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The RICIS Concept

The University of Houston-Clear Lake established the Re_h Institute for

Computing and Informatlon Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center {JSC) and local industry to actively support research

in the computing and information sciences. As part ofthis endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated

program of research in advaJa--ceddata processing technology needed for J_'S
main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginnlng in May 1986, to Jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educatlonalTacilities are shared by the two instituUons to
conduct the research.

The UHCL/R1CIS mission Is to conduct, coordinate, and disseminate research

and professional level education In computing and information systems to

serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest

to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

Uon, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collabo_tes with industry in a Companion program. This program

is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-

ttonal sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help
oversee RICIS research ant education programs, white other research

organizations are involved via the "gateway" concepL

A major role of RICIS then Is to lind the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and Informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-
nical and adminlstraUve support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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This research was conducted under auspices of the Research Institute for

Computing and Information Systems by James M. Keller of the .University of

Missouri-Columbia. Dr. Terry Feagin was the initial RICIS research coordinator

for this activity. Dr. A. Glen Houston, Director of RICIS and Assistant Professor

of Computer Science, later assumed the research coordinator role.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

the NASA Johnson Space Center and the University of Houston-Clear Lake. The

NASA technical monitor for this activity was Robert N. Lea, of the Software

Technology Branch, Information Technology Division, Information Systems

Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.
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Introduction

For the fourth find final quarter of this research contract, we are going to report

progress on the following tour Tasks (as described in the contract):

°

2.

3.

4.

Fuzzy Set Based Decision Methodologies

Membership Calculation;

Clustering Methods (including derivation of pose estimation parameters);,

Acquisition of images and testing of algorithms.

The report, as has done in the past, consists of "stand alone" sections describing the

activities in each task. It does not duplicate the material contained in the previous quarterly

reports. For details of the earlier work done under this contract, please refer to the first

three quarterly reports.
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Fuzzy Set Based Decision Methodologies

In this section, we report on two new fuzzy set based techniques that we developed

for decision making. These include:

1_ A method to generate fuzzy decision rules automatically for image analysis. = =

2. A decision making algorithm based on possibility expectation.

The following pages contain the details of these two pieces of work.
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A Method to Generate Decision Rules Automatically for Image Analysis

In this report, we propose a method to generate rules automatically for image analysis such

as segmentation. The method used for segmentation is best described by the following paper

submitted to the North American Fuzzy Information Proceeding Society (NAFIPS '92). For this

report, slight modifications are made where only the experimental example differs from the original

paper.

/ q_,_c_ Automatic Rule Generation

\q?

"Tg - 18225
for High-Level Vision

Frank Chung-Hoon Rhee and Raghu Krishnapuram

Department of Electrical and Computer Engineering

University of Missouri, Columbia, MO 65211

ABSTRACT

Many high-level vision systems use rule-based approaches to solve problems such as

autonomous navigation and image understanding. The rules axe usually elaborated by experts.

However, this procedure may be rather tedious.'In:_this paper, we proposeTa method to generate:

such rules automatickUy from training data. The proposed method is also capable of filtering out

irrelevant features and criteria from the rules.

1. Introduction

High-level computer vision involves complex tasks such as image understanding and scene

interpretation. In domains where the models of the objects in the image can be precisely defined,

(such as the blocks world, or even the world of generalized cylinders) existing techniques for

description and interpretation perform quite well. However, when this is not the case (such as the

case of outdoor scenes or extra-terrestrial environments), traditional techniques do not work well.

For this reason, we believe that the greatest contribution of fuzzy set theory to computer vision will
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be in the area of high-level vision. Unfortunately, very little work has been done in this highly

promising area. Fuzzy Set theoretic approaches to high-level vision have the following advantages

over traditional techniques: i) they can easily deal with imprecise and vague properties,

descriptions, and rules, ii) they degrade more gracefully when the input information is incomplete,

iii) a given task can be achieved with a more compact set of rules, iv) the inferencing and the

uncertainty (belief) maintenance can both be done in one consistent framework, v) they are

sufficiently flexible to accommodate several types of rules other that just IF-THEN rules. Some

examples of the types of rules that can be represented in a fuzzy framework are [1] possibility rules

("The more X is A, the more possible that B is the range for Y"), certainty rules ("The more X is

A, the more certain Y lies in B"), gradual rules ("The more X is A, the more Y is B"), unless rules

[2] ("if X is A, then Y is B unless Z is C").

The determination of properties and attributes of image regions and spatial relationships

among regions is critical for higher level vision processes involved in tasks such as autonomous

navigation, medical image analysis and scene interpretation. Many high-level systems have been

designed using a rule-based approach [3,4]. In these systems, common-sense knowledge about the

world is represented in terms of rules, and the rule are then used in an inference mechanism to

arrive at a meaningful interpretation of the contents of the image. In a rule-based system to interpret

outdoor scenes, typical rules may be

IF a REGION is RATHER THIN AND SOMEWHAT STRAIGHT

THEN it is a ROAD

IF a REGION is RATHER GREEN AND HIGHLY TEXTURED AND

IF the REGION is BELOW a SKY REGION

THEN it. is__TREES

Attributes such as "THIN" and "NARROW", and properties such as "BRIGHT" and

"TEXTURED" defy precise definitions, and they are best modeled by fuzzy sets. Similarly, spatial

relationships such as "LEFT OF ", "ABOVE" and "BELOW" are difficult to model using the all-

or-nothing traditional techniques [5]. We may interpret the attributes, properties and relationships

2



as "criteria". Therefore,we believethat a fuzzy approachto high-level vision will yield more

realisticresults.

In most rule-basedsystems,therules areusuallyenumeratedby experts,althoughthey

may also be generatedby a learningprocess.Severaltechniqueshave beensuggestedin the

literatureto generaterules for control problems[6-9], someof which useneural netmethodsto

model thecontrol system[7-12]. Thesesystemsconverta given setof inputs to an outputby

fuzzifying the inputs, performing fuzzy logic, and then finally defuzzifying the result of the

inference to generatea crisp output [13]. Someof the methodsalso "tune" the membership

functionsthat definethe levels (such as "LOW", "MEDIUM" and "HIGH") of the input variables

[ 10]. While these methods have been shown to be very effective in solving control problems, they

cannot be directly used in high-level vision applications. For example, in control systems, the

fuzzy rules have consequents which are usually a desired level of a control signal whereas in high-

level vision, the consequent clauses are usually fuzzy labels. Also, it is desirable that membership

functions for levels of fuzzy attributes such as "THIN", and "NARROW", and properties such as

"BRIGHT" be related to how humans perceive such attributes or properties. Hence they have very

little to do with the decision making or reasoning process in which they are employed. In many

reasoning systems for high-level vision, confidence (or importance) factors are associated with

every rule since the confidence in the labeling may depend on the confidence of the rule itself. In

. =

this paper, we propose a new method to generate rules for high-level vision applications

automatically. The rules so obtained may be combined with the rules given by the experts to

complete the rule base.

In Section 2, we describe several fuzzy aggregation operators which can be used in

hierarchical (multi-layer) aggregation networks for multi-criteria decision making. In Section 3, we

describe how these aggregation networks can be used to f'dter out irrelevant attributes, properties,

and relationships and at the same time generate a compact set of fuzzy rules (with associated

confidence factors) that describes the decision making process. In Section 4 we present some
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experimental results on automatic rule generation. Finally Section 5 contains the summary and

conclusions.

