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The RICIS Concept

The University of Houstonfi@kg,r Lake established the Research Institte for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center {(JSC} and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage an integrated .. .

program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilities, JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-18,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topies of mutual interest
to fts sponsors and researchers. Within UHCL, the missfon is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Businessand Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
mdustry

Moreover, UHCL established rclationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.
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RICIS Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by James M. Keller of the University of
Missouri-Columbia. Dr. Terry Feagin was the initial RICIS research coordinator
for this activity. Dr. A. Glen Houston, Director of RICIS and Assistant Professor
of Computer Science, later assumed the research coordinator role.

Funding was provided by the Information Technology Division, Information
Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between
the NASA Johnson Space Center and the University of Houston-Clear Lake. The
NASA technical monitor for this activity was Robert N. Lea, of the Software
Technology Branch, Information Technology Division, Information Systems
Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.
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Introduction

For the fourth and final quarter of this research contract, we are going to report

progress on the following four Tasks (as described in the contract):

1. Filzzy Set Based Decision Methodologies
Membership Calculation;

Clustering Methods (including derivation of pose estimation parameters);

W N

Acquisition of images and testing of algorithms. -

The report, as has done in the past, consists of "stand alone” sections describing the
activities in each task. It does not duplicate the material contained in the previous quarterly
reports. For details of the earlier work done under this contract, please refer to the first

three quarterly reports.
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Fuzzy Set Based Decision Methodologies

In this section, we report on two new tuzzy set based techniques that we developed
for decision making. These include:
1. A method to generate fuzzy decision rules automatically for image analysis. 7
2. A decision making algorithm based on possibility expectation.

The following pages contain the details of these two pieces of work.



A Method to Generate Decision Rules Automatically for Image Analysis

In this report, we propose a method to generate rules automatically for image analysis such
as segmentation. The method used for segmentation is best described by the following paper
submitted to the North American Fuzzy Information Proceeding Society (NAFIPS '92). For this

report, slight modifications are made where only the experimental éxample differs from the original

paper. .- o
LY -
) 92-18225
s 143 Automatic Rule Generation for High-Level Vision
/!/r) Frank Chung-Hoon Rhee and Raghu Krishnapuram
1%
M Department of Electrical and Computer Engineering

University of Missouri, Columbia, MO 65211

ABSTRACT

Many high-level vision systems use rule-based approaches to solve problems such as

autonomous nav1gatlon and xmage understanding. The rules are usually elaborated by experts.

Howevcr this procedure may be rather tedious. In thxs paper, we propose a method to gcncratef;

, such rules automatically from training data. The proposed method is also capable of filtering out

melevam features and criteria from the rules.

1. Introduction

High-level computer vision involves complex tasks such as image understanding and scene
interpretation. In domains where the models of the objects in the image can be precisely defined,
(such as the blocks world, or even the world of generalized cylinders) existing techniques for
description and interpretation perform quite well. However, when this is not the case (such as the
Vcase of outdoor scenes or extra-terrestrial environments), traditional tcchmques do not work well.

For this reason, we believe that the greatest contribution of fuzzy set theory to computer vision will
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be in the area of high-level vision. Unfortunately, very little work has been done in this highly
promising area. Fuzzy set theoretic approaches to high-level vision have the following advantages
over traditional techniqucsv: i) they can easily deal with imprecise and vague properties,
descriptions, and rules, ii) they degrade more gracefully when the input information is incomplete,
iii) a given task can be achieved with a more compact set of rules, iv) the inferencing and the
uncertainty (belief) maintenance can both be done in one consistent framework, v) they are
sufficiently flexible to accommodate several types of rules other that just IF-THEN rules. Some
examples of the types of rules that can be represented in a fuzzy framework are [1] possibility rules
("The more X is A, the more possible that B is the range for Y"), certainty rules ("The more X is
A, the more certain Y lies in B"), gradual rules ("The more X is A, the more Y is B"), unless rules
[2] ("if X is A, then Y is B unless Z is C").

The determination of properties and attributes of image regions and spatial relatonships
among regions is critical for higher level vision processes involved in tasks such as autonomous
navigation, medical image analysis and scene interpretation. Many high-level systems have been
designed using a rule-based approach [3,4]. In these systems, common-sense knowledge about the
world is represented in terms of rules, and the rule are then used in an inference mechanism to
arrive at a meaningful interpretation of the contents of the image. In a rule-based system to interpret
outdoor scenes, typical rules may be

IF a REGION is RATHER THIN AND SOMEWHAT STRAIGHT

THEN itis a ROAD

IF a REGION is RATHER GREEN AND HIGHLY TEXTURED AND

IF the REGION is BELOW a SKY REGION

THEN it is TREES
Attributes such as "THIN” and "NARROW", and properties such as "BRIGHT" and
"TEXTURED" defy precise definitions, and they are best modeled by fuzzy sets. Similarly, spatial
relationships such as "LEFT OF ", "ABOVE" and "BELOW" are difficult to model using the all-

or-nothing traditional techniques [5]. We may interpret the attributes, properties and relationships

2



as "criteria". Therefore, we believe that a fuzzy approach to high-level vision will yield more
realistic results.

In most rule-based systems, the rules are usually enumerated by experts, although they
may also be generated by a learning pfocess. Several techniques have been suggested in the
literature to generate rules for control problems [6-9], some of which use neural net methods to
model the control system [7-12]. These rsystcms convert a given set of inputs to an output by
fuzzifying the inputs, performing fuzzy logic, and then finally defuzzifying the result of the
inference to generate a crisp output [13]. Some of the methods also "tune” the membership
A functions that define the levels (such as "LOW", "MEDIUM" and "HIGH") of the ihput variables
[10]. While these methods have been shown to be very effective in solving control problems, they
cannot be directly used in high-level vision applications. For example, in control systems, the
fuzzy rules have consequents which are usually a desired level of a control signal whereas in high-
level vision, the consequent clauses are usually fuzzy labels. Also, it is desirable that membership
functions for levels of fuzzy attributes such as "THIN", and "NARROW?", and properties such as
"BRIGHT" be related to how humans perceive such attributes or properties. Hence they have very
little 1o do with the decision making or reasoning process in which they are employed. In many
reasoning systems for high-level vision, confidence (or importance) factors are associated with
every rule since the confidence in the labeling may depend on the confidence of the rule itself. In
this paper, we p'rop:-o'séi a new method to gehcrate rules for high-level vision applications
automatically. The rules so obtained may be combined with the rules given by the experts to
complete the rule base.

In Section 2, we describe several fuzzy aggregation operators which can be used in
hierarchical (multi-layer) aggregation networks for multi-criteria decision making. In Section 3, we
describe how these aggregation networks can be used to filter out irrelevant attributes, properties,
and relationships and at the same time generate a compact set of fuzzy rules (with associated

confidence factors) that describes the decision making process. In Section 4 we present some
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experimental results on automatic rule generation. Finally Section 5 contains the summary and

conclusions.

