5,884 research outputs found

    Algebraic number theory and code design for Rayleigh fading channels

    Get PDF
    Algebraic number theory is having an increasing impact in code design for many different coding applications, such as single antenna fading channels and more recently, MIMO systems. Extended work has been done on single antenna fading channels, and algebraic lattice codes have been proven to be an effective tool. The general framework has been settled in the last ten years and many explicit code constructions based on algebraic number theory are now available. The aim of this work is to provide both an overview on algebraic lattice code designs for Rayleigh fading channels, as well as a tutorial introduction to algebraic number theory. The basic facts of this mathematical field will be illustrated by many examples and by the use of a computer algebra freeware in order to make it more accessible to a large audience

    Quantum Random Self-Modifiable Computation

    Full text link
    Among the fundamental questions in computer science, at least two have a deep impact on mathematics. What can computation compute? How many steps does a computation require to solve an instance of the 3-SAT problem? Our work addresses the first question, by introducing a new model called the ex-machine. The ex-machine executes Turing machine instructions and two special types of instructions. Quantum random instructions are physically realizable with a quantum random number generator. Meta instructions can add new states and add new instructions to the ex-machine. A countable set of ex-machines is constructed, each with a finite number of states and instructions; each ex-machine can compute a Turing incomputable language, whenever the quantum randomness measurements behave like unbiased Bernoulli trials. In 1936, Alan Turing posed the halting problem for Turing machines and proved that this problem is unsolvable for Turing machines. Consider an enumeration E_a(i) = (M_i, T_i) of all Turing machines M_i and initial tapes T_i. Does there exist an ex-machine X that has at least one evolutionary path X --> X_1 --> X_2 --> . . . --> X_m, so at the mth stage ex-machine X_m can correctly determine for 0 <= i <= m whether M_i's execution on tape T_i eventually halts? We demonstrate an ex-machine Q(x) that has one such evolutionary path. The existence of this evolutionary path suggests that David Hilbert was not misguided to propose in 1900 that mathematicians search for finite processes to help construct mathematical proofs. Our refinement is that we cannot use a fixed computer program that behaves according to a fixed set of mechanical rules. We must pursue methods that exploit randomness and self-modification so that the complexity of the program can increase as it computes.Comment: 50 pages, 3 figure

    Intertwining wavelets or Multiresolution analysis on graphs through random forests

    Full text link
    We propose a new method for performing multiscale analysis of functions defined on the vertices of a finite connected weighted graph. Our approach relies on a random spanning forest to downsample the set of vertices, and on approximate solutions of Markov intertwining relation to provide a subgraph structure and a filter bank leading to a wavelet basis of the set of functions. Our construction involves two parameters q and q'. The first one controls the mean number of kept vertices in the downsampling, while the second one is a tuning parameter between space localization and frequency localization. We provide an explicit reconstruction formula, bounds on the reconstruction operator norm and on the error in the intertwining relation, and a Jackson-like inequality. These bounds lead to recommend a way to choose the parameters q and q'. We illustrate the method by numerical experiments.Comment: 39 pages, 12 figure

    Limits of spiked random matrices II

    Get PDF
    The top eigenvalues of rank rr spiked real Wishart matrices and additively perturbed Gaussian orthogonal ensembles are known to exhibit a phase transition in the large size limit. We show that they have limiting distributions for near-critical perturbations, fully resolving the conjecture of Baik, Ben Arous and P\'{e}ch\'{e} [Duke Math. J. (2006) 133 205-235]. The starting point is a new (2r+1)(2r+1)-diagonal form that is algebraically natural to the problem; for both models it converges to a certain random Schr\"{o}dinger operator on the half-line with r×rr\times r matrix-valued potential. The perturbation determines the boundary condition and the low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. We treat the real, complex and quaternion (β=1,2,4\beta=1,2,4) cases simultaneously. We further characterize the limit laws in terms of a diffusion related to Dyson's Brownian motion, or alternatively a linear parabolic PDE; here β\beta appears simply as a parameter. At β=2\beta=2, the PDE appears to reconcile with known Painlev\'{e} formulas for these rr-parameter deformations of the GUE Tracy-Widom law.Comment: Published at http://dx.doi.org/10.1214/15-AOP1033 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Bounded Confidence Model Of Opinion Dynamics

    Get PDF
    The bounded confidence model of opinion dynamics, introduced by Deffuant et al, is a stochastic model for the evolution of continuous-valued opinions within a finite group of peers. We prove that, as time goes to infinity, the opinions evolve globally into a random set of clusters too far apart to interact, and thereafter all opinions in every cluster converge to their barycenter. We then prove a mean-field limit result, propagation of chaos: as the number of peers goes to infinity in adequately started systems and time is rescaled accordingly, the opinion processes converge to i.i.d. nonlinear Markov (or McKean-Vlasov) processes; the limit opinion processes evolves as if under the influence of opinions drawn from its own instantaneous law, which are the unique solution of a nonlinear integro-differential equation of Kac type. This implies that the (random) empirical distribution processes converges to this (deterministic) solution. We then prove that, as time goes to infinity, this solution converges to a law concentrated on isolated opinions too far apart to interact, and identify sufficient conditions for the limit not to depend on the initial condition, and to be concentrated at a single opinion. Finally, we prove that if the equation has an initial condition with a density, then its solution has a density at all times, develop a numerical scheme for the corresponding functional equation, and show numerically that bifurcations may occur.Comment: 43 pages, 7 figure

    Matrix geometric approach for random walks: stability condition and equilibrium distribution

    Get PDF
    In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix R\mathbf{R} appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix R\mathbf{R}
    • …
    corecore