2. Fuzzy Aggregation Operators

Fuzzy set theory provides a host of very attractive aggregation connectives for integrating

membership values representing uncertain and subjective information [ 14]. These connectives can

be categorized into the following three classes based on their aggregation behavior:, i) union

connectives, ii) intersection connectives, and iii) compensative connectives. Union connectives

produce a high output whenever any one of the input values representing different features or

criteria is high. Intersection connectives produce a high output only when all of the inputs have

high values. Compensative connectives are used when one might be willing to sacrifice a little on

one factor, provided the loss is compensated by gain in another factor. Compensative connectives

can be further classified into mean operators and hybrid operators. Mean operators are monotonic

operators that satisfy the condition: min(a,b) < mean(a,b) < max(a,b). The generalized mean

operator [ 15] as given below is one of such operator.

g(x t ..... x,,;p,w I..... w,) = w_x , where w i = 1. (1)
_k i=l ] i=l

The wfs can be thought of as the relative importance factors for the different criteria. The

generalized mean haa several attractive properties. For example, the mean value always increases

with an increase in p [15]. Thus, by varying the value ofp between ---0- and +**, we can obtain all

values between rain and max. Therefore, in the extreme cases, this operator can be used as union

or intersection. The ),-model devised by Zimmermann and Zysno [16] is an example of hybrid

operators, and it is defined by

(0)"( n )'y = xl s' 1- (1-x i)6' , where t_ = n and 0 _< _' -< 1. (2)
i=I i=1

In general, hybrid operators are defined as the weighted arithmetic or geometric mean of a pair of

fuzzy union and intersection operators as follows.

4
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A (grB = (1- y) (A _ B) + 7(A to B) (3)

A @rB = (A n B)O- _)(A to B)r (4)

The parameter yin (3) and (4) controls the degree of compensation. The y-model in (2) is a hybrid

operator of the type in (4). The compensative connectives are very powerful and flexible in that by

choosing correct parameters, one can not only control the nature (e. g. conjunctive, disjunctive and

compensative), but also the attitude (c. g. pessimistic and optimistic) of the aggregation.

One can formulate the problem of multicriteria decision making as follows. The support for

a decision may depend on supports for (or degrees of satisfaction of) several different criteria, and

the degree of satisfaction of each criterion may in turn depend on degrees of satisfaction of other

sub-criteria, and so on. Thus, the decision process can be viewed as a hierarchical network, where

each node in the network "aggregates" the degree of satisfaction of a particular criterion from the

observed support. The inputs to each node are the degrees of satisfaction of each of the sub-

criteria" and the output is the aggregated degree of satisfaction of the criterion. Thus, the decision

making problem reduces to i) selecting robust and useful criteria for the problem on hand, ii)

finding ways to generate memberships (degrees of satisfaction of criteria) based on values of

features (criteria) selected, and iii) determining the structure of the network and the nature of the

connectives at each node of the network. This includes discarding irrelevant criteria to make the

network simple and robust.

in our previous research, we have investigated the properties of several union and

intersection operators, the generalized mean, and the 7,-model [14,17]. We have shown that

optimization procedures based on gradient descent and random search can be used to determine the

proper type of aggregation connective and parameters at each node, given only an approximate

structure of the network and given a set of training data that represent the inputs at the bottom-most

level and the desired outputs at the top-most level [14,17]. In this paper, we extend this idea to the

detection of irrelevant attributes and automatic rule generation.
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3. Redundancy Analysis and Rule Generation

In the approach we propose, we first fuzzily partition the range of values that each criterion

(property or an attribute or a relation) can take into several linguistic intervals such as LOW,

MEDIUM and HIGH. The set of properties or .an attyibutes or a relations which are used are the

ones that may appear in the antecedent clause of a rule. As explained in Section 1, the membership

function for each level needs to be determined according to how humans perceive such attributes,

properties or relations. The membership values for an observed attribute, property or relationship

value in each of the levels is calculated using such membership functions. (Methods to generate

degrees of satisfaction of relationships such as "LEFT OF" may be found in [18]). The

memberships are then aggregated in a fuzzy aggregation network of the type shown in Figure 1.

The top nodes of the network represent the labels that may appear in the consequents of the rules.

A suitable structure for the network, and suitable fuzzy aggregation operators for each node are

chosen. The network is then trained with typical attribute, property or relationship data with the

corresponding desired output values for the various labels to learn the aggregation connectives and

connections that would best describe in input-output relationships. The learning may be

implemented using a gradient descent approach similar to the backpropagation algorithm [ 14,17]. It

is to be noted that there is a constraint on the weights.

Class 1 Class M

L SL M SH H L SL M SH H

Feature 1 Feature N

Figure 1 "Network for generating fuzzy rules.
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Our experiments indicate that the choice of the network is not very critical. Also any

compensative aggregation operator seems to yield good results. In all the results shown in this

paper, we used the generalized mean operator as the aggregation operator. As indicated in Section

2, the generalized mean can closely approximate a union (intersection) operator for a large positive

(negative) value of p. We start the training with the generalized mean aggregation function with

p=l. If the training data is better described by a union (intersection) operator, then the value ofp

will keep increasing (decreasing) as the training proceeds, until the training is terminated when the

error becomes acceptable. Also, the weights wi in (1) may be interpreted as the relative importance

factors for the different criteria. Initially we start the training with all the weights associated with a

node being equal. As the training proceeds the weights automatically adjust so that the overall error

decreases. Some of the weights eventually become very small. Thus, the training procedure has the

ability to detect certain types of redundancies in the network. In general, there are three types of

redundancies (irrelevant criteria) that are encountered in decision making [17]. These correspond to

uninformative, unreliable and superfluous criteria.

Uninformative Criteria: These are criteria whose degrees of satisfaction are always approximately

the same, regardless of the situation. Therefore, these criteria do not provide any information about

the situation, thus contributing little to the decision-making process. For example, low texture

content is a criterion that is always satisfied for both clear skies and roads, and hence it would be a

uninformative criterion if one needs to distinguish between these two labels. Uninformative criteria

do not contribute to the robusmess of the decision making process, and therefore it is desirable that

they be eliminated.

Unr_li_able Criteria: These correspond to criteria whose degrees of satisfaction do not affect the

final decision. In other words, the final decision is the same for a wide range of degrees of

satisfaction. For example, color would be an unreliabiecriterion for distinguishing a rose from a

hibiscus because they both come in similar colors. Unreliable criteria do not contribute to the

robustness of the decision making process, and therefore it is desirable that they be eliminated.
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Superfluous Criteria: These are criteria which are strictly speaking not required to make the

decision. The decisions made without considering such criteria may be as accurate or as reliable.

For example, one may want to differentiate planar surfaces from spherical surfaces using Gaussian

and mean curvatures, but the criteria are superfluous because either one of them is sufficient to

distinguish between planar and spherical surfaces. However, redundancies of this type are not

entirely without utility, since such redundancies make the decision making process more robust. If

one criterion fails for some reason, we may still be able to arrive at the correct decision using the

other. Hence such redundancies may be desirable to increase the robustness of the decision-making

process.

Redundancy Detection and Estimation of Confidence Factors: A connection is considered

redundant if the weight associated with it gradually approaches to zero (or a small threshold value)

as the learning proceeds. A node (associated with a criterion) is considered redundant if all the

connections from the output of this node to other nodes become redundant. Our simulations show

that both in the case of uninformative criteria and unreliable criteria, the weights corresponding to

all the output connections go to zero. Therefore such nodes (criteria) are eliminated from the

structure. The examples in Section 4 illustrate this idea.

Rule Generation: The networks that finally result from this training process can be said to represent

rules that may be used to make the decisions. If the final value of the parameter p at a given node is

greater than one, the nature of the connective is disjunctive. If the value is less than one, it is

conjunctive. Once the nature of the connective at each node is determined, we can easily construct

the fuzzy rules that describe the input-output relations. In Section 4 we present some examples of

this approach.

