764 research outputs found

    From fuzzy information to community detection: an approach to social networks analysis with soft information

    Full text link
    On the basis of network analysis, and within the context of modeling imprecision or vague information with fuzzy sets, we propose an innovative way to analyze, aggregate and apply this uncertain knowledge into community detection of real-life problems. This work is set on the existence of one (or multiple) soft information sources, independent of the network considered, assuming this extra knowledge is modeled by a vector of fuzzy sets (or a family of vectors). This information may represent, for example, how much some people agree with a specific law, or their position against several politicians. We emphasize the importance of being able to manage the vagueness which usually appears in real life because of the common use of linguistic terms. Then, we propose a constructive method to build fuzzy measures from fuzzy sets. These measures are the basis of a new representation model which combines the information of a network with that of fuzzy sets, specifically when it comes to linguistic terms. We propose a specific application of that model in terms of finding communities in a network with additional soft information. To do so, we propose an efficient algorithm and measure its performance by means of a benchmarking process, obtaining high-quality results.Comment: 22 page

    General Adaptive Neighborhood Image Processing for Biomedical Applications

    Get PDF
    In biomedical imaging, the image processing techniques using spatially invariant transformations, with fixed operational windows, give efficient and compact computing structures, with the conventional separation between data and operations. Nevertheless, these operators have several strong drawbacks, such as removing significant details, changing some meaningful parts of large objects, and creating artificial patterns. This kind of approaches is generally not sufficiently relevant for helping the biomedical professionals to perform accurate diagnosis and therapy by using image processing techniques. Alternative approaches addressing context-dependent processing have been proposed with the introduction of spatially-adaptive operators (Bouannaya and Schonfeld, 2008; Ciuc et al., 2000; Gordon and Rangayyan, 1984;Maragos and Vachier, 2009; Roerdink, 2009; Salembier, 1992), where the adaptive concept results from the spatial adjustment of the sliding operational window. A spatially-adaptive image processing approach implies that operators will no longer be spatially invariant, but must vary over the whole image with adaptive windows, taking locally into account the image context by involving the geometrical, morphological or radiometric aspects. Nevertheless, most of the adaptive approaches require a priori or extrinsic informations on the image for efficient processing and analysis. An original approach, called General Adaptive Neighborhood Image Processing (GANIP), has been introduced and applied in the past few years by Debayle & Pinoli (2006a;b); Pinoli and Debayle (2007). This approach allows the building of multiscale and spatially adaptive image processing transforms using context-dependent intrinsic operational windows. With the help of a specified analyzing criterion (such as luminance, contrast, ...) and of the General Linear Image Processing (GLIP) (Oppenheim, 1967; Pinoli, 1997a), such transforms perform a more significant spatial and radiometric analysis. Indeed, they take intrinsically into account the local radiometric, morphological or geometrical characteristics of an image, and are consistent with the physical (transmitted or reflected light or electromagnetic radiation) and/or physiological (human visual perception) settings underlying the image formation processes. The proposed GAN-based transforms are very useful and outperforms several classical or modern techniques (Gonzalez and Woods, 2008) - such as linear spatial transforms, frequency noise filtering, anisotropic diffusion, thresholding, region-based transforms - used for image filtering and segmentation (Debayle and Pinoli, 2006b; 2009a; Pinoli and Debayle, 2007). This book chapter aims to first expose the fundamentals of the GANIP approach (Section 2) by introducing the GLIP frameworks, the General Adaptive Neighborhood (GAN) sets and two kinds of GAN-based image transforms: the GAN morphological filters and the GAN Choquet filters. Thereafter in Section 3, several GANIP processes are illustrated in the fields of image restoration, image enhancement and image segmentation on practical biomedical application examples. Finally, Section 4 gives some conclusions and prospects of the proposed GANIP approach

    Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    Full text link
    A significant challenge in object detection is accurate identification of an object's position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications.Comment: 21 pages, 12 figures, journal paper, MDPI Sensors, 201

    Development of Hand-cleaning Service-oriented Autonomous Navigation Robot

    Get PDF
    [[abstract]]This paper proposes the development of an autonomous navigation robot with hand-cleaning service in indoor environments. To navigate in unknown environments and provide service, the robot is with several intelligent behaviors including wall-following, obstacle avoidance, autonomous navigation, and human detection. A laser-sensor-based approach is used in the wall-following and obstacle avoidance behavior controllers. A preliminary map-matching algorithm is applied in the localization strategy of autonomous navigation in which the robot can acquire the current location and then move toward to the target position. In this study a hand-cleaning mechanism is embedded into the robot and the service will activate while a human is recognized within the designated range. The overall robotic system is carried out using a two-wheeled driving mobile robot with LabVIEW as an integration tool. The experimental results demonstrate the practicable application of the proposed approach.[[conferencetype]]朋際[[conferencedate]]20121014~20121017[[booktype]]é›»ć­ç‰ˆ[[iscallforpapers]]Y[[conferencelocation]]Seoul, Kore

    Fuzzy Set Methods for Object Recognition in Space Applications

    Get PDF
    Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms
    • 

    corecore