2. Fuzzy Aggregation Operators

Fuzzy set theory provides a host of very atiractive aggregation connectives for integrating
memberﬁhip values representing uncertain and subjective information [14]. These connectives can
be categorized into the following three classes based on their aggregation behavior: i) union
connectives, ii) intersection connectives, and iii) compensative connectives. Union connectives
produce a high output whenever any one of the input values representing different features or
criteria is high. Intersection connectives produce a high output only when all of the inputs have
high values. Compensative connectives are used when one might be willing to sacrifice a little on
one factor, provided the loss is compensated by gain in another factor. Compensative connectives
can be further classified into mean operators and hybrid operators. Mean operators are monotonic
operators that satisfy the condition: min(a,b) < mean(a,b) < max(a,b). The generalized mean
operator [15] as given below is one of such operator.

n e n
(X X DWW, ) = (Zw,.x,.”) , where Zw‘. =1 M

i=l1 i=1
The rwi’s can be thohght of as the relative importance factors for the different criteria. The
generalized mean has several attractive properties. For example, the mean value always increases
with an increase in p [15]. Thus, by varying the value of p between —eo and +eo, we can obtain all
values between min and max. Therefore, in the extreme cases, this operator can be used as union

or intersection. The model devised by Zimmermann and Zysno [16] is an example of hybrid

operators, and it is defined by

L) Lt 4 n 4 n
y= (fo‘) (1—1‘[(1-;:,.)5‘) , where . 8, =n and0<y<1 (2)

(£ i=1 i=1

In general, hybrid operators are defined as the weighted arithmetic or geometric mean of a pair of

fuzzy union and intersection operators as follows.



A®yB=(1-p(AnB)+y(AUB) (3)

A ®yB = (AN B)X}-NA UB)Y @)
The parameter Yin (3) and (4) controls the degree of compensation. The ¥model in (2) is a hybrid
operator of the type in (4) The compensative connectives;;e vcry powerful andiﬂexlblc m that by
choosing correct parameters, one can not only control the nature (e. g. conjunctive, disjunctive and
compensative), but also the attitude (e. g. pessimistic and optihﬁstic) of the aggregation.

One can formulate the problem of multicriteria decision making as follows. The support for
a dec1510n may depend on supports for (or degrees of sansfacuon of) several different criteria, and
the degree of sansfacnon of each criterion may in turn depend on dcgrees of sansfactmn of other
sub-criteria, and so on. Thus, the decision process can be viewed as a hierarchical network, where
each node in the network "aggregates” the degree of satisfaction of a particular criterion from the
observed support. The inputs to each node are the degrees of satisfaction of each of the sub-
criteria, and the output is the aggregated degree of satisfaction of the criterion. Thus, the decision
making problem reduces to i) selecting robust and usefel criteria for the problem on hand, i)
finding ways to generate memberships (degrees of satisfaction of criteria) based on values of
features (criteria) selected, and iii) deiermining the structure of the network and the nature of the
connectives at each node of the network. This includes discarding irrelevant criteria to make the
network simple and robust.

In our i)revious research, ‘we have investi gafcd the properties of several union and

1ntersecnon operators, the generahzed mean, and the )l-model [14,17]). We have shown that

optimization procedures based on gradient descent and random search can be used to determine the
proper type of aggregation connective and parameters at each node, given only an approximate
structure of the network and given a set of training data that represent the inputs at the bottom-most
level and the desired outputs at the top-most level [14,17]. In this paper, we extend this idea to the

detection of irrelevant attributes and automatic rule generation.
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3. Redundancy Analysis and Rule Generation

In the approadh we propose, we first fuzzily partition the range of values that each criterion
(property or an attribute or a relation) can take into several linguistic intervals such as LOW,
MEDIUM and HIGH. The set of properties or an attributes or a relations which are used are the
ones that may appear in the antecedent clause of a rule. As explained in Section 1, the membership
function for each level needs to be determined according to how humans perceive such attributes,
properties or relations. The membership values for an observed attribute, property or relationship
value in each of the levels is calculated using such membership functions. (Methods to generate

degrees of satisfaction of relationships such as "LEFT OF" may be found in [18]). The

. memberships are then aggregated in a fuzzy aggregation network of the type shown in Figure 1.

The top nodes of the network represent the labels that may appear in the consequents of the rules.
A suitable structure for the network, and suitable fuzzy aggregation operators for each node are
chosen. The network is then trained with typical attribute, property or relationship data with the
corresponding desired output values for the various labels to leam the aggregation connectives and
connections that would best describe in input-output relationships. The learning may be
implemented using a gradient descent approach similar to the backpropagation algorithm [14,17]. It

is to be noted that there is a constraint on the weights.

Feature 1 Feature N

Figure 1 : Network for generating fuzzy rules.



Our experiments indicate that the choice of the network is not very critical. Also any
compensative aggregz;tion operator seems to yield good results. In all the results shown in this
paper, we used the generalized mean operator as the aggregation operator. As indicated in Section
2, the generalized mean can closely approximate a union (intersection) operator for a large positive
(negative) value of p. We start the training with the generalized mean aggregation function with
p=1. If the training data is better described by a union (intersection) operator, then the value of p
will keep increasing (decreasing) as the training proceeds, until the training is terminated when the
error becomes acceptable. Also, the weights w; in (1) may be interpreted as the relative importance
factors for the differeﬁt criteria. Initially we start the training with all the weights associated with a
node being equal. As the training proceeds the weights automatically adjust so that the overall error
decreases. Some of the weights eventually become very small. Thus, the training procedure has the
ability to detect certain types of redundancies in the network. In general, there are three types of
redundancies (irrelevant criteria) that are encountered in decision making [17]. These correspond to
uninformative, unreliable and superfluous criteria.

Uninformative Criteria; These are criteria whose degrees of satisfaction are always approximately
the same, regardless of the situation. Therefore, these criteria do not provide any information about
the situation, thus contributing little to the decision-making process. For example, low texture
content is a criterion that is always satisfied for both clear skies and roads, and hence it would be a
uninformative criterion if one needs to distinguish between these two labels. Uninformative criteria
do not contribute to the robustness of the decision making process, and therefore it is desirable that
they be eliminated.

Unreliable Criteria; These correspond to criteria whose degrees of satisfaction do not affect the
final decision. In other words, the final decision is the same for a wide range of degrees of
satisfaction. For example, color would be an unreliable criterion for distinguishing a rose from a
hibiscus because they both come in similar colors. Unreliable criteria do not contribute to the

robustness of the decision making process, and therefore it is desirable that they be eliminated.
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Superfluous Criteria: These are criteria which are strictly speaking not required to make the
decision. The dccisioﬁs made without considering such criteria may be as accurate or as reliable.
For example, one may want to differentiate planar surfaces from spherical surfaces using Gaussian
and mean curvatures, but the criteria are superfluous because either one of them is sufficient to
distinguish between planar and spherical surfaces. However, redundancies of this type are not
entirely without utility, since such redundancies make the decision making process more robust. If
one criterion fails for some reason, we may still be able to arrive at the correct decision using the
other. Hence such redundancies may be desirable to increase the robustness of the decision-making
process. |

Redundancy Detection and Estimation of Confidence Factors: A connection is considered

redundant if the weight associated with it gradually approaches to zero (or a small threshold value)

~ as the learning proceeds. A node (associated with a criterion) is considered redundant if all the

connections from the output of this node to other nodes become redundant. Our simulations show
that both in the case of uninformative criteria and unreliable criteria, the weights corresponding to
all the output connections go to zero. Therefore such nodes (criteria) are eliminated from the
structure. The examples in Section 4 illustrate this idea.

Rule Generation; The networks that finally result from this training process can be said to represent
rules that may be used to make the decisions. If the final value of the parameter p at a given node is
greater than one, the nature of the connective is disjunctive. If the value is less than one, it is
conjunctive. Once the nature of the connective at each node is determined, we can easily construct
the fuzzy rules that describe the input-output relations. In Section 4 we present some examples of

this approach.