4. Experimental results

In this section, we present some typical experimental results involving real data to show the

effectiveness of the proposed automatic rule generation method. The method is shown to generate

decision rules that best describe the decision criteria for the classes in the experiment. Figure 1

8



shows the general 3 layer neural network used to generate the rules. The input layer consists of nN

number of input nodes where N is the number of fuzzy features or criteria (such as properties and

relationships) and n is the number of linguistic levels used to partition each feature. For the hidden

layer, there are nN hidden nodes where each node is connected to all but one (i.e., it is connected

to n- 1) input nodes representing levels within each feature. The top layer fully connects the hidden

layer. In the experimental results shown here, we used 5 fuzzy linguistic levels to represent each

feature, therefore, each hidden node has 4 connections. Other types of network structures were

also tried, however the one described above produced the best results. The target values in the

training data were chosen to be 1.0 for the class from which the training data was extracted, and

0.0 for remaining classes. The feature values were always normalized so that they fall in the range

[0,1]. Figure 2 depicts the trapezoidal fuzzy sets used to model the intuitive notions of the five

linguistic levels LOW (L), SOMEWHAT LOW (SL), MEDIUM (M), SOMEWHAT

HIGH (SH), and HIGH.

1.0

0.8

° *,,,,4,-- 0.6

0.4

0.2

0.0

L SL M SH

J

| / *

0.0 0.2 0.4 0.6 0.8
Discourse

H

!

1.0

Figure 2 • Graphical representations of various fuzzy sets.
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4,1 Example

Figure 3(a) shows a 200×200 image used for training in order to obtain rules that best

describes the object (shuttle) and background. After examining a variety of possible features to be

used, the two best features chosen were the difference entropy and contrast features. For

definitions of the features, see report on membership generation methods. Figures 3(b) and 3(c)

show images using these features. Figure 3(d) shows the scatter plot of the training samples

extracted from two different regions (shuttle and background) in the image. We used 50 samples

from each class. The membership values in each linguistic level for each sample is computed using

the membership functions shown in Figure 2, and these with the corresponding desired targets are

used as training data in the training algorithm described in Section 3. Figure 4 shows the reduced

network after training. All the connections with weights below a value of 0.01 were considered

redundant. Table 1 shows the final weights (which determine the confidence factors of the rules

and criteria) and the p parameter values (which determine the conjunctive or disjunctive nature of

the connective) for the specified nodes in Figure 4. Using the properties for the p values obtained,

the following rules are generated, as discussed in Section 3.

Class Shuttle = (Difference Entropy MvDifference Entropy SHvDifference Entropy H) v

(Contrast SL). (5)

In other words, the rule may be summarized as

RShuttle : IF Difference Entropy is M or SH or H or Contrast is SL

THEN the class is Shuttle.

Similarly,

Class Background = (Difference Entropy SLvDifference Entropy SH) ^

(Contrast L) (6)

and

RBackground " 117Difference Entropy is SL or SH and Contrast is L

THEN the class is Background.

10



Theserulesmakessensesinceby expanding(5) and(6), theexpansionsresultsin theappropriate

cell locationswherethetrainingsamplesarelocatedinFigure3(d).
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Figure 3(a)" image for training, (b) • difference entropy image, and (c)" contrast image.
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Figure 4" Reduced neBvork after training.
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Table 1 • Values of weights and parameter p for the reduced network.

nodel

node2

node3

node4

node5

node6

node7

weights p

0.70 5.48
0.15
0.15

0.94 -0.21
0.06

0.49 7.04
0.01
0.50

0.94 4.00
0.06

1.0 0.78

1.0 1.88

1.0 1.88

4.2 Segmentation

Figure 5(a) shows a 200x200 test image for segmentation using the reduced network after

training shown in Figure 4. Figures 5(b) and 5(c) show images of the two features (difference

entropy and contrast) that were chosen previously. After employing the shrink and expand

algorithm to remove noise points, the resulting segmented image is shown in Figure 5(d).

5. Summary and Conclusions

In this paper, we introduced a new method for automatically generating rules for high level

vision. The range of each feature is fuzzily partitioned into several linguistic intervals such as

LOW, MEDIUM and HIGH. The membership function for each level is determined, and the

membership values for an observed feature value in each of the linguistic levels is calculated using

these membership functions. The memberships are then aggregated in a fuzzy aggregation

network. The networks are trained with typical data to learn the aggregation connectives and

connections that would give rise to the desired decisions. The learning process can also be made to

discard redundant features. The networks that finally result from this training process can be said

to represent rules that may be used to make the decisions. Riseman et al used similar rules for

l
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segmentation and labeling of outdoor scenes, but the weights used in the aggregation scheme were

determined empirically [191. The ability to generate rules that can be used in fuzzy logic and rule-

based systems directly from training data is a novel aspect of our approach. One of the issues that

requires investigation is the choice of the number of linguistic levels and its effect on the decision

making process.
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Possibility Expectation and Its Decision Making Algorithm

James M. Keller and Bolln Yan

Electrical and Computer Engineering

University of Missouri

Coltunbia, MO 6521 i, USA

Abstract

co/

The fuzzy integral has been shown to be an effective tool for the aggregation of evidence in

decision making. Of primary importance in the development of a fuzzy integral pattern

recognition algorithm is the choice {construction) of the measure which embodies the

importance of subsets of sources of evidence. Sugeno fuzzy measures have received the most

attention due to the recursive nature of the fabrication of the measure on nested sequences of

subsets. Possibility measures exhibit an even simpler generation capability, but usually

require that one of the sources of information possess complete credibility. In real

applications, such normalization may not be possible, or even desirable. In this report both

the theory and a decision making algorithm for a variation of the fuzzy integral are presented.

This integral is based on a possibility measure where it is not required that the measure of the

universe be unity. A training algorithm for the possibility densities in a pattem recognition

application is also presented with the results demonstrated on the shuttle-earth-space training

and testing images.

1. Introduction

Decision making is a basic problem in science, engineering, and even in dally life. There

are often conflictingrequirements of low error rates and minimum computation time to

reduce the cost. The purpose of this paper is to propose the concept of possibility expectation

via the possibility integral as a decision making scheme, which can be used to construct

optimal decision making algorithms. A possibility expectation is a value of nonlinear

integration of two pieces of information, namely, an evidence function h(x) and a possibility

measure Pos(,). A possibility measure is a monotonic set function with the property that the

measure of the universe X can be less than or equal to unity.

An example of possibility expectation is the following: In the court room, although the

witnesses for both the defendant and plaintiff promise that they will tell the truth, the judge

still needs to assign the grade of credibility (possibility densities) to each person to evaluate

what the person says (evidence). The Judge will integrate what each group of witnesses sald with

his belief in that group's credibility (possibility measure). Then the Judge makes his decision

i
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(possibility ex-pectation).

In multicriteria decision making, as can be found in most pattern recognition problems.

the value of each source of information (and thus all subsets of sources) toward each

alternative can be different. For example, "greenness" may be a very important feature for

recognizing certain types of trees in an image; whereas it may be quite unimportant as a feature

for a roof of a building. This difference in the importance or credibility of subsets of

information sources will be encoded in a possibility measure. The degree to which a given

image region is green, to continue the example, is objective evidence supplied by the

information source. After collecting all such objective information, it is the job of the decision

making algorithm to fuse the objective evidence together with the worth of the sources. In our

methodology, this will be accomplished by utilizing the possibility integral, a variation of the

fuzzy integral [ 11.

The particular possibility measures which we describe generalize fuzzy measures in that it

is not required that the measure of the entire domain of discourse be one. In a pattem

recognition problem, it may not be possible, or may not be desirable to force one of the sources

of information to have "perfect credibility". By relaxing this requirement, not only do we

match real situations better, we also provide the opportunity to create better decision making

algorithms, as we shall see later.

