, this time difference is approximately equal to the
value D(k). Considering Theorem 5.4 and the obvious fact that
JL,obstacles(ΩL(τ; n∆t + τ)◦) ≥ 0, it has to be ensured that

D(k) < n∆t. (25)

It can be seen that the value of the cost function is decreasing
and the plant converges into the desired target region. This in-
equality is important for practical utilization of the method.

2) In the presence of dynamic obstacles or suddenly de-
tected obstacles, the difference JL,obstacles(ΩL(n∆t + τ; tT2)) −
JL,obstacles(ΩL(n∆t + τ; tT1)) may be the dominant part of the
perturbations. Eq. (25) may then be violated even if the uncer-
tainty of the actuators is sufficiently small. In this case, the con-
vergence into the target region is temporarily broken, which can
be detected by the increase in the cost function value. In real
world applications, it is sometimes necessary to allow a tem-
porary increase in the value of the cost function. For example,
newly detected obstacles can be avoided by the replanning in-
cluded in the MPC concept, and the convergence is restored. A
problem occurs in the presence of dynamic obstacles that push,
by their influence via the cost function, the overall formation
from the target region. If such a situation is detected by a long-
term growth of the value of the cost function, the formation has
to stop and the planning process needs to be restarted.

5.2. Analysis of the stability of the followers in their desired
positions within the formation

The stability of the formation in the desired shape is solved
through the distribution of transformed states of the virtual
leader using the formation driving concept from (Barfoot and
Clark 2004), extended here to the 3D case (see Section 3.1).
Using this approach, the formation stabilization is transformed
into the independent trajectory tracking processes running on-
board the following robots. The classical MPC approach is then
employed for trajectory tracking with the obstacle and failing
neighbour avoidance functionalities. It is not the aim of this pa-
per to analyse the performance of the standard trajectory track-
ing mechanism, but we would like to point out the overall be-
haviour of the formation. Again, let us highlight that it is not
the aim of this analysis to show the convergence of the opti-
mization problem described in eq. (8). The aim is to specify the
conditions for which the shape of the formation remains sta-
ble (followers follow their desired position behind the virtual
leader) using periodically replanned results of the problem in
eq. (8).

In an ideal state without perturbations due to dynamic obsta-
cles, actuator uncertainties and sensor uncertainties, the equal-
ity Ji(Ωi(·; ·)◦) = 0 holds. As shown for example in Fig. 7, the
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value of the cost function is increased if a robot deviates from
its desired position (the first term of eq. (9) contributes) or if an
obstacle or a neighbour is in close proximity to the robot (the
second term of eq. (9) contributes). Based on the values of the
cost function, one can decide that a follower or a group of fol-
lowersis broken away from the formation, and it has to be con-
sidered as an independent object/sub-formation. An approach
similar to the concept utilized for the formation navigation pre-
sented in Section 4.3 may be used for such a sub-formation to
rejoin the group. This concept may be employed if it is enabled
by the relative localization (the robot is still within the field of
view of MAVs acting as hawk-eyes) and by the communication
range. In this case, the area around the desired position within
the former formation has to be considered as the target region.
The sub-formation is then controlled using the approach pre-
sented in Section 4, where only the members of the unstuck
group are considered in the convex hull representing the forma-
tion. If only a single robot is unstuck, the convex hull is reduced
to a circle with the radius equal to the detection radius rs.

Theorem 5.4 and the related proof can be utilized for the
convergence analysis, similarly as was done for the static tar-
get region. Only the practical meaning of the perturbations
D(k) is changed. The uncertainty of the actuators and the
imprecise kinematic model are still included in the perturba-
tions according to eq. (24). Nevertheless, the prolonged to-
tal time to the goal given by the time difference T2 − T1 is
caused mainly by the movement of the former formation, which
is followed by the new formation. To better understand the
problem, let us split the perturbations into two parts: D(k),
which represents the perturbations given by the imprecise ac-
tuators and model, and Ddri f t(k), which includes the influence
of the drift of the dynamic target region (the required place of
the unstuck followers in the former formation). The equation
Dtotal(k) = D(k) + Ddri f t(k) holds for the situation with the dy-
namic target region, whereas, in the analysis in the previous
subsection, the equations Ddri f t(k) = 0 and Dtotal(k) = D(k)
hold.