4. Experimental results
In this section, we present some typical experimental results involving real data to show the
effectiveness of the proposed automatic rule generation method. The method is shown to generate

decision rules that best describe the decision criteria for the classes in the experiment. Figure 1



shows the general 3 layer neural network used to generate the rules. The input layer consists of nV
number of input nodes whcr_e N is the number of fuzzy features or criteria (such as properties and
relationships) and n is the number of linguistic levels used to partition each feature. For the hidden
layer, there are nN hidden nodes where each node is connected to all but one (i.e., it is connected
to n-1) input nodes representing levels within each feature. The top layer fully connects the hidden
layer. In the experimental results shown here, we used 5 fuzzy linguistic levels to represent each
feature, therefore, each hidden node has 4 connections. Other types of network structures were
also tried, however the one described above produced the best results. The target values in the
training data were chosen to be 1.0 for the class from which the training data was extracted, and
0.0 for remaining classes. The feature values were always normalized so that they fall in the range
[0,1]. Figure 2 depicts the trapezoidal fuzzy sets used to model the intuitive notions of the five
linguistic levels LOW (L), SOMEWHAT LOW (SL), MEDIUM (M), SOMEWHAT
HIGH (SH), and HIGH.

L SL 00M SH H

1.0

0.8

Membership
o o
= o

0.2

1 A J

0.0 * . * *
0.0 0.2 0.4 0.6 0.8 1.0

Discourse

Figure 2 : Graphical representations of various fuzzy sets.
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4.1 Example

Figure 3(a) shbws a 200x200 image used for training in order to obtain rules that best
describes the object (shuttle) and background. After examining a variety of possible features to be
used, the two best features chosen were the difference entropy and contrast features. For
definitons of the features, see report on membership generation methods. Figures 3(b) and 3(c)
show images using these features. Figure 3(d) shows the scatter plot of the training samples
ehracted from two different regioné (shuttle and background)wi'n' the imhgc. We used 50 samples
from each class. The membcrship values in each linguistic level for each sample is computed using
the membership functions shown in Figure 2, and these with the corresponding desired targets are
used as training data in the training algorithm described in Section 3. Figure 4 shows the reduced
network after training. All the connections with weights below a value of 0.01 were considered
redundant. Table 1 shows the final weights (which determine the confidence factors of the rules
and criteria) and the p parameter values (which determine the conjunctive or disjunctive nature of
the connective) for the specified nodes in Figure 4. Using the properties for the p values obtained,
the following rules are generated, as discussed in Section 3.

Class Shuttle = (Difference Entropy MvDifference Entropy SHvDifference Entropy H) v

(Contrast SL). ()
In other words, the rule may be summarized as |
Rshuute : IF Difference Entropy is M or SH or H or Contrast is SL
THEN the class is Shuttle.
Similarly,
Class Background = (Difference Entropy SLvDifference Entropy SH) A
(Contrast L) (6)
and
RBackground : IF Difference Entropy is SL or SH and Contrast is L

THEN the class is Background.

10
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These rules makes sense since by expanding (5) and (6), the expansions results in the appropriate

cell locations where the training samples are located in Figure 3(d).

(a) (b)

Figure 3(a) : image for training, (b) : difference entropy image, and (c) : contrast image.

11
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Figure 3(d) : Scatter plot of training samples for the classes shuttle and background.

Background

Difference Entropy Contrast

Figure 4 : Reduced network after training.



Table 1 : Values of weights and parameter p for the reduced network.

weights D
node 1 0.70 5.48
0.15
0.15
node 2 0.94 -0.21
0.06
node 3 0.49 7.04
0.01
0.50
node 4 0.94 4.00
0.06
node 5 1.0 0.78
node 6 1.0 1.88
node 7 1.0 1.88

4.2 Segmentation

Figure 5(a) shows a 200x200 test image for segmentation using the reduced network after
training shown in Figure 4. Figures 5(b) and 5(c) show images of the two features (difference
entropy and contrast) that were chosen previously. After employing the shrink and expand

algorithm to remove noise points, the resulting segmented image is shown in Figure 5(d) .

5. Summary and Conclusions

In this paper, we introduced a new method for automatically generating rules for high level
vision. The range of each feature is fuzzily partitioned into several linguistic intervals such as
LOW, MEDIUM and HIGH. The membership function for each lcvél is determined, and the
‘membership values for an observed feature value in each of the linguistic levels is calculated using
these membership functions. The memberships are then aggregated in a fuzzy aggregation
network. The networks are trained with typical data to learn the aggregation connectives and
connections that would give rise to the desired decisions. The leammg ;rocess can also be made to
discard redundant features. The networks that finally result from this training process can be said

to represent rules that may be used to make the decisions. Riseman et al used similar rules for

13
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segmentation and labeling of outdoor scenes, but the weights used in the aggregation scheme were
determined cmpiricall-y [19]. The ability to generate rules that can be used in fuzzy logic and rule-
based systems directly from training data is a novel aspect of our approach. One of the issues that
requires investigation is the choice of the number of linguistic levels and its effect on the decision

making process.

14



(©) (d)

Figure S(a) : image for testing, (b) : difference entropy image,

(c) : contrast image, and (d) : segmented image

15
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Possibility Expectatxon and Its Decision Making Algorithm

James M. Keller and Bolin Yan S ¢/
Electrical and Computer Engineering
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The fuzzy integral has been shown to be an effective tool for the aggregation of evidence in

Abstract

decision making. Of primary importance in the development of a fuzzy integral pattern
recognition algorithm is the choice (construction) of the measure which embodies the
importance of subsets of sources of evidence. Sugeno fuzzy measures have received the most
attention due to the fecursive nature of the fabrication of the measure on nested sequences of
subsets. Possibility measures exhibit an even simpler generation capability, but usually
require that one of the sources of information possess complete credibility. In real
applications, such normalization may not be possible, or even desirable. In this report both
the theory and a decision making algorithm for a variation of the fuzzy integral are presented.
This integral is based on a possibility measure where it is not required that the measure of the
universe be unity. A training algorithm for the possibility densities in a pattern recognition
application is also presented with the results demonstrated on the shuttle-earth-space training

and testing images.

1. Introduction

Decision making is a basic problem in science, engineering, and even in daily life. There
are often conﬂlcting'requircments of low error rates and minimum computation time to
reduce the cost. The purpose of this paper is to propose the concept of possibility expectation
via the possibility integral as a decision making scheme, which can be used to construct
optimal decision making algorithms. A possibility expectation is a value of nonlinear
integration of two pieces of information, namely, an evidence function h(x) and a possibility
measure Pos(:). A possibility measure is a monotonic set function with the property that the
measure of the universe X can be less than or equal to unity.

An example of possibility expectation is the following: In the court room, although the
witnesses for both the defendant and plaintiff promise that they will tell the truth, the judge
still needs to assign the grade of credibility (possibility densities) to each person to evaluate
what the person says (evidence). The judge will integrate what each group of witnesses said with
his belief in that group’s credibility (possibility measure). Then the judge makes his decision

i



(possibility expectation}.

In multicriteria decision making. as can be fouﬁd in most batterﬁ récogmUon problems.
the value of each source of information (and thus all subsets of sources) toward each
alternative can be different. For example, "greenness” may be a very important feature for
recognizing certain types of trees in an image; whereas it may be quite unimportant as a feature
for a roof of a building. This difference in the importance or credibility of subsets of
information sources will be encoded in a possibility measure. The degree to which a given
image region is green, to continue the example, is objective evidence supplied by the
information source. After collecting all such objective information, it is the job of the decision
making algorithm to fuse the objective evidence together with the worth of the sources. In our
methodology. this will be accomplished by utilizing the possibility integral, a variation of the
fuzzy integral [1].

The particular possibility measures which we describe generalize fuzzy measures in that it
is not required that the measure of the entire domain of discourse be one. In a pattern
recognition problem, it may not be possible, or may not be desirable to force one of the sources
of information to have "perfect credibility”. By relaxing this requirement, not only do we
match real situations better, we also provide the opportunity to create better decision making
algorithms, as we shall see later.

For a pattern recognition environment, a method to learn the possibility densities (values
upon which the measure is generated) from training data is given. The results of the
subsequent algorithm are used to segment a shuttle from the earth and space backgroud.