For a pattern recognition environment, a method to learn the possibility densities (values

upon which the measure is generated) from training data is given. The results of the

subsequent algorithm are used to segment a shuttle from the earth and space backgroud.

2. Possibility Measures and Possibility Integral

Definition 2.1 A set function Pos(.): 2X --->[0, I] is called a possibility measure if it satisfies the

following properties:

(11 Pos(0} = 0, Pcr,(_ < 1.

(2) IrA, Be 2Xand A C B. then Pos(A) < Pos(B),

(3) Pos( ,-,_C')A_) = sup [ Pos( Aj )1.
_11.=1

Note: If X is finite, a possibility measure is not a fuzzy measure when Pos(X) < 1; it is the

same as fuzz5." measure only when PosIX) = 1. If X is infinite, a possibility measure is not a fuzzy

measure in general [2]. Purl and Ralescu [3] give two counterexamples which show that, even in

"nice" cases, a possibility measure is not a fuzzy measure in the infinite case.
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Definition 2.2 Let X = {xj I j = 1..... n } be a flLnite set and let Pos be a possibility measure on 2x.

The set {pJ = Pos({xj })l j = 1 ..... n }is called the set of possibility densities for Pos.

By definition of the possibility measure, it is clear that the measure of any subset A of X

can be generated by

Pos(A)= maxtpJ },

and hence, a possibility measure is easily generated by Its densities.

We note that possibility theory can be induced not only from the nested bodies of evidence

within the Dempster-Shafer theory [4], but also from the fuzzy sets introduced by Zadeh [6]. A

fuzzy set F is a set whose elements are characterized by the membership grade function

_F_X): X --->[0, I]. A value of MF(X)expresses the grade of membership that an element x_ X

belongs to the fuzzy subset F of X. Let ItF{X) = MF(X)be a possibility distribution induced by a

fuzzy set F. In general, a possibility distribution is thought of as an elastic restriction on the

values within a domain of discourse which a fuzzy variable may assume [5]. The fuzzy set F

provides the meaning of the restriction. A possibility measure is defined as

Pos(A) = sup[ _F(X) ] for all A_ 2X. Thls relationship holds also for non-normal fuzzy sets [6].
]tEA

Although a fuzzy set and a possibility distribution have a common mathematical expression,

the underlying concepts are different [5].

Our possibility measures are non-normalized generalizations of what are referred to as S-

decomposable measures [7, 8], these being a class of fuzzy measures which are easily

computable.

Definition 2.3 Let h(x} be a function such that h: X -->[0. I ]. and let Pos(.) be a possibility

measure of 2 x . The possibility integral or the possibility expectation of h(x) with respect to

Pos(-) is defined as

_, h(x) o post-) = sup [ a ^ _.'_ l,
tx_ [O.II

whereaa= {x I h(x) _>a}.

When X = {x i I I = 1 ..... n }is finite, ffwe reorder X such that h(x I) > h{x2) > ... _>l_Xn),

then the possibility integral can be written as

_x h(x) o Post') = _/[ hCxj) APos(Aj) ], where _ = {x I, x2 ..... xj}.
j= I

t
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The rationale of the possibility, expectation is to find the source within the universe where

both the informationvalue h(xj ) and the possibility measure Pos(Aj ) are compatibly large, that

is, where the feasibility of the data and the reliability of a subset of sources is jointly optimal.

The fuzzy integral developed by Sugeno [1] has the same formulation with the exception

that a fuzzy measure is used in lleu of the poss_%ility measure. One of the advantages of the

possibility integral is that the measures Pos(Aj ! are easily calculated from the densities by the

recursh'e relationship

pos(A!! = pc_({Xl} ) = pl;

Pos(Aj ) = POS(Aj_ I U{xj })= POS%_ I) vpJ. --

In contrast, for Sugeno fuzzy measure g% with the fuzzy densities [ gl ..... gn }, this

recursh'e definition becomes

g%(Al )=g%({xl} ) =gl,

g%(Aj ) = gk(Aj_ 1 k) {xj }) = gk( Aj. 1 ) + gJ + _" gJ gk ( Aj_ 1},

where k > -1 [1, 10, 11]. The value of _,must be calculated from the equation

II ( 1 + tgi) = 1+%, Ill.
i=|

If one is going to try to learn a measure (Iteratlvely) from training data, the amount of

computations necessary to learn a possibility measure, and then evaluate its possibility

integral is considerably less than that required for a Sugeno fuzzy measure and its fuzzy

Integral.

For a multlclass pattem recognition problem (or any multicriterla decision making

problem), the set X represents sources of information (criteria). Each class (alternative) will

have its own evidence function hi: X -->[0, I] to assess the feasibility that the decision is class i

(alternative i) from the standpoint of each individual source, xj. Also, each class will have its

own possibility measure Poei which determines the worth of all subsets of sources in deciding

that a particular object belongs to class i. Finally., the collection of possibility integrals

el = _x hi(x) o Posi('),

gives a class-indlvidualized "fusion" of the direct evidence with the worth of that evidence. A

final crisp decision can be made from the possibility expectations (integral values), for

example, pick the class corresponding to the maximum possibility expectation. Alternately,

these expectation values can used as confidences for later processing.

3. Properties of The Possibility Integral

Several interesting properties of the possibility integral are proved in [I 1]. Of particular
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w interest to the algorithm presented in the next section are the following two results.

Theorem 3.1 0 < i- h(x) o Pos(') < Pos(X).
JX

w

w

Thecarem 3.2 If hl(X) <h2(x) Vx:

_x hl(X) o Pos('] < _x h2(x) o Pos(-),

_x hl(x) o Pos(.) = Ix h2(x) o Pcm('),

if_ > hl(X)foraUx,

ifPcm(X') < hi(x) forallx.
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4, Decision Rule and Training Algorithm

In the procedure given below, we consider a two class pattern recognition problem, or a two

alternative decision process. The approach can be extended directly to multiple classes, but

from the particular structure of the training mechanism, it would be more appropriate to view

it as a series of two class problems, either as pa]znvise distinctions, or as each class against all

of the remaining classes. Since the possibility integral algorithm dose not create geometric

decision boundaries in feature spaces (as, for example, Bayes Decision Theory), the second

approach is reasonable and contains fewer subdecisions which need to be made to extend this

to multiple classes.

The actual decision algorithm utilizes the nature of the possibility integral to split the

input objects (as represented by the evidence function h(x) ) into four groups to reduce the

computational load. The In-st two groups deal with the case where the strength of all objective

evidence for one class outweighs that for the other. In most cases, this corresponds to the fact

that, in a pattern recognition problem, a majority of the data are easily distinguished (being

quite typical of their class). Decision rules 1 and 2 below are a consequent of Theorem 3.2

assuming that the possibility measures for both classes in this case are identical. Of course,

there are problems where the objective evidence for one class can dominate that for the other

class, and yet, the object belongs to the later. This could happen if the worth of the source, i.e.,

the densities, are vastly different between classes. During training, this condition is

monitored, and if the training data produce such outcomes, the first two rules are abandoned,

forcing all training samples to be "conflict data".

The initial definition of "conflict" is an object where the evidence function for one class

does not dominate that of the other. In this case, we split the training data (and also the

unknown test objects) into two subgroups based on the class receiving the highest degree of

support from any source. For each group, two possibility measures are formed which minimize

the total misclassification of the training data. The purpose of partitioning the data in this

!
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manner is to reduce the size of the training set since our initialtraining scheme is

a complete search through a quantized set of all pairs of density, functions. To reduce further

the amount of computations, we note that the value of a possibility integral cannot be larger

than the maximum of the function being integrated. This fact allows us to restrict the range of

density values to be no larger than the maximum evidential support in the training set.