During the MPC step with duration n∆t, the dynamic target
region moves over the distance vtargetn∆t in the worst case. The
symbol vtarget denotes the maximum speed of movement of the
former formation, and therefore also the maximum speed of
the dynamic target region. This displacement prolongs the ex-
pected time to the goal by the time difference vtargetn∆t/vunstuck,
where vunstuck is the maximal feasible speed of the unstuck for-
mation/robot. For the dynamic target region, the requirement on
the perturbations given by the imprecise actuators and model
(for the static target region presented in eq. (25)) can be ex-
pressed as

D(k) < n∆t − n∆t
vtarget

vunstuck
. (26)

6. Experimental results

In this section, we demonstrate the performance of the
method presented here, and we experimentally verify the the-
oretical results introduced in Section 5. The response of the

Table 3: Curvilinear coordinates of followers within the formation used in the
experiment presented in Fig. 6.

i 1 2 3 4 5 6 7 8 9 10 11
pi 1.5 3 0 0 0 0 0 2 2 4 4
qi 0.5 1 0 2 0.7 -0.7 -2 0 2 0 2
hi 5 4 4 0 0 0 0 0 0 0 0

planning and control mechanisms to the detected static and dy-
namic obstacles, and also to failures of neighbours in the for-
mation, is shown in the addressed robotic scenarios. The ex-
periment with real robots and the computational time analysis
reflect the applicability of the system. Movies of simulations
and experiments are attached to this paper and can be found at
(Saska 2013).

The presented results were obtained using the proposed al-
gorithm with the following parameters: n = 2, N = 4, M = 6,
α = 1, αi = 1, βi = 1 and ∆t = 0.25s. We employed Se-
quential Quadratic Programming (SQP) (Nocedal and Wright
2006) for solving the optimization problems used in the virtual
leader trajectory planning and for the stabilization of followers.
This solver provided the best performance among the evaluated
available algorithms. However, any optimization method which
is able to solve the optimization problems defined in this paper
can be used.

The map of the environment, the position of the target region
and the desired shape of the formation are always known at the
beginning of the missions in the experiments. The position of
dynamic obstacles is unknown.

In the first experiment presented in this section, a formation
of 11 followers (8-UGVs and 3-MAVs) has to move into a tar-
get region through an environment with two overhead obstacles
and one dynamic obstacle. See Table 3 for the parameters of
the formation and Fig. 6 for snapshots of the experiment. Fig. 7
illustrates a progress of the values of the cost function used for
the virtual leader’s trajectory planning (eq. (6)) and the values
of the cost function employed for the stabilization of the fol-
lowers (eq. (9)).

The initial position of the formation and the trajectory ob-
tained in the first planning loop of the presented MPC algo-
rithm are shown in Fig. 6(a). The snapshots in Fig. 6(b) demon-
strate the ability of the formation stabilization algorithm to au-
tonomously modify the desired shape of the group if this is nec-
essary due to restrictions given by the robots’ workspace. The
pictures show the response of the followers’ planning algorithm
to the narrow entrance and the consequent temporary shrinking
of the formation.

In Fig. 6(c) and 6(d), the formation passes by obstacles that
verify the ability of the approach to keep direct visibility be-
tween team members. Although the UGVs could pass under the
obstacles and the MAVs could fly over them (which would de-
crease the time to the goal), the planned trajectory leads around
the obstacles to keep them outside the convex hull representing
the formation. Due to the shape of the hull and the positions of
the obstacles, the UGVs may go under the obstacles only partly
to follow the trajectory that is as short as possible according to
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(a) Initial position of the formation with plotted plan to the target region found
by the proposed method in the first planning step.

(b) Snapshots of temporary shrinking of the formation in a narrow passage.

(c) The formation avoiding the first overhead obstacle.

(d) The formation with the denoted convex hull avoiding the second overhead
obstacle. The rightmost follower may partly pass under the bar and the
relative visibility is still kept.

(e) Replanning evoked by an obstacle that appeared at time t = 21.5s.

(f) A response of followers to movement of the obstacle. The shaded contours
denote the positions of the obstacles in the previous snapshots.

Figure 6: Simulation with 8-UGVs and 3-MAVs verifying the performance of
the proposed formation driving algorithm.

Figure 7: Progress of the values of the cost function used for the virtual leader’s
trajectory planning, eq. (6), and the cost function employed for stabilization of
the followers in their desired positions behind the virtual leader, eq. (9). The
decrease in the values of eq. (6) shows the convergence of the formation to the
desired target. The deviations from the zero value of eq. (9) are caused by the
narrow passage (see Fig. 6(b)) and by the dynamic obstacle (see Fig. 6(f)).

the optimization problem specified in eq. (5).
A response of the trajectory planning algorithm to obstacles

that suddenly appear is shown in Fig. 6(e), where a new obstacle
was detected. Finally, a dynamic obstacle avoidance behavior
of the method is shown in Fig. 6(f). In this situation, the vir-
tual leader’s planning algorithm could not respond to the move-
ment of the obstacle behind the position of the virtual leader.
Therefore, the followers are forced via the avoidance function
in eq. (9) to deviate temporarily from their desired positions
within the formation.

