1,584 research outputs found

    A Unified Exact BER Performance Analysis of Asynchronous DS-CDMA Systems Using BPSK Modulation over Fading Channels

    No full text
    Abstract—An asynchronous binary DS-CDMA system using random spreading sequences is considered when communicating over various fading channels. New closed-form expressions are derived for the conditional Characteristic Function (CF) of the multiple access interference. A unified analysis is provided for calculating the exact average Bit Error Rate (BER) expressed in the form of a single numerical integration based on the CF approach. The numerical results obtained from our exact BER analysis are verified by our simulation results and are also compared to those obtained by the Standard Gaussian Approximation (SGA), confirming the accuracy of the SGA for most practical conditions, except for high Signal-to-Noise Ratios (SNR) and for a low number of interferers. Index Terms—BER analysis, CDMA, fading, Rayleigh, Ricean, Hoyt, Nakagami-m, random spreading sequence

    BER of MRC for M-QAM with imperfect channel estimation over correlated Nakagami-m fading

    Get PDF
    In this contribution, we provide an exact BER analysis for M-QAM transmission over arbitrarily correlated Nakagami-m fading channels with maximal-ratio combining (MRC) and imperfect channel estimation at the receiver. Assuming an arbitrary joint fading distribution and a generic pilot-based channel estimation method, we derive an exact BER expression that involves an expectation over (at most) 4 variables, irrespective of the number of receive antennas. The resulting BER expression includes well-known PDFs and the PDF of only the norm of the channel vector. In order to obtain the latter PDF for arbitrarily correlated Nakagami-m fading, several approaches from the literature are discussed. For identically distributed and arbitrarily correlated Nakagami-m channels with integer m, we present several BER performance results, which are obtained from numerical evaluation and confirmed by straightforward computer simulations. The numerical evaluation of the exact BER expression turns out to be much less time-consuming than the computer simulations

    Exact BER Analysis of OFDM Systems Communicating over Frequency-Selective Fading Channels Subjected to Carrier Frequency Offset

    No full text
    Orthogonal Frequency Division Multiplexing (OFDM) has been employed in numerous wireless standards. However, the performance of OFDM systems is degraded by both the Carrier Frequency Offset (CFO) and the Phase Estimation Error (PER). Hence new exact closed-form expressions are derived for calculating the average BER of OFDM systems in the presence of both CFO and PER in the context of frequency selective Nakagami-m fading channels. Our simulation results verify the accuracy of our exact BER analysis. By contrast, the Gaussian approximation slightly over-estimates the average BER, especially when the normalized CFO is small, the number of OFDM subcarriers is low and when the fading is less severe

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Error Rate Analysis of GF(q) Network Coded Detect-and-Forward Wireless Relay Networks Using Equivalent Relay Channel Models

    Full text link
    This paper investigates simple means of analyzing the error rate performance of a general q-ary Galois Field network coded detect-and-forward cooperative relay network with known relay error statistics at the destination. Equivalent relay channels are used in obtaining an approximate error rate of the relay network, from which the diversity order is found. Error rate analyses using equivalent relay channel models are shown to be closely matched with simulation results. Using the equivalent relay channels, low complexity receivers are developed whose performances are close to that of the optimal maximum likelihood receiver.Comment: 28 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • 

    corecore