(Reducing the training sets gives more opportunity to invoke this restriction). Optimal pairs of

density functions (in term of minimal error rate on the training data) are formed and then used

in the testing cycle. There are 4 possibility measures generated during training - one from each

class in each of the two subgroups of conflict data.

The decision algorithm is summarized-below.

BEGIN

FOR each feature data vector DO obtain hl(X j ) for allJ and h2(x j ) for all J;

(1) IF hl(X j ) > h2(x j) for all J, THEN the feature data vector belongs to Class I.

(2) ELSE

(3)ELSE

If

IF hl(X j ) < h2(x j ) for all J, THEN the feature data vector belongs to class 2.

Vhl(Xj) _> _/h2(xj), Then
j=1 j=l

_/[h2(xj)A PosI2(Ajllel= J=,V[hl(Xj) A POSll(Aj)], _2 = J=,

_/[h2(x j) A Pos22(_)lel= J=,Vlhl(xJ)A Pos21(_)], e2= Jo:

End_t

If e i > e2 , Then the feature data vector belongs to class I,

Else the the feature data vector belongs to class 2.

End If

Era>IF

END FOR

END.
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5. Experimental Results

Two shuttle-earth-space intensity images were used in the experiment, in which all the

data from the two images were treated as "conflict data' and hence only the third decision rule

applies .............................................

The training image is shown in Fig. 5. i and the test image is shown in Fig. 5.5. Three

texture feature images (contrast, difference, and the entropy) were derived from the training
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and the test images respectively, i.e., three feature images for training and three feature images

for testing (For the definition of these features, please see section on membership generation

techniques in this report). -The three feature images, used for training the possibility densities,

are shown in Fig. 5.2. The three feature images used in testing are shown in Fig. 5.6.

The possibility distribution (or membership function) of each class in each feature, that

used to generate the evidential function h(x), is determined by using the possibilistic clustering

algorithm on the histograms of each class in each feature, which is described in another

section of this report.

While training, the possibility densities were determined with the "perceptron criterion"

(i.e., minimize the decision error) from the feature images in Fig. 5.2. The segmentation result

corresponding to the possibility measure(s) for the training image is shown in Fig. 5.3, in

which the shuttle and its background are clearly segmented, except that the shuttle body seems

disconnected. To improve the connection of the shuttle body, the possibility densities of the

shuttle were raised slightly, from which the segmentation result in Fig. 5.4 and the result in

Fig. 5.7 (for the test case) were obtained. These results can be improved quite easily with a

shrink-expand operation.

6. Conclusion

In this paper, a decision making algorithm based on a variation of the fuzzy integral was

proposed. The possibility integral has a particularly simple generation capability. The

algorithm was run on the shuttle-earch-space images, reasonable good results were obtained.
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Fig 5.1 Intensity training image.
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Fig 5.2 (top left) Intensity training image.
(top right) Contrast feature image.
(bottom left) Difference feature image.
(bottom right) Entropy feature image.
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Fig 5.3 Segmented imagel using the possibility inte_'al algorithm.
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Fig 5.4 Segmented image2 using the possibility integral algorithm.
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Fig 5.5 Intensity testing image.
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Fig 5.6 (top left) Inte_ity testing image.
(top right) Contrast feature image.
(bottom left) Difference feature image.
(bottom right) Entropy feature image.
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Fig 5.7 Segmented testing image using the possibility integral algorithm.
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Calculation of Membership Functions

i

i

Our work in this area has progressed nicely. We have designed and implemented a

new algorithm to generate membership values from a set of training data using a multi-layer

neural network. This is in addition to the progress we made in the transformation of

• "probability density functions" into possibility distributions for use in assigning

membership values to individual points as reported in the third quarter report.
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N93"
Membership Generation Using Multilayer Neural Network

18227

Jaeseok Kim

University of Missouri

Columbia, Mo 65211

There has been intensive research in neural network applications to pattern

recognition problems. Particularly, the back-propagation network has attracted many

researchers because of its outstanding performance in pattern recognition applications. In

this section, we describe a new method to generate membership functions from training

data using a multilayer neural network. The basic idea behind the approach is as follows.

The output values of a sigmoid activation function of a neuron bear remarkable resemblance

to membership values. Therefore, we can regard the sigmoid activation values as the

membership values in fuzzy set theory. Thus, in order to generate class membership

values, we first train a suitable multilayer network using a training algorithm such as the

back-propagation algorithm. After the training procedure converges, the resulting network

can be treated as a membership generation network, where the inputs are feature values and

the outputs are membership values in the different classes.

This method allows fairly complex membership functions to be generated because

the network is highly nonlinear in general. Also, it is to be noted that the membership

functions are generated from a classification point of view. For pattern recognition

applications, this is highly desirable, although the membership values may not be indicative

of the degree of typicality of a feature value in a particular class.

w
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w
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A. Typical Example

In this section we show an example of a membership network that can generate

membership values for "shuttle" and "background". The network we used had one input

unit, eight hidden units and two output units. Input data to the network were feature values

and the observed activation values of the outputs after the network was trained with the

back-propagation algorithm were considered as the degree of belonging to the particular

classes. In this experiment, there were only two classes: object (shuttle) and background

(space and earth). The training image is shown in Fig 1.



Wegeneratedmembershipfunctionscon'espondingto four texturefeatures.These

four featureimagesareshownin Fig 2. These features were contrast, difference, entropy,

difference entropy, and_homogeneity. They are defined by

Contrast = n 2 p(ij) .
n=0 i= lj=l

Entropy =- i = l )= 1 p(ij) log (p(i,/))

N.

Difference Entropy = "k ]_=1 Px.y(k) log (Px.y(k))

1 p(i,])
Homogeneity- i= I)= 1 1+(i-j)2

where p(ij) is the (i,j)-th entry in the spatial gray level dependence matrix, and Ng is the

number of gray levels. Also, Px-y(k) is defined by
N. N.

Pxy(k)='i_= l j=_l P(id3 such that i,-jl=k

(See [1,2] for details.)

All feature values were nbrmaIi-zed to lie between 0-and 255. The ti'aining sets were

formed by manually picking samples from the object and background regions of all four

texture feature images. There were 100 samples for each class. After the network was

trained, we ted gray values (0-255) to the input unit and collected the activation values of

output units to generate the membership functions. Fig 3.1 and Fig 3.2 show the

histograms of the features for the background and the object, and the corresponding

membership values for all four features.

B. Discussion

Fig 3.1 (c) shows the membership functions of object and background for contrast

feature. The membership functions are very steep because only one or two gray level

values overlap between the histograms Of the background and the object. One the Other

hand, Fig 3.2 shows broader membership functions because of a broader overlapping area

between the histograms for the entropy and homogeneity features. An interesting

observation is that when histograms of object and background overlap, the network sets the

U

I

m

[]

R

|

i

m

i

il

i

i

[]

D

i

i

i
I

I



w

w

==

= .

l

= :

w

crossover point at the middle of the overlapping area. This reveals the nice membership

generation capabil)ty of the neural network.