2. Possibility Measures and Possibility Integral

Definition 2.1 A set function Pos(+): 2X — [0, 1] is called a possibility measure if it satisfies the
following properties:

(1) Posi@® = O, Pos(X@ < 1.

(2) IfA,Be 2Xand A C B. then Pos(A) < Pos(B),

(3 Pos(UA| )= sup [Pos(A )1

i=t il.n]

Note: If X is finite. a possibility measure is not a fuzzy measure when Pos(X) < 1; it is the

same as fuZZ\ measure only when Pos(}i)i =1 If X is infinite, a porssribﬂiityr fnéaéure is not a fuzzy

measure in gér{eral [2717. Puri and Réfkscu ISj give two céﬁﬁtéfekarriﬁlcs which show that, even in

"nice” cases, a possibility measure is not a fuzzy measure in the infinite case.

y
i

Wil @ e e



("

e ! '
Y

|

T

1,
b

.

Definition 2.2 Let X = { X | j=1,...,n}be a finite set and let Pos be a possibility measure on 2X
The set{p = Pos({xj D1j=1, .. n}is called the set of possibility densities for Pos.

By definition of the possibility measure, it is clear that the measure of any subset A of X
can be generated by
Pos(A)= max {pl },

xe A
and hence, a possibility measure is easily generated by its densities.

We note that possibility theory can be induced not only from the nested bodies of evidence
within the Dempster-Shafer theory (4], but also from the fuzzy sets introduced by Zadeh [6]. A
fuzzy set F is a set whose elements are characterized by the membership grade function

pp{x): X —[0, 1]. A value of ugp(x) expresses the grade of membership that an element x€ X

belongs to the fuzzy subset F of X. Let np(x) = pp(x) be a possibility distribution induced by a
fuzzy set F. In general, a possibility distribution is thoﬁght of as an elastic restriction on the
values within a domain of discourse which a fuzzy variable may assume [5]. The fuzzy set F
provides the meaning of the restriction. A possibility measure is defined as

Pos(A) = sup| np{x) ] for all Ae 2X This relationship holds also for non-nommal fuzzy sets [6].

XeA

Although a fuzzy set and a possibility distribution have a common mathematical expression,
the underlying concepts are different [5].

Our possibility measures are non-normalized generalizations of what are referred to as S-
decomposable measures [7, 8], these being a class of fuzzy measures which are easily

computable.

Definition 2.3 Let h(x) be a function such that h: X — [0, 1], and let Pos(*) be a possibility
measure of 2X. The possibility integral or the possibility expectation of h{x) with respect to
Pos(*) is defined as

{ h(doPos() = sup [ o APos(A)]. where A = {x | hix) >a}.

xe [0, 1}

When X ={x1l i=1, ..., n}is finite, if we reorder X such that h(xl) 2 hix,) 2. 2h(xn),
then the possibility integral can be written as

SRRV . wh =Xy, Xy e X )
) ix h(x) o Pos() j\:[h(xj)/\Pos(AJ)]wereAJ {x). %, xJ}



The rationale of the possibility expectation is to find the source within the universe where
both the information value h(xj] and the possibility measure Pos(Aj) are compatibly large. that
is, where the feasibility of the data and the reliability of a subset of sources is jointly optimal.

The fuzzy integral developed by Sugeno [1] has the same formulation with the exception
that a fuzzy measure is used in lieu of the possibility measure. One of the advantages of the
possibility integral is that the measures Pos(Aj\ are easily calculated from the densities by the
recursive relationship

Pos(a)) = Poslixy) =pl:
Pos(A,) = Pos(A, | Ulx/}) =Pos(A, ) vp. -

In contrast, for Sugeno fuzzy measure g, with the fuzzy densities { g!, ... g"}. this
recﬁrs}ve deﬂn;tioh ‘becomes

elA ) =glx) =g
gl Ay ) =g(A Vi) = gy(AL) + i+ Agigy(Ap),
where A 2-1[1, 10, 11]. The value of A must be calculated from the equation

I (1+2g) =1+ [1].

If one is goingnéo try to learn a measure (iteratively) from training data, the amount of
computations necessary to learn a possibility measure, and then evaluate its possibility
integral is considerably less than that required for a Sugeno fuzzy measure and its fuzzy
integral. |

For a multiclass pattern recognition problem (or any multicriteria decision making
problem). the set X represents sources of information (criteria). Each class (alternative) will
have its own evidence function h;: X —>[0, 1] to assess the feasibility that the decision is class i
(alternative i) from the standpoint of each individual source, x;. Also, each class will have its
own possibility measure Pos; which determines the worth of all subsets of sources in deciding
that a particular object belongs to class i. Finally, the collection of possibility integrals

e;={_ ;i o Pos;().

gives a class-individualized "fusion” of the direct evidence with the worth of that evidence. A
final crisp decision can be made from the possibility expectations (integral values), for
exzimple. piék the class cdrresponding to the maximum possibility expectation. Alternately,

these expectation values can used as confidences for later processing.

3. Properties of The Possibility Integral
Several interesting properties of the possibility integral are proved in [11]. Of particular
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interest to the algorithm presented in the next section are the following two results.

Theorem 3.1 O < j)-( h(x) o Pos(*) < Pos(X).

Theorem 3.2 If hj{x)<holx) Vx:
gx h;(x) o Pos(") < gx ho(x) o Pos(*), if Pos(X) > h;(x) for all x,

fx h;(x) o Pos(’) = §x hy(x) o Pos(*), if Pos(X) < h,(x) for all x.

4. Decision Rule and Training Algorithm

In the procedure given below, we consider a two class pattern ;'ccogm'tion problem, or a two
alternative decision process. The approach can be extended directly to multiple classes, but
from the particular structure of the training mechanism, it would be more appropriate to view
it as a series of two class problems, either as pairwise distinctions, or as each class against all
of the remaining classes. Since the possibility integral algorithm dose not create geometric
decision boundaries in feature spaces (as, for example, Bayes Decision Theory), the second
approach is reasonable and contains fewer subdecisions which need to be made to extend this
to multiple classes.

The actual decision algorithm utilizes the nature of the pos_sibtlity integral to split the
input objects (as represented by the evidence function h{x) ) into four groups to reduce the
computational load. The first two groups deal with the case where the strength of all objective
evidence for one class outwelgﬁs that fof the othér.l In mostﬂc>a§és. this corresponds to the fact
that, in a pattern recognition problem, a majority of the data are easily distinguished (being
quite typical of their class). Decision rules 1 and 2 below are Va consequent of Theorem 3.2
assuming that the possibility measures for both classes in this case are identical. Of course,
there are problems where the objective evidence for one class can dominate that for the other
class, and yet, the object belongs to the later. This could happen if the worth of the source, i.e.,
the densities, are vastly different between classes. During training, this condition is
monitored, and if the training data produce such outcomes, the first two rules are abandoned,
forcing all training samples to be "conflict data”.

The initial definition of "conflict" is an object where the evidence function for one class
does not dorninate that of the other. In this case, we split the training data (and also the
unknown test objects) into two subgroups based on the class receiving the highest degree of
support from any source. For each group, two possibility measures are formed which minimize

the total misclassification of the training data. The purpose of partitioning the data in this
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manner is to reduce the size of the training set since our initial training scheme is
a complete search through a quantized set of all pairs of density functions. To reduce further
the amount of compu-tatmn's, we note that the value of a possibility integral cannot be larger
than the maximum of the function being integrated. This fact allows us to restrict the range of
density values to be no larger than the maximum evidential support in the training set.
(Reducing the training sets gives more opportunity to invoke this restriction}. Optimal pairs of
density functions (in term of minimal error rate on the training data) are formed and then used
in the testing cycle. There are 4 possibility measures generated during training - one from each
class in each of the two subgroups of conflict data.

