742 research outputs found

    General detection model in cooperative multirobot localization

    Get PDF
    The cooperative multirobot localization problem consists in localizing each robot in a group within the same environment, when robots share information in order to improve localization accuracy. It can be achieved when a robot detects and identifies another one, and measures their relative distance. At this moment, both robots can use detection information to update their own poses beliefs. However some other useful information besides single detection between a pair of robots can be used to update robots poses beliefs as: propagation of a single detection for non participants robots, absence of detections and detection involving more than a pair of robots. A general detection model is proposed in order to aggregate all detection information, addressing the problem of updating poses beliefs in all situations depicted. Experimental results in simulated environment with groups of robots show that the proposed model improves localization accuracy when compared to conventional single detection multirobot localization.FAPESPCNP

    A macroscopic analytical model of collaboration in distributed robotic systems

    Get PDF
    In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased

    Swarm Robotics: An Extensive Research Review

    Get PDF

    A cooperative multi-agent robotics system: design and modelling

    Get PDF
    This paper presents the development of the robotic multi-agent system SMART. In this system, the agent concept is applied to both hardware and software entities. Hardware agents are robots, with three and four legs, and an IP-camera that takes images of the scene where the cooperative task is carried out. Hardware agents strongly cooperate with software agents. These latter agents can be classified into image processing, communications, task management and decision making, planning and trajectory generation agents. To model, control and evaluate the performance of cooperative tasks among agents, a kind of PetriNet, called Work-Flow Petri Net, is used. Experimental results shows the good performance of the system

    Drones and Sensors Ecosystem to Maximise the “Storm Effects” in Case of CBRNe Dispersion in Large Geographic Areas

    Get PDF
    The advancements in the field of robotics, specifically in the aerial robotics, combined with technological improvements of the capability of drones, have increased dramatically the use of these devices as a valuable tool in a wide range of applications. From civil to commercial and military area, the requirements in the emerging application for monitoring complex scenarios that are potentially dangerous for operators give rise to the need of a more powerful and sophisticated approach. This work aims at proposing the use of swarm drones to increase plume detection, tracking and source declaration for chemical releases. The several advantages which this technology may lead to this research and application fields are investigated, as well as the research and technological activities to be performed to make swarm drones efficient, reliable, and accurate

    Drones and sensors ecosystem to maximise the "storm effects" in case of cbrne dispersion in large geographic areas

    Get PDF

    Distributed control and navigation system for quadrotor UAVs in GPS-denied environments

    Full text link
    The problem of developing distributed control and navigation system for quadrotor UAVs operating in GPS-denied environments is addressed in the paper. Cooperative navigation, marker detection and mapping task solved by a team of multiple unmanned aerial vehicles is chosen as demo example. Developed intelligent control system complies with on 4D\RCS reference model and its implementation is based on ROS framework. Custom implementation of EKF-based map building algorithm is used to solve marker detection and map building task.Comment: Camera-ready as submitted (and accepted) to the 7th IEEE International Conference Intelligent Systems IS'2014, September 24-26, 2014, Warsaw, Polan

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE
    corecore