C. Conclusion

This heuristic method of generating membership function has some merits

compared to the probability-possibility transformation method described in our third

quarterly report. The transformation method requires a precise estimation of a probability

density function. In practice, this is difficult to achieve when the number of training

samplesis small. Also the resu!tingshape of the membership function is almost the same as

the probability density function. In order words, membership functions generated by these

methods seem to have a frequency interpretation of the data. Fig 4 and Fig 5 show

examples of the transforrriad_rr_asedmembership functions obtained with 1,000 samples

per feature pe r class. Evenwith; th_s high number, the functions are rather noisy. _

One short coming 'of this heuristic method is that the memberships do not represent
"" 2" "_.. : _ _-'_,"

"typicality". However, _if the m_mberships are to be used subsequently in a pattern

recognition algorithm then this method will provide better classification results.
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Clustering Methods

At the Third Intemational Workshop on Neural Networks and Fuzzy Logic, we

presented our new approach of possibilistic clustering applied to the recognition of Piano -

Quadric clusters. In what follows, we present the paper which will appear in the

proceedings of that Workshop, followed by other examples of the results of the algorithms.

Several examples are of images of the shuttle.
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Abstract

Clustering methods have been used extensively in computer vision and pattern

recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional)

clustering in that total commitment of a vector to a given class is not required at each

iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not

only hypervolume clusters, but also clusters which are actually "thin shells", i.e., curves

and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy

C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the

memberships of a data point across classes sum to one. This constraint was used to

generate the membership update equations for an iterative algorithm. Unfortunately, the

memberships resulting from FCM and its derivatives do not correspond to the intuitive

concept of degree of belonging, and moreover, the algorithms have considerable trouble in

noisy environments. Recently, we cast the clustering problem into the framework of

possibility theory. Our approach was radically different from the existing clustering

methods in that the resulting partition of the data can be interpreted as a possibilistic

partition, and the membership values may be interpreted as degrees of possibility of the

points belonging to the classes. We constructed an appropriate objective function whose



minimum will characterize a good possibilistic partition of the data, and we derived the

membership and prototype update equations from necessary conditions for minimization of

our criterion function. In this paper, we show the ability of this approach to detect linear

and quartic curves in the presence of considerable noise.
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I. Introduction

w

z

Clustering has long been a popu2_ approach to unsupervised pattern recognition. It

has become more attractive with the connection to neural networks, and with the increased

attention to fuzzy clustering. In fact, recent advances in fuzzy clustering have shown

spectacular ability to detect not only hypervolume clusters, but also clusters which are

actually "thin shells", i.e., curves and surfaces [1-7]. One of the major factors that

influences the determination of appropriate groups of points is the "distance measure"

chosen for the problem at hand. Fuzzy clustering has been shown to be advantageous over

crisp (or traditional) clustering in that total commitment of a vector to a given class is not

required at each iteration.

Boundary detection and surface approximation are important components of

intermediate-level vision. They are the first step in solving problems such as object

recognition and orientation estimation. R_ently, it has been shown that these problems can

be viewed as clustering problems with appropriate distance measures and prototypes [1-7].

Dave's Fuzzy C Shells (FCS) algorithm [2] and the Fuzzy Adaptive C-Shells (FACS)

algorithm [7] have proven to be successful in detecting clusters that can be described by

circular arcs, or more generally by elfipdcal shapes. Unfortunately, these algorithms are

computationally rather intensive since they involve the solution of coupled nonlinear

equations for the shell (prototype) parameters. These algorithms also assume that the

number of clusters are known. To overcome these drawbacks we recently proposed a

computationally simpler Fuzzy C Spherical Shells (FCSS) algorithm [6] for clustering

hyperspherical shells and suggested an efficient algorithm to determine the number of

clusters when this is not known. We also proposed the Fuzzy C Quadric Shells (FCQS)

algorithm [5] which can detect more general quadric shapes. One problem with the FCQS

algorithm is that it uses the algebraic _di_iance_, which is highly nonlinear. This results in

unsatisfactory performance when the data is not very "clean" [7]. Finally, none of the

k-.,



algorithms c,_n handle situations in which the clusters include lines/planes and there is much

noise. In [8]. we addressed those issues in a new approach called Plano-Quadric

Clustering. h this paper, we show how that algorithm, coupled with our new possibilistic

clustering; czn accurately find linear and quadric curves in the presence of noise.

Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-

Means (FCM) algorithm [9]. The FCM uses the probabilistic constraint that the

memberships of a data point across classes must sum to one. This constraint came from

generalizing a crisp C-Partition of a data set, and was used to generate the membership

update equations for an iterative algorithm. These equations emerge as necessary conditions

for a global minimum of a least-squares type of criterion function. Unfortunately, the

resulting memberships do not represent one's intuitive notion of degrees of belonging, i.

e., they do not represent degrees of "typicality" or "possibility".
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There is another important motivation for using possibilistic memberships. Like all

unsupervised techniques, clustering (crisp or fuzzy) suffers from the presence of noise in

the data. Sir_e most distance functions are geometric in nature, noise points, which are

often quite distant from the primary clusters, can drastically influence the estimates of the

class protot2,pes, and hence, the final clustering. Fuzzy methods ameliorate this problem

when the number of classes is greater than one, since the noise points tend to have

somewhat smaller membership values in all the classes. However, this difficulty still

remains in tie fuzzy case, since the memberships of unrepresentative (or noise) points can

still be significantly high. In fact, if there is only one real cluster present in the data, there is

essentially no difference between the crisp and fuzzy methods.

On the other hand, if a se[ of feature vectors is thought of as the domain of

discourse for a collection of independent fuzzy subsets, then there should be no constraint

on the sum of the memberships. The only real constraint is that the assignments do really

represent fuzzy membership values, i.e., they must lie in the interval [0,1]. In [10], we cast
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the clustering problem into the framework of possibility theory. We briefly review this

approach, and show it's superiority to recognize shapes from noisy and incomplete data_

lI. Possibilistic Clustering Algorithms

The original FCM formulation minimizes the objective function given by

C N C

= i _'1 j =Z1 (btiJ)'nd2ij' _1J (L,U) subject to /1., = 1 for allj. (1)
= i=

,,,}

In (1), L = (21 ..... 2C) is a C-tuple of prototypes, _ is the distance of feature pointxj to

cluster 2 i, N is the total number of feature vectors, C is the number of classes, and U =

[/.tO] is a C xN matrix called the fuzzy C-partition matrix [9] satisfying the following

conditions:

Ply _ [0,1] for all i and j,

N

0 < ]_ u... < N for all i.
j=1

i__._l ]'/Ij = 1 for all j, and

Here,/.t o is the grade of membership of the feature point x) in cluster 2 i, and m _ [1,oo)

is a weighting exponent called the fuzzifier. In what follows, 2 i will also be used to denote

the ith cluster, since it contains all of the parameters that define the prototype of the cluster.

: -! !!

v Simply relaxing the constraint in (1) produces the trivial solution, i.e., the criterion

function is minimized by assigning all memberships to zero. Clearly, one would like the

memberships for representative feature points to be as high as possible, while

unrepresentative points should have low membership inall clusters. This is an approach

consistent with possibility theory [11]. The objective function which satisfies our

requirements may be formulated as:



c N
= (J-Zij) d + (1 mJm(L'U) i= 1 j = i= j = 1 "

(2)

_z

IN

m

II

where Hi are suitable positive numbers. The first term demands that the distances from the

feature vectors to the prototypes be as low as possible, whereas the second term forces the

t.tij to be as large as possible, thus avoiding the trivial solution. The following theorem,

proved in [9], gives necessary conditions for minimization, hence, providing the basis for

an iterative algorithm.

Theorem:

Suppose that X = {x 1, x 2 ..... XN} is a set of feature vectors, L (J'l ..... A,c) is a

C-tuple of prototypes, _.
O is the distance of feature point xj to the cluster prototype &i, (i

= 1..... C; j = 1 ..... N), and U = [I.tij] is a C xN matrix of possibilistic membership

values. Then U may be a global minimum for Jm(L,U) only if /.tij = 1 + rti

The necessary conditions on the prototypes are identical to the corresponding conditions in

the FCM and its derivatives.