The decision algorithm is summarized - below.

BEGIN
FOR each feature data vector DO obtain h l(xj) for all j and h2(xj) for all §;
(1) IF hy(x)) > ho(x)) for all j, THEN the feature data vector belongs to class 1.
(2) ELSE IF h,(x)) < holx;) for all j, THEN the feature data vector belongs to class 2.
(3) ELSE

If ;Xhl(xj) > ;{h2(xj).'l‘hen
y ihg(xj)/\ Poslz(ﬁ)]

=1

el= g[hl(xj) A Pwll(Aj)]’ 62=

e = ;{[hl(xj) A Posyi(A)] €= Vihylxy) A Posyy(4))]
End ¥

Ife, > e, , Then the feature data vector belongs to class 1,
Else ti;e the feature data vector belongs to class 2.
End
END IF
END FOR
END.

5. Experimental Results
Two shuttle-earth-space intensity images were used in the experiment, in which all the
data from the two images were treated as 7"conﬂict data' and hence only the third decision rule
‘applies. - - - . 7” B o
_ The training image is shown in Fig. 5.1 and the test image is shown in Fig. 5.5. Three

texture feature images (contrast, difference, and the entropy) were derived from the training
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and the test images respectively, i.e., three feature images for training and three feature images
for testing (For the definition of these features, please see section on membership generation
techniques in this report). The three feature images, used for training the possibility densities,
are shown in Fig. 5.2. The three feature images used in testing are shown in Fig. 5.6.

The possibility distribution (or membership function) of each class in each feature, that
used to generate the evidential function h(x), is determined by using the possibilistic clustering
algorithm on the histograms of each class in each feature, which is described in another
section of this report.

While training, the possibility densities were determined with the “perceptron criterion”
(i.e., minimize the decision error) from the feature images in Fig. 5.2. The segmentati;n result
corresponding to the possibility measure(s) for the training image is shown in Fig. 5.3, in
which the shuttle and its background are clearly segmented, except that the shuttle body seems
disconnected. To improve the connection of the shuttle body, the possibility densities of the
shuttle were raised slightly, from which the segmentation result in Fig. 5.4 and the result in
Fig. 5.7 (for the test case) were obtained. These results can be improved quite easily with a
shrink-expand operation.

6. Conclusion
In this paper, a decision making algorithm based on a variation of the fuzzy integral was
proposed. The possibility integral has a particularly simple generation capability. The

algorithm was run on the shuttle-earch-space images, reasonable good results were obtained.
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ity training image.

Fig 5.1 Intens




Fig 5.2 (1op left) Intensity training image.
(1op right) Contrast feature image.
(bottom left) Difference feature image.
(bouom right) Entropy feature image.




Fig 5.3 Segmented image1 using the possibility integral algorithm.



Fig 5.4 Segmented image?2 using the possibility integral algorithm.




Fig 5.5 Intensity testing image.




Fig 5.6 (top left) Intensity lesting image.
(top right) Conurast feature image.
(bouom left) Ditference feature image.
(bottom right) Entropy feature image.




. Fig 5.7 Segmented testing image using the possibility integral algorithm.




Iculation of Membership Function
Our work in this area has progressed nicely. We have designed and implemented a
new algorithm to generate membership values from a set of training data using a multi-layer
neural network. This is in addition to the progress we made in the transformation of
, "probability density functions" into possibility distributions for use in assigning

membership values to individual points as reported in the third quarter report.
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Membership Generation Using Multilayer Neural Network
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There has been intensive research in neural network applications to pattern
recognition problems. Particularly, the back-propagation network has attracted many
researchers because of its outstanding performance in pattern recognition applications. In
this section, we describe a new method to generate membership functions from training
data using a multilayer neural network. The basic idea behind the approach is as follows.
The output values of a sigmoid activation function of a neuron bear remarkable resemblance
to membership values. Therefore, we can regard the sigmoid activation values as the
membership values in fuzzy set theory. Thus, in order to generate class membership
values, we first train a suitable multilayer network using a training algorithm such as the
back-propagation algorithm. After the training procedure converges, the resulting network
can be treated as a membership generation network, where the inputs are feature values and
the outputs are membership values in the different classes.

This method allows fairly complex membership functions to be generated because
the network is highly nonlinear in general. Also, it is to be noted that the membership
functions are generated from a classification point of view. For pattern recognition
applications, this is highly desirable, although the membership values may not be indicative
of the degree of typicality of a feature value in a particular class.

A. Typical Example

In this section we show an example of a membership network that can generate
membership values for "shuttle” and "background”. The network we used had one input
unit, eight hidden units and two output units. Input data to the network were feature values
and the observed activation values of the outputs after the network was trained with the
back-propagation algorithm were considered as the degree of belonging to the particular
classes. In this experiment, there were only two classes: object (shuttle) and background
(space and earth). The training image is shown in Fig 1.



We generated membership functions corresponding to four texture features. These
four feature images are shown in Fig 2. These features were contrast, difference, entropy,
difference entropy, and homogeneity. They are defined by

N,-1 N
Contrast = 2 n? 2 p(u)}

n=0 =

N, N, -
Enopy =+, %, % pliJ) g (o(,))

' N,
Difference Entropy = - ‘ ij Px-y(k) log (px-y(k))

_ ' % N { '
ity = 1 .
Homogeneity = 2 L TG i)
where p(ij) is the (i/)-th entry in the spatial gray level dependence matrix, and Ny is the

number of gray levels. Also, py.y(k) is defined by
N, N,

Px-y(k) = - _21 ; )ji p(ij) such that il-jl=k
1= =
(See [1,2] for details.)

All feature values were normalized to lie between 0 and 255. The training sets were
formed by manually picking samples from the object and background regions of all four
texture feature images. There were 100 samples for each class. After the network was
trained, we fed gray values (0-255) to the input unit and collected the activation values of
output units to generate the membership functions. Fig 3.1 and Fig 3.2 show the
histograms of the features for the background and the object, and the corresponding
membership values for all four features.

B. Discussion

Fig 3.1 (c) shows the membership functions of object and background for contrast
feature. The membership functions are very steep because only one or two gray level
values overlap between the histograms of the background and the object. One the other
hand, Fig 3.2 shows broader membership functions because of a broader overlapping area
between the histograms for the entropy and homogeneity features. An interesting
observation is that when histograms of object and background overlap, the network sets the
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crossover point at the middle of the overlapping area. This reveals the nice membership

generation capability of the neural network.
C. Conclusion

This heuristic method of generating membership function has some merits
compared to the probability-possibility transformation method described in our third
quarterly report. The transformation method requires a precise estimation of a probability
density function. In practice, this is difficult to achieve when the number of training
samples is small. Also the resulting shape of the membership function is almost the same as
the probability density function. In order words, membership functions generated by these
methods seem to have a freqﬁency interpre'tation of the data. Fig 4 and Fig 5 show

7 examples of the transfoma00n1&ed membershlp functions obtamed with 1 000 samples

per feature per c]ass Even wrth thls hrgh number, the functions are rather n01sy
One short comrng ot [hlS heunstrc method is that the membershlps do not represent
typlcahty However, if the membershlps are to be used subsequently in a pattern
recognition algorithm then this method will provide better classification results.
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Fig.1 Space shuttle image
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Fig 2. text features :

in clockwise, contrast, difference
entropy,entropy, and homogeneity.