The results of a statistical test of the performance of the algo-
rithm are presented in Table 4. The aim is to show the reliability
and the practical utilization of the method with different values
of parameter M, whose proper setting is crucial for the deploy-
ment of the system. For the test, a set of 1000 positions of
the target region was randomly generated in the free space on
the right side of the workspace introduced in Fig. 6(a). The al-
gorithm was tested with different values of M for each of these
configurations of the target, using Intel Core Duo CPU 3.2GHz,
4GB RAM. The simulations are counted as successful if the for-
mation reached the desired target region without collisions and
with relative visibility kept during the entire movement. The to-
tal time to reach the goal indicates the quality of the solutions.

The most time consuming part of the proposed MPC ap-
proach is evaluation of the objective function in eq. (6). This
function is recalled in each iteration of the optimization process.
The second term of the function, which implements the obstacle
avoidance, represents major contribution to the computational
demands. In particular, two variables influence computational
complexity of the formation driving system that is proposed
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Table 4: The mean time to reach the target region and the success rate obtained
from 1000 runs with random positions of the target region. Each set of experi-
ments was performed with a different setting of the number of transition points
at the planning interval TM .

M 3 4 5 6 8 10
time to goal [s] 51.2 45.8 39.6 34.5 32.8 32.6
success rate [%] 42.1 86.9 98.2 99.6 100 100

Figure 8: Computational demands of the method - influence of the number of
obstacles and the number of transition points at the planning interval TM . The
mean computational time of one MPC planning step was obtained from 1000
runs of the algorithm.

here: the number of obstacles considered for the planning, and
the dimension of the optimization vector. Fig. 8 shows that the
mean computational time linearly depends on the number of
obstacles. This confirms the expectations, since the distance
from the convex hull is computed separately for each of the
obstacles only in the second term of eq. (6). The distance-to-
obstacle calculation is the most computationally intensive part
of the algorithm.

The length of the optimization vector predominantly affects
the number of iterations of the optimization process. The mean
computational time of the planning process exponentially de-
pends on the length of the optimization vector (see experimen-
tal results in Fig. 8 and analysis of quadratic programming al-
gorithms in (Nocedal and Wright 2006)).

The simulation presented in Fig. 9 shows the performance of
the algorithm in the situation where an obstacle (the traverse
beam under the ceiling) blocks the MAV follower from reach-
ing the desired target region at the desired altitude (hi coordi-
nate). Similarly to the previous experiment, where the forma-
tion passed a narrow corridor, the formation is forced to change
its desired shape temporarily.

The experiment presented in Fig. 10 demonstrates the abil-
ity of the method to avoid collisions within the robots in the
formation. To show this functionality, a failure of a follower
(its steering was blocked) was simulated to show the failure tol-
erance and the robustness of the system. The snapshots show
successful avoidance manoeuvres of neighbouring followers as
a response to predictions of possible collisions (see the last part
of eq. (9) for details on the applied avoidance function).

In the real experiment presented in Fig. 11, a formation of
three ground robots and one helicopter has to move from its
initial locations into the desired target region. The trajectory
planning method presented in this paper was employed to verify
practically the usefulness of the visual relative localization and
consequently the stabilization of followers from flying robots.

Figure 9: An example of the trajectories passed by a formation of four followers
(3-UGVs and 1-MAV). The MAV follows the virtual leader, while it descends
to avoid the top obstacle.

Two different UGVs, one G2Bot platform (Chudoba et al. 2006)
(the bigger robot in Fig. 11) and two MMP5 platforms are used
in this experiment. To verify the concept of the proposed 3D
formations, Ar.Drone quadrocopter is used as a flying follower.
The MAV is equipped with a vision system to be able to follow
the proposed hawk eye approach. It carries a bottom monocular
camera supplemented by a vision algorithm (Saska et al. 2012b)
that is able to identify the location and the size of the color
markers of the UGVs in the image. This information is used
for the relative localization of all members of the formation.
The estimated relative positions from such hawk eye are sent to
the UGV followers over WiFi link as feedback to maintain the
predefined formation shape.

Beside the pictures of the experiment, a GUI monitoring
the formation deployment in the reconnaissance applications is
shown in Fig. 11, on the right side. The GUI shows pictures
from the cameras carried by all followers and a schematic map
of the environment. The MAV camera is primarily designated
as the hawk eye. Additionally, it provides a general overview of
the scene for the supervisor of the mission. The UGVs cameras
are employed for reconnaissance purposes. The actual plan of
the virtual leader found by our approach and the history of the
leader’s movement are also depicted in the map. The position of
the virtual leader is estimated from the odometry of the G2Bot
follower, which is intentionally placed in the same position as
the virtual leader.