Thus, in each iteration, the updated value of/_i./ depends only on the distance of x./.

from k.i, which is an intuitively pleasing result. The membership of a point in a cluster

should be determined solely by how far it is fi'om the prototype of the class, and should not

be coupled to its location with respect to other classes. The updating of the prototypes

depends on_e distance measure chosen, and will proceed exactly the same way as in the

case of the FCM algorithm and its derivatives.

The value of r/_determines the distance at which the membership value of a point in

a cluster becomes 0.5 (i. e., "the 3 dB point"). Thus, it needs to be chosen depending on

the desired "bandwidth" of the possibility (membership) distribution for each cluster. This
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value could be the same for all clusters, if all clusters are expected to be similar. In general,

it is desirable that r/_ relates to the overall size and shape of cluster J-i- Also, it is to be

noted that rli determines the relative degree to which the second term in the objective

function is important compared to the first. If the two terms are to be weighted roughly

equally, then r/i should be of the order of d 2. In practice we find that the followingq.

definition works best.
N

md 2
11ij ij

j=l
r/i- N

j=l

(3)

This choice makes r/i the average fuzzy intra-cluster distance of cluster 2i- The value of r/i

can be fixed for all iterations, or it may be varied in each iteration. When _i is varied in

each iteration, care must be exercised, since it may lead to instabilities. Our experience

shows that the final clustering is quite insensitive to large (an order of magnitude)

variations in the values of/7/.

III. The Possibilistic C Plano-Quadric Shells Algorithm

Suppose that we are given a second degree curve k i characterized by a prototype

vector

T
Pi = [Pi 1, Pi2 ..... Pir]

to which it is desired to fit points xj obtained through the application of some edge

detection algorithm. If a point x has coordinates [x 1..... Xn]. then let

2q = [x , x 2 ..... x n, XlX 2 ..... r(n_ 1)Xn,Xl, x2 ..... Xn, 1] T .

r _ When the exact (geometric) distance has no closed-form solution, one of the methods

suggested in the literature is to use what is known as the "approximate distance" which is



the first-order approximation of the exact distance.It is easy to show [12] that the

approximatedistanceof apointfrom acu_,eis givenby

d2Aij = dA2(Xj,).i.) = ivd_Q2QiJij_2- piT_D_iJDjTpi
(4)
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where VC_Qij is the gradient of the distance functional

2
piTq = [Pil, Pi2 ..... Pir][X 2, x 2 ..... Xn, XlX2 .... ,X(n_ l)Xn,Xl, x 2 ..... Xn, 1]T

evaluated atxj. In (4) the matrix Dj is simply the Jacobian ofq evaluated atxj.

One can easily reformulate the quadric shell clustering algorithm with _dZAijas the

underlying distance measure. It was shown in [8] that the solution to the parameter

estimation problem is given by the generalized eigenvector problem

FiPi = li GiPi, (6)

where

Fi =

Mj = qj qT, and

U

_
(5) •

u

u

im
IN

B

N

Gi = j =Z 1 (I.tq) m Dj Dj T

which can be converted to the standard eigenvector problem if the matrix Gi is not rank-

deficient. Unfortunately this is not the case. In fact, the last row of Dj is always [0 ....

,0]. Equation (6) can still be solved using other techniques that use the modified Cholesky

decomposition [13], and the solution is computationally quite inexpensive when the feature

space is 2-D or 3-D. Another advantage of this constraint is that it can also fit lines and
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planes in addition to quadrics. Our experimental results show that the resulting algorithm,

which we call the Possibilistic C Plano-Quadric Shells (PCPQS) algorithm, is quite robust

in the presence of poorly defined boundaries (i. e., when the edge points are somewhat

scattered around the ideal boundary curve in the 2-D case and when the range values are not

very accurate in the 3-D case). It is also very immune to impulse noise and outliers. Of

course, if the type of curves required are restricted to a single type, e.g., lines, or circles,

or ellipses, simpler algorithms can be used with possibilistic updates, as will be seen.

IV. Determination of Number of Clusters

The number of clusters C is not known a priori in some pattern recognition

applications and most computer vision applications. When the number of clusters is

unknown, one method to determine this number is to perform clustering for a range of C

values, and pick the C value for which a suitable validity measure is minimized (or

maximized) [14]. However this method is rather tedious, especially when the number of

clusters is large. Also, in our experiments, we found that the C value obtained this way

may not be optimum. This is because when C is large, the clustering algorithm sometimes

converges to a local minimum of the objective function, and this may result in a bad value

for the validity of the clustering, even though the value of C is correct. Moreover, when C

is greater than the optimum number, the algorithm may split a single shell cluster into more

than one cluster, and yet achieve a good value for the overall validity. To overcome these

problems, we proposed in [8] an alternative Unsupervised C Shell Clustering algorithm

which is computationally more efficient, since it does not perform the clustering for an

entire range of C values.

Our proposed method progressively clusters the data starting with an overspecified

number Cma.,¢ of clusters. Initially, the FCPQS algorithm is run with C=Cmax. After the

algorithm converges, spurious clusters (with low validity) are eliminated; compatible



clustersaremerged;and pointsassignedto clusterswith goodvalidity are temporarily

removedfrom the-datasetto reducecomputations.TheFCPQSalgorithmis invokedagain

with the remaining feature points. The above procedureis repeateduntil no more

elimination,merging,or removing occurs,or until C=I.

V. Examples of Possibilistic Clustering for Shape Recognition

Figures 1 and 2 show the detection of a circular "fractal edge" from a

synthetically generated image. Figure l(a) is the original composite fractal image; figure

1(b) shows what a gray-scale edge operator finds (or doesn't fred); figure 1(c) is the output

of the horizontal fractal edge operator; with figure l(d) giving the maximum overall

response of the fractal operators in four directions. Figure 2(a) depicts the (noisy)

thresholded and thinned result from figure l(d). Figure 2(b) gives the final prototype found

by the FPQCS (which, since there is only one cluster present, is the same as the crisp

version). Note how the presence of noise distorts the final prototype. Figure 2(c) shows

the possibilistic algorithm output, which is superimposed on the original image in figure

2(d). The results of the PPQCS algorithm are virtually unaffected by noise. Several

examples comparing crisp, fuzzy and possibilistic versions of clustering can be found in

[6,8,101.

Figure 3 depicts the algorithm applied to the image of a model of the Space Shuttle.

Figure 3(a) is the original image. Figure 3(b) gives the output of a typical edge operator.

Note that, due to the rather poor quality of the original image, the edges found both noisy

and incomplete. This data was then input into the possibilistic plano-quadric clustering

algorithm. Figure 3(c) gives the eight complete prototypes which were found after running

the algorithm. Finally, figure 39(d) displays the prototype drawn only where sufficient

edges points exist.

