12 research outputs found

    TaxonGrab: Extracting Taxonomic Names From Text

    Get PDF
    Identification of organism names in biological texts is essential for the management of archival resources to facilitate comparative biological investigation. Because organism nomenclature conforms closely to prescribed rules, automated techniques may be useful for identifying organism names from existing documents, and may also support the completion of comprehensive indices of taxonomic names; such comprehensive lists are not yet available. Using a combination of contextual rules and a language lexicon, we have developed a set of simple computational techniques for extracting taxonomic names from biological text. Our proposed method consistently performs at greater than 96% Precision and 94% Recall, and at a much higher speed than manual extraction techniques. An implementation of the described method is available as a Web based tool written in PHP. Additionally, the PHP source code is available from SourceForge: http://sourceforge.net/projects/taxongrab, and the project website is http://research.amnh.org/informatics/taxlit/apps/

    Knowledge Management for Biomedical Literature: The Function of Text-Mining Technologies in Life-Science Research

    Get PDF
    Efficient information retrieval and extraction is a major challenge in life-science research. The Knowledge Management (KM) for biomedical literature aims to establish an environment, utilizing information technologies, to facilitate better acquisition, generation, codification, and transfer of knowledge. Knowledge Discovery in Text (KDT) is one of the goals in KM, so as to find hidden information in the literature by exploring the internal structure of knowledge network created by the textual information. Knowledge discovery could be major help in the discovery of indirect relationships, which might imply new scientific discoveries. Text-mining provides methods and technologies to retrieve and extract information contained in free-text automatically. Moreover, it enables analysis of large collections of unstructured documents for the purposes of extracting interesting and non-trivial patterns of knowledge. Biomedical text-mining is organized in stages classified into the following steps: identification of biological entities, identification of biological relations and classification of entity relations. Here, we discuss the challenges and function of biomedical text-mining in the KM for biomedical literature

    Knowledge Management for Biomedical Literature: The Function of Text-Mining Technologies in Life-Science Research

    Get PDF
    Efficient information retrieval and extraction is a major challenge in life-science research. The Knowledge Management (KM) for biomedical literature aims to establish an environment, utilizing information technologies, to facilitate better acquisition, generation, codification, and transfer of knowledge. Knowledge Discovery in Text (KDT) is one of the goals in KM, so as to find hidden information in the literature by exploring the internal structure of knowledge network created by the textual information. Knowledge discovery could be major help in the discovery of indirect relationships, which might imply new scientific discoveries. Text-mining provides methods and technologies to retrieve and extract information contained in free-text automatically. Moreover, it enables analysis of large collections of unstructured documents for the purposes of extracting interesting and non-trivial patterns of knowledge. Biomedical text-mining is organized in stages classified into the following steps: identification of biological entities, identification of biological relations and classification of entity relations. Here, we discuss the challenges and function of biomedical text-mining in the KM for biomedical literature

    Information Retrieval Systems Adapted to the Biomedical Domain

    Get PDF
    The terminology used in Biomedicine shows lexical peculiarities that have required the elaboration of terminological resources and information retrieval systems with specific functionalities. The main characteristics are the high rates of synonymy and homonymy, due to phenomena such as the proliferation of polysemic acronyms and their interaction with common language. Information retrieval systems in the biomedical domain use techniques oriented to the treatment of these lexical peculiarities. In this paper we review some of the techniques used in this domain, such as the application of Natural Language Processing (BioNLP), the incorporation of lexical-semantic resources, and the application of Named Entity Recognition (BioNER). Finally, we present the evaluation methods adopted to assess the suitability of these techniques for retrieving biomedical resources.Comment: 6 pages, 4 table

    Automatically annotating documents with normalized gene lists

    Get PDF
    BACKGROUND: Document gene normalization is the problem of creating a list of unique identifiers for genes that are mentioned within a document. Automating this process has many potential applications in both information extraction and database curation systems. Here we present two separate solutions to this problem. The first is primarily based on standard pattern matching and information extraction techniques. The second and more novel solution uses a statistical classifier to recognize valid gene matches from a list of known gene synonyms. RESULTS: We compare the results of the two systems, analyze their merits and