The experiment in Fig. 12 demonstrates the ability of the ob-
stacle avoidance by temporarily shrinking the formation. In the
experiment, the Pioneer 3-AT robotic platform with a mobile
heliport, two MMP5 platforms and the Ar.Drone MAV act as
followers. The positions of the outer UGVs within the forma-
tion are autonomously changed as a result of the multi-criteria
cost function (the first and the second term of Ji(·) contribute in
an antagonistic way) to pass safely through the narrow corridor.

The onboard visual localization, which was used in the ex-
periments, provides relative positions of robots with the fram-
erate of 10-30Hz (Faigl et al. 2013). This is significantly less
than the update rates provided by motion capture systems (e.g.
Vicon), which are often used for stabilization of MAV groups.
Therefore, a MAV low-level stabilization and limits on the max-
imal speed of robots have to be employed with the onboard
localization. Internal stabilization of the AR-drone platform
based on optical flow obtained from the bottom camera and the
inertial measurement unit were used in the experiments. For de-
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Figure 10: A sequence of snapshots presenting the failure tolerance of the sys-
tem by simulating a follower failure.

(a)

(b)

Figure 11: Snapshots from the formation driving experiment with 3-UGVs and
1-MAV following a virtual leader.
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Figure 12: Experiment verifying formation shrinking while it is driven through
a narrow corridor.

tails, software implementation and interfacing to AR-drone, see
(Krajnik 2013). The system presented in this paper enables to
stabilize the heterogeneous formation up to the speed of 0.7m/s.
For the experimental evaluation presented here, the speed of the
leader was limited to 0.3m/s for safety reasons.

7. Conclusion

A control methodology developed for formation driving of
3D heterogeneous UGV-MAV formations stabilized via the
hawk-eye like visual localization is presented in this paper. A
novel MPC schema is introduced with an integrated obstacle
avoidance function that ensures direct visibility between MAVs
and UGVs. The visibility between MAVs and UGVs is crucial
for the top-view relative localization of the team members. This
may act as an enabling technique for real-world deployment of
formations of micro-scale robots. Our experiments show the
performance of the method and verify its robustness in an envi-
ronment with dynamic obstacles. In addition, the requirements
for practical utilization of the method are specified by sound
theoretical analyses. As a result of these analyses, we propose
a simple mechanism to detect and tackle eventual violations of
the convergence of the 3D formations movement into the target
region.

The main contributions of this paper from the perspectives
of control, formation driving and robotics in general are the
following. 1) The top-view visual relative localization, which
enables the deployment of teams of micro aerial vehicles and
simple ground robots in environments without any pre-installed

global localization infrastructure. 2) The novel MPC approach
with an additional planning horizon, which is crucial for the
incorporating the global trajectory planning and the local con-
trol. In addition, this approach enables the inclusion of con-
straints given by the top-view relative localization of the het-
erogeneous formations. 3) An extended leader-follower con-
cept with a novel representation of 3D formations that satisfies
the requirements of direct visibility between the team members.
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Appendix A. Low level controller designed for AR-Drone

In the kinematic model described in Section 3, it is assumed
that the MAVs can follow a trajectory containing segments with
a given curvature. Further, we assume that MAVs are controlled
using forward speed v, curvature K and ascent w. We used the
Ar.Drone quadrocopter, which allows changes in the speed of
its rotors and consequently its pitch, yaw and roll angles (see
Fig. 1(b) for the angles definition).

The forward speed of the drone can be controlled by chang-
ing the pitch θ. Let assume the simplified model of the quadro-
copter depicted in Fig. A.13. Force F is generated by the rotors.
Fg denotes the gravitational force. The forward force is then
Fo = −Fg tan θ. Assuming that the drone moves slowly, we can
use an approximation Fo = c0v, where c0 is a constant that may
be simply identified experimentally. The forward speed of the
drone is then controlled by changing pitch θ:

tan θ = −
c0v
Fg

. (A.1)

When the drone moves along a circular segment, the cen-
trifugal force has to be compensated by changing roll η. The
centrifugal force can be expressed as Fc = mv2/r, where m is
the weight of the drone and r = 1/K is the radius of the cir-
cular segment with curvature K. The centrifugal force is com-
pensated by the lateral force Fd = −Fc. Fd is controlled by
changing roll as Fd = −Fg tan η, which gives −Fg tan η = mv2

r .
The lateral speed is then controlled by

tan η = −
v2K

g
. (A.2)

When the pitch and roll angles are small, the approximation
tan x ∼ x can be used in (A.1) and (A.2). To control the drone
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Figure A.13: Simplified model of the quadrocopter.

along a trajectory with the given curvature K and known for-
ward speed v, pitch θ and roll η are controlled. Further details
on Ar.Drone control can be found in (Krajnı́k et al. 2011).
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