VI. Conclusions
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In this paper,wedemonstratedhov,-ournew possibilisticapproachto objective-

function-basedclusteringcoupledwith ourpiano- quadf.,cshellsalgorithmcan recognize

first andseconddegreeshapesfrom incompleteand noisyedgedata.This approachis

superiorto bothcrispandfuzzy clustering,aswell asto traditionalmethodssuchasthe

HoughTransform. Extensionsof this approachto otherclassesof shapesis currently

underway.
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Figure I. Detection of a fractal circular edge.
(a) Upper Left. Original fractal composite image.
(b) Upper Right. Output of gray scale edge operato;.
(c) Lower Left. Output of"horizontal" fractal edge operator.
(d) Lower Right. Results of .M_ximum magnitude o." outputs ot" four directions of fractal operators.
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Figure 3. Recc.gniti.on of Shuttle model boundaries.
(a) Upper Lefe Original Shuttle image.
(b) Upper Rigkk Incomplete and noisy edges found by edge operator.
(c) Lower Left. Prototypes found by Possibilistic Plano-Quadric clustering.
(d) Lower Rigkr. Possibilisfic prototypes superimposed drawn where there is sufficient edge

information.
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Pose Estimation Using Possibilistic Clustering

In the Third Quarter report, we described how the Unsupervised C Quadric Shells

(UCQS) algorithm could be used to estimate the pose of the shuttle. The shuttle's image is

taken from the back so that the exhaust nozzles and the back edges of the three wings are

apparent. Given an original unrotated image, the exhaust nozzles can be parametrized by

three circles, and the three wings can be parametrized by three straight lines. These

parameters are easily determined by the UCQS algorithm. As the shuttle rotates, the shape

of the nozzles will change from circles to ellipses, so will the orientation of the straight

lines representing the three wings. The UCQS algorithm is used in order to cluster this

edge image and determine the parameters of the ellipses and lines. Finally, these parameters

can be used to solve for the translation and rotation parameters, as long as the translation is

made in the image plane. In fact, depth information can also be derived from the change in

the size of the nozzles.

We als0 consider the case where only line information is available. Once again, our

new possibilistic plano-quadric clustering approach is used to detect and recognize the

linear segments. In what follows, derivation of pose parameters is given for both the case

where three corresponding line segments have been identified, and where one circle and

one line have been matched.
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POSE ESTIMATION:

The 3-D object attitude in space can be determined from a single perspective image.

Dhome et al [1] developed a method to solve for the three-dimensional attitude of an object

based on the perspective projection of three image lines. Krishnapuram & Casasent [2]

developed a method for determining two of the three rotation angles necessary to describe

an object attitude in 3-D space from a single perspective projection of one circle.

I. Determination of The Attitude of One Object From Three Lines:

The perspective projection of a point Pi = (Xi, Yi, Zi) on an image is the point Pi

= (xi, Yi, zi) = (Xi f/Z, Yi f/Z, f). Let li be an image line characterized by a vector vi =

(ai, bi, 0) and a point Pi = (xi, Yi, f). li is the perspective projection of a space line Li.

Therefore it lies in the "interpretation plane" containing the origin of the coordinate system

O and the image line li. The normal Ni to this plane is perpendicular to vi and the vector

Opi. Thus Ni = vi ¥ Opi = (bi f, -ai f, di) T, where di = ai Yi - bi xi is the Euclidean

distance between the center of the image and line li. If Vi = (Ai, Bi, Ci) T is the director

vector of the space line Li, then it must be orthogonal to Ni, hence Vi. Ni = 0 implying

that"

(Ai, Bi, Ci) T . (bi, -ai, dill') = 0 (1)

Consider three object lines in 3-D space L0i, i = 1..... 3 defined in a model reference frame

(Som). The director vector of L0i is V0i = (A0i, B0i, C0i) T. When the object is rotated in 3-

D space, the lines L0i are rotated into lines L3i. Therefore

(A3i, B3i, C3i) T = Rotl3T (A0i, B0i, C0i) T (2)

where Rotl__ is the rotation matrix.

The perspective projections of lines L3i are the lines 10i. Equation (1) becomes



(A3i, B3i, C3i)T. (b0i, -aOi,d0i/f)T =

Rot13y(A0i, B0i, C0i)T. (b0i, -a0i, d0i/f)T = 0 (3)

where i = 1..... 3 ando_,13,and7 are theunknownrotationanglesaboutx, y, andz axes

respectively. Solving this system of equations is too complicated. A specially defined

model coordinate system (S l m) and a corresponding viewer coordinate system (S Iv) can

be used to simplify the problem [1]. With these coordinate systems, only two rotation

angles ot and 13need to be determined, i.e. the system of equations (3) can be reduced to

two equations and two unknowns. First, ct is found by iteratively solving an 8 th order

equation. Then 13is solved for by substitution. When the three lines are coplanar, or when

they form a junction, the 8 th order equation reduces to a 4 th order equation.

II Determination of the Attitude of an Object From a Circle and a Line:
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Given a circular curve on the x-y plane, and an x' y' view of this curve in a

different coordinate system x' y' z'. The two frames (x, y, z) and (x'. y', z') are related by

a homogenous transformation T, such that

;|t21 t22 t23
=T |t31 t32 t33 '

0 0

A circle of radius r on the xy plane is described by •

_x2+ y2 = r 2 (4)
tz= 0 (5)
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(tl Ix' + tl2Y'+tl3z') 2 +

t31x' + t32y'+t33z' = 0

(t21 x' + t22Y'+t23z') 2 = r2 (6)

(7)

Substituting z' in terms of x' and y' from equation (7) into equation (6) yields the equation

for the 2-D projection of the 3-D circular curve onto an arbitrary x' y' plane. Making use of

the fact that the columns ofT are mutually orthogonal unit vectors, we obtain

2 2

--_ --_ (2t31t32 x,y,=r2(1+ ) x '2 + (1+ ) y,2 + 2 )

t 33 t 33 t33

(8)

"S_ 7

= .

S 7

w

This is the equation of an ellipse in the (x', y', z') frame. If the parameters of this ellipse

are known, equation (8) can be solved for the transformation parameters t31, t32, and t33.

The transformation mattx T can be written as a function of the rotation angles cx, 13,and '7:.

Fcos], cos13

T =|sin], cos13

L

cos]' sin13 sin_ - sin]' cos_

sin]' sin13 sina + cos]' cosot

cos13 sinot
0

cos]' sin13 cosoc + sin]' sinoc 0 "]

sin], sin13 cosa - cos]' sinoc 0 Jcosl3 coso 0
0 1

Having already solved for t31, t32, and t33, a and b can be easily determined from the 3 rd

row of T.

In order to determine the 3 rd angle ],, a line can be used in addition to the circle. In this case

the two rotation angles ot and 13can be determined as discussed previously. Knowing these

two angles, equation (3) with i = 1 (since we have only one line) becomes simple to solve,

since the only unknown is ],.

References

_J



1. M. Dhome. M. Richetin, J-T LapestE, and G. Rives, " Determination of the attitude of
3-D objects from a single perspective view ", in IEEE trans. PAMI, vol. PAMI-11, pp
1265 - 1278, Dec t989.

2. R.Krishnapuram and D. Casasent, " Hough Transform detection of 3-D curves and
target trajectories", in Applied Optics, vol. 28, pp 3479 - 3486, Aug 89.

m

m

g

!
i
m

g

ui

I

I

m

I

m

I

g

D

I

D

z

J

R

g

m

g

I

g

g

l

g



Testing the Algorithms

f
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Besides the examples shown in the earlier reports, and the accompanying papers,

we conclude this report with several examples of the results of our research.

Examples of Determination of Lines

from Different Orientations of the Shuttle

by Possibilistic Clustering

i iii

The following two pages show the use of the Possibilistic Plano - Quadric

Clustering Algorithm to identify the lines on images of the Shuttle. The gray scale images

were synthetically generated by Lincom. A simple edge detector was run on the images.

Thresholded output of the edge data was then sent to the unsupervised clustering algorithm

( which also determines the optimum number of clusters ). The prototypes which were

identified are then displayed. After matching is performed, the approach described above

could be used to determine the rotation angles to specify the pose of the second image

relative to the reference model (first image). A complete solution to this problem is being

proposed for a second year effort.
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Further examples of recognition of linear and quadric curves

The following images were shown at the NASA Workshop, although they were not

included in the paper which is to appear in the proceedings. In each case, the ori#nal image

was processed by an appropriate edge operator, the results were thresholded, and the

resulting edge points were used as input to the possibilistic clusk-_ing algorithm.
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