(a) hist. of background(contrast)

(b) hist. of object(contrast)

(c) membership fun(contrast)

(d) hist. of background(diff. entropy)

" (e) hist. of object(diff. entropy)

-

(f) membership fun(diff. entropy)

Fig 3.1 Histogram of background and object, and
corresponding membership function.
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(a) hist. of background(entropy)
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(b) hist. of object(entropy)

P
;o

\ __.‘

N

(c) membership fun(entropy)

(d) hist. of baékgi‘gu‘ﬁd(homogeneity)

(e) hist. of object(homogeneity)

/ \\
(f) membership fun(homogeneity)

Fig 3.2 Histogram of background and object, and
corresponding membership function.
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Fig 4.1 membership and p.d.f by Dubois and Prade :
small graphe is p.d.f and big one is membership.
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(d) object(homogeneity)

Fig 4.2 membership and p.d.f by Dubois and Prade :
small graphe is p.d.f and big one is membership.




(a) background(entropy)

(c) background(homogeneity)
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(d) object(homogeneity)

Fig 5.1 membership and p.d.f by Klir :
small graphe is p.d.f and big one is membership.
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(c) background(diff. entropy)

(d) object(diff. entropy)

Fig 5.2 membership and p.d.f by Klir:
small graphe is p.d.f and big one is membership.




Clustering Methods

At the Third Ingemational Workshop on Neural Networks and Fuzzy Logic, we
presented our new approach of poséibilistic clustering applied to the recognition of Plano -
Quadric clusters. In what follows, we present the paper which will appear in the
proceedings of that Workshop, followed by other examples of the results of the algorithms.

Several examples are of images of the shuttle.

N [

o ey sy mn

A




N93-18228

Poséibili'stic Clustering for Shape Recognition1
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Abstract

Clustering methods have been used extensively in computer vision and pattern
recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional)
clustering in that total commitment of a vector to a given class is not required at each
iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not
only hypervolume clusters, but also clusters which are actually "thin shells”, i.e., curves
and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy
C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the
memberships of a data point across classes sum to one. This constraint was used to
generate the membership update equations for an iterative algorithm. Unfortunately, the
memberships resulting from FCM and its derivatives do not correspond to the intuitive
concept of degree of belonging, and moreover, the algorithms have considerable trouble in
noisy environments. Recently, we cast the clustering problem into the framework of
possibility theory. Our approach was radically different from the existing clustering
methods in that the resulting partition of the data can be interpreted as a possibilistic
partition, and the membership values may be interpreted as degrees of possibility of the

points belonging to the classes. We constructed an appropriate objective function whose



minimum will characterize a good possibilistic partition of the data, and we derived the
membership and prototype update equations from necessary conditions for minimization of
our criterion function. In this paper, we show the ability of this approach to detect linear

and quartic curves in the presence of considerable noise.

'Research performed for NASA/JSC through a subcontract from the RICIS Center at the

University of Houston - Clear Lake

B I emn GE &0 e wm) o sm 0 &) s QU

y Ll

s

B



{

1. Introduction

Cluswdné has long been a popular approach to unsupervised pattern recognition. It
has become more atractive with the connection to neural networks, and with the increased
attention to fuzzy clustering. In fact, recent advances in fuzzy clustering have shown
spectacular ability 1w detect not only hypervolume clusters, but also clusters which are
actually "thin shells”, i.e., curves and surfaces [1-7]. One of the major factors that
influences the determination of appropriate groups of points is the "distance measure”
chosen for the problem at hand. Fuzzy clustering has been shown to be advantageous over
crisp (or traditional) clustering in that total commitment of a vector to a given class is not

required at each iterauon.

Boundary dztection and surface approximation are important components of
intermediate-level vision. They are the first step in solving problems such as object
recognition and orientation estimation. Recently, it has been shown that these problems can
be viewed as clustering problems with appropriate distance measures and prototypes [1-7].
Dave's Fuzzy C Shells (FCS) algorithm [2] and the Fuzzy Adaptive C-Shells (FACS)
algorithm [7] have proven to be successtul in detecting clusters that can be described by
circular arcs, or more generally by elliptical shapes. Unfortunately, these algorithms are
computationally' rather intensive since they involve the solution of coupled nonlinear
equations for the shell (prototype) parameters. These algorithms also assume that the
number of clusters are known. To overcome these drawbacks we recently proposed a
computationally simpler Fuzzy C Spherical Shells (FCSS) algorithm [6] for clustering
hyperspherical shells and suggested an efficient algorithm to determine the number of
clusters when this is not known. We also proposed the Fuzzy C Quadric Shells (FCQS)
algorithm [5] which can detect more generai quadric shapes. One problem with the FCQS
algorithm is that it uses the algebraic distance, which is highly nonlinear. This results in

unsatisfactory performance when the data is not very "clean” [7]. Finally, none of the



algorithms can handle situations in which the clusters include lines/planes and there is much
noise. In [¢]. we addressed those issues in a new approach called Plano-Quadric
Clustering. In this paper, we show how that algorithm, coupled with our new possibilistic

clustenng, czn accurately find linear and quadric curves in the presence of noise.

Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-
Means (FCM) algorithm [9]). The FCM uses the probabilistic constraint that the
memberships of a data point across classes must sum to one. This constraint came from
generalizing a crisp C-Partition of a data set, and was used to generate the membership
update equatons for an iterative algorithm. These equations emerge as necessary conditions
for a global minimum of a least-squares type of criterion function. Unfortunately, the
resulting memberships do not represent one's intuitive notion of degrees of belonging, i.

€., they do not represent degrees of "typicality” or "possibility”.

There is another important motivation for using possibilistic memberships. Like all
unsupervised techniques, clustering (crisp or fuzzy) suffers from the presence of noise in
the data. Sirve most distance functions are geometric in nature, noise points, which are
often quite distant from the primary clusters, can drastically influence the estimates of the
class prototypes, and hence, the final clustering. Fuzzy methods ameliorate this problem
when the number of classes is greater than one, since the noise points tend to have
somewhat smaller membership values in all the classes. However, this difficulty still
remains in the fuzzy case, since the memberships of unrepresentative (or noise) points can
still be significantly high. In fact, if there is only one real cluster present in the data, there is

essentially no difference between the cnisp and tuzzy methods.

On the other hand, if a set of feature vectors is thought of as the domain of
discourse fora collection of independent fuzzy subsets, then there should be no constraint
on the sum ot the memberships. The only real constraint is that the assignments do really

represent fuzzy membership values. i.¢., they must lie in the interval [0,1]. In [10], we cast
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the clustering problem into the framework of possibility theory. We briefly review this

approach, and show it's superiority to recognize shapes from noisy and incomplete data.
I1I. Possibilistic Clustering Algorithms

The original FCM formulation minimizes the objective function given by
N
R

C C
JAU) = 2 2 (u.)"d* subjectio 25 p. =1 forallj. (1)
i=1j=1 y i i=1"Y

In (1), L = (A4....,A0) is a C-tuple of prototypes, a‘lzj is the distance of feature point x; 10
cluster A;, N is the total number of feature vectors, C is the number of classes, and U =
[“ij] is a C xN matrix called the fuzzy C-partition matrix [9] satisfying the following

conditions:

Ky € [0,1] for all i and j, §1 B = 1 for all j, and
j=

N
0< 2 p, <N foralli.
_]:1 iy

Here, Hj is the grade of membership of the feature point X; in cluster A, and m € [1,%0)

is a weighting exponent called the fuzzifier. In what follows, A; will also be used to denote

the ith cluster, since it contains all of the parameters that define the prototype of the cluster.

Simply relaxing the constraint in (1) produces the trivial solution, i. e., the criterion
function is minimized by assigning all memberships to zero. Clearly, one would like the
memberships for representative feature f)oin;s to rbé as high as possible, while
unrepresentative points should have low merhbership ”ixiwralrlvcldsters. This is an approach
consistent with possibility theory [11]. The objective function which satisfies our

requirements may be formulated as:



- ) d R
I (LU) T isaj= 'J T =1 ( ‘uij) ' ()

e
,—.d

where 17; are suitable positive numbers. The first term demands that the distances from the
feature vectors to the prototypes be as low as possible, whereas the second term forces the
Hij to be as large as possible, thus avoiding the trivial solution. The following theorem,
proved in [9], gives necessary conditions for minimization, hence, providing the basis for

an iterative algorithm.

Theorem;

Suppose that X = {x|, x5, ..., x,/} is a set of feature vectors, L =(4,,...A0) isa
C-tuple of prototypes. d:, 1s the distance of feature point X; 1o the cluster prototype 4;, (i

=1,.,C;j=1,.,N),and U = U‘ij] is a C xN matrix of possibilistic membership
Zv—1-
values. Then U may be a global minimum for J,_(L.U) only if = [1 + (EL)M]
i

The necessary conditions on the prototypes are identical to the corresponding conditions in

the FCM and its derivatives.

Thus, in each iteration, the updated value of y;; depends only on the distance of X;.
from A;, which is an intuitively pleasing resuit. The membership of a point in a cluster
should be detenhlned solely by how far it is from the prototype of the class, and should not

be coupled to ns locauon wuh respecl to other classes The updaung of the prototypes

STomos v

depends on Lhe dlstance measure chosen and wxll proceed exactly the same way as in the

case of the FCM algorithm and its derivatives.

The value of n; determines the distance at which the membership value of a point in
a cluster becomes 0.5 (i. e., "the 3 dB point"). Thus, it needs to be chosen depending on

the desired "bandwidth" of the possibility (membership) distribution for each cluster. This
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value could be the same for all clusters. if all clusters are expected to be similar. In general,
it is desirable that 1; relates to the overall size and shape of cluster 4;. Also, it is to be
noted that 1; determines the relative degree to which the second term in the objective
function is important compared to the first. If the two terms are to be weighted roughly

equally, then n; should be of the order of d;?'j . In practice we find that the following

definition works best.

N
m ;2
245 &

- N
E m
j=1

i (3)

This choice makes 1); the average fuzzy intra-cluster distance of cluster A;. The value of n;
can be fixed for all iterations, or it may be varied in each iweration. When 7); is varied in
each iteration, care must be exercised. since it may lead to instabilities. Our experience
shows that the final clustering is quite insensitive to large (an order of magnitude)

variations in the values of n;.
II1. The Possibilistic C Plano-Quadric Shells Algorithm

Suppose that we are given a second degree curve li characterized by a prototype

vector

T
p; =i, pi2, ..., pirl

to which it is desired to fit points X; obtained through the application of some edge

detection algorithm. If a point x has coordinates [xj, ... , x]. then let

2 2 2
q =[x}, X5, . X X1X24 o - X(n- 1) X0 X1 X2 - - o Xy 11T

When the exact (geometric) distance has no closed-torm solution. one of the methods

suggested in the literature is to use what is known as the "approximate distance” which is



the first-order approximation of the exact distance. It is easy to show [12] that the

approximate distance of a point from acurveis given by

d%\ij:dAz(xA) ﬁl__ _TFQI]T_ (4)

IVdQ42 DiDj'p; °

where Vdé is the gradxent of the distance functional

2 2 2
piTq =pi1. pi2. . ... pirllx], Xg o X X1X2, + o X (1) EnoX 15 X2, « « o X, 11T (5)

evaluated at x; . In (4) the matrix Dj is simply the Jacobian of ¢ evaluated at xj.
One can easily reformulate the quadric shell clustering algorithm with d.%\ij as the

underlying distance measure. It was shown in [8] that the solution to the parameter

estimation problem is given by the generalized eigenvector problem
Fip; =liGip;, (6)

where
N

Fi = j =}:l(#ij)m M

' T
Mj=qjqj, and

N
. .. .p:T
Gi -'j___zl(lly)m DJ Dj ,

which can be converted to the standard eigenvector problem if the matrix Gj is not rank-
deficient. Unfortunately this is not the case. In fact, the last row of Dj is always [0, ..

,0]. Equation (6) can still be solved using other techniques that use the modified Cholesky
decompdsition {13], and the solution is computationally quité inexpensive when the feature

space is 2-D or 3-D. Another advantage of this constraint is that it can also fit lines and
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planes in addition to quadrics. Our experimental results show that the resulting algorithm,
which we call the Possibilistic C Plano-Quadric Shells (PCPQS) algorithm, is quite robust
- in the presence of poorly defined boundaries (i. e., when the edge points are somewhat
scattered around the ideal boundary curve in the 2-D case and when the range values are not
very accurate in the 3-D case). It is also very immune to impulse noise and outliers. Of

course, if the type of curves required are restricted to a single type, e.g., lines, or circles,

or ellipses, simpler algorithms can be used with possibilistic updates, as will be seen.

IV. Determination of Number of Clusters

 J

The number of clusters C is not known a priori in some pattern recognition

by gt

¢

applications and most computer vision applications. When the number of clusters is

P unknown, one method to determine this number is to perform clustering for a range of C

values, and pick the C value for which a suitable validity measure is minimized (or
maximized) [14]. However this method is rather tedious, especially when the number of
clusters is large. Also, in our experiments, we found that the C value obtained this way

may not be optimum. This is because when C is large, the clustering algorithm sometimes

; ‘~‘ converges to a local minimum of the objective function, and this may result in a bad value

,__, for the validity of the clustering, even though the value of C is correct. Moreover, when C

is greater than the optimum number, the algorithm may split a single shell cluster into more

= than one cluster, and yet achieve a good value for the overall validity. To overcome these

. .; problems, we proposed in [8] an alternative Unsupervised C Shell Clustering algorithm

- which is computationally more efﬁcienl; since it does not perform thAerclrustering for an
- entire range of C values.

: Our proposed method progressively clusters the data starting with an overspecified

number Cmgax of clusters. Initially, the FCPQS algorithm is run with C=Cmgx. After the

- algorithm converges, spurious clusters (with low validity) are eliminated; compatible



clusters are merged; and points assigned to clusters with good validity are temporarily
removed from the data set to reduce computations. The FCPQS algorithm is invoked again
with the remaining feature points. The above procedure is repeated until no more

elimination, merging, or removing occurs, or until C=1.
V. Examples of Possibilistic Clustering for Shape Recognition

Figures 1 and 2 show the detection of a circular "fractal edge" from a
synthetically generated image. Figure 1(a) is the original composite fractal image; figure
1(b) shows what a gray-scale edge operator finds (or doesn't find); figure 1(c) is the output
of the horizontal fractal edge operator; with figure 1(d) giving the maximum overall
response of the fractal operators in four directions. Figure 2(a) depicts the (noisy)
thresholded and thinned result from figure 1(d). Figure 2(b) gives the final prototype found
by the FPQCS (which, since there is only one cluster present, is the same as the crisp
version). Note how the presence of noise distorts the final prototype. Figure 2(c) shows
the possibilistic algorithm output, which is superimposed on the original image in figure
2(d). The results of the PPQCS algorithm are virtually unaffected by noise. Several
examples comparing crisp, fuzzy and possibilistic versions of clustering can be found in

[6,8,10].

Figure 3 derpicts the rz;lgorirt'hm a;i)lied to the image of a model of the Space Shuttle.
Figure 3(a) is ;he ongmal image. Figu_r; 3(b) gives thﬁevou_tput of a typical edge operator.
Note that, dt;;to the f:zxmer poor quality of the roriginal image, the edges found both noisy
and incomplete. This data was then input into the possibilistic plano-quadric clustering
algorithm. Figure 3(c) gives the eight complete prototypes which were found after running
the algorithm. Finally, figure 39(d) displays the prototype drawn only where sufficient

edges points exist.

V1. Conclusions
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In this paper, we demonstrated how our new possibilistic approach to objective-
function-based clustering coupled with our plano - quadrnc shells algorithm can recognize
first and second degreé shapes from incomplete and noisy edge data. This approach is
superior to both crisp and fuzzy clustering. as well as to traditional methods such as the
Hough Transform. Extensions of this approach to other classes of shapes is currently

underway.
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Figure 2. R& ognition ot cu‘cular boundar\
(a) Upper Lert. Figure 1(d) thresholded and thinned.
(b) Upper Right. Circular prototype found by fuzzy (or crisp) c]ustenng.
(c) Lower Left  Circular prototype tound by possibilistic clustering.
(d) Lower Right Possibilistic prototype superimposed on original image.
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Figure 3. Reccgniton of Shuttle model boundaries.

- (a) Upper Left  Original Shutte image.
(b) Upper Rigkr Incomplete and noisy edges found by edge operator.
< (c) Lower Lett  Prototypes found by Possibilistic Plano-Quadric clustering.
-~ (d) Lower RigkL Possibilistic prototypes superimposed drawn where there is sufficient edge
information.



In the Third Quarter report, we described how the UnsuperVirsérdEEj;addc Shells

(UCQS) algorithm could be used to estimate the pose of the shuttle. The shuttle's image is

taken from the back so that the exhaust nozzles and the back edges of the three w}ngs are
apparent. Given an original unrotated image, the exhaust nozzles can be parametrized by
three circles, and the three wings can be parametrized by three straight lines. These
parameters are eésily determined by the UCQS algorithm. As the shuttle rotates, the shape
of the nozzles will change from circles to ellipses, so will the orientation of the straight
lines representing the three wings. The UCQS algorithm is used in order to cluster this
edge image and determine the parameters of the ellipses and lines. Finally, these parameters
can be used to solve for the translation and rotation parameters, as long as the translation is
made in the image plane. In fact, depth information can also be derived from the change in
the size of the nozzles.

We also consider the case where bnly line information is available. Once again, our
new possibilistic plano-quadric clustering approach is used to detect and recognize the
linear segments. In what follows, derivation of pose parameters is given for both the case
where three corresponding line segments have been identified, and where one circle and

one line have been matched.



I

POSE ESTIMATION:

The 3-D object attitude in space can be determined from a single perspective image.
Dhome et al [1] developed a method to solve for the three-dimensional attitude of an object
based on the perspective projection of three image lines. Krishnapuram & Casasent [2]
developed a method for determining two of the three rotation angles necessary to describe

an object attitude in 3-D space from a single perspective projection of one circle.
I. Determination of The Attitude of One Object From Three Lines:

The perspective projection of a point Pj = (Xj, Yj, Zi) on an image is the point  pj
=(xi, i, 21) = (Xi /Z, Y {/Z, f). Let 1j be an image line characterized by a vector  vj =
(aj, bj, 0) and a point pj = (x4, yi, ). lj is the perspective projection of a space line L;.
Therefore it lies in the "interpretation plane” containing the origin of the coordinate system
O and the image line lj. The normal Nj to this plane is perpendicular to vj and the vector
Opi. Thus Nj = v{ ¥ Opj = (bj f, -aj f, d))T, where dj = aj yj - bj xj is the Euclidean
distance between the center of the image and line 1j. If Vi = (Aj, B, Ci)T is the director
vector of the space line Lj, then it must be orthogopal to Ni, hence Vj . Ni = 0 implying
that : o | -

(Ai, Bi, C)T . (bj, -ai, diff) =0 (1)
Consider three object lines in 3-D space Lgj, i = 1, ..., 3 defined in a model reference frame
(Som). The director vector of Loj is Voi = (Aoi, Boi. Coi)T. When the object is rotated in 3-
D space, the lines Loj are rotated into lines L3;. Therefore

(A3i, B3i. C30)T = Ry (A0i. Boi, Coi) T )
where Ry is the rotation matrix.

The perspective projections of lines L3j are the lines 10;. Equation (1) becomes



(A3i, B3i, C3) T (boi, -a0i, doi/H)T =
Rafy (A0i. Boi. Coi)T. (boi. -a0i. do/HT = 0 3)

where i = 1,..., 3 and «, B, and 7y are the unknown rotation angles about x, y, and z axes
respectively. Solving this system of equations is too complicated. A specially defined
model coordinate system (S]m) and a corresponding viewer coordinate system (S]y) can
be used to simplify the problem [1]. With these coordinate systems, only two rotation
angles o and B need to be determined, i.e. the system of equations (3) can be reduced to
tw‘o equations and two unknowns. First, a is found by iteratively solving an 8th order
equation. Then [ is solved for by substitution. When the three lines are coplanar, or when

they form a junction, the 8th order equation reduces to a 4th order equation.
II Determination of the Attitude of an Object From a Circle and a Line:

Given a circular curve on the x-y plane, and an x' y' view of this curve in a
different coordinate system x' y' z'. The two frames (x, y, z) and (x. y', z') are related by
a homogenous transformation T, such that

x7 [uruzuz 07px'
=T y'| _| 1211221230 |1y’
=T || =
1

1311321330 | |2’
0 0 0 1 1

— N

A circle of radius r on the xy plane is described by :

{xz +y? =12 )
z=0 5)

In the (x', v". 2') frame, equations (4) & (5) become
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(U1K + 12y +1132)% + (21x' + 122y'+1232)% =12 6)
131x" +132y'+1332' =0 N

Substituting 2z’ in terms of x’ and y' from equation (7) into equation (6) yields the equation
for the 2-D projection of the 3-D circular curve onto an arbitrary x' y' plane. Making use of

the fact that the columns of T are mutually orthogonal unit vectors, we obtain

2
2t t
1+ 3Ly x2 ¢ a3y y2 4 CBL82) 00 2 ®)
£33 £33 33

This is the equation of an ellipse in the (x', y', ') frame. If the parameters of this ellipse
are known, equation (8) can be solved for the transformation parameters t31, t32, and t33.

The transformation matrix T can be written as a function of the rotation angles a, B, and .

cosycosf cosysinf sina - sinycosa  cosy sinP coso + siny sina 0
T =| sinycosp sinysinP sina + cosycosa siny sinf cosa - cosy sina. 0

-sinf cosP sina cosP cosa
0 0 0

Having already solved for t31, t32, and t33 , a and b can be easily determined from the 3rd
row of T.

In order to determine the 3t angle v, a line can be used in addition to the circle. In this case
the two rotation angles o and f3 can be determined as discussed previously. Knowing these
two angles, equation (3) with i = 1 (since we have only one line) becomes simple to solve,

since the only unknown is Y.
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Testing the Algorithm

Besides the exafnplcs shown in the earlier reports, and the accompanying papers,

we conclude this report with several examples of the results of our research.

Examples of Determination of Lines
from Different Orientations of the Shuttle
by Possibilistic Clustering

The following two pages show the use of the Possibilistic Plano - Quadric
Clustering Algorithm to identify the lines on images of the Shuttle. The gray scale images
were synthetically generated by Lincom. A simple edge detector was run on the images.
Thresholded output of the edge data was then sent to the unsupervised clustering algorithm
( which also determines the optimum number of clusters ). The prototypes which were
identified are then displayed. After matching is performed, the approach described above
could be used to determine the rotation angles to specify the pose of the second image
relative to the reference model (first image). A complete solution to this problem is being

proposed for a second year effort.
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Further examples of recognition of linear and quadric curves
The following images were shown at the NASA Workshop, although they were not
included in the paper which is to appear in the proceedings. In each case, the original image
was processed by an appropriate edge operator, the results were thresholded, and the

resulting edge points were used as input to the possibilistic clustering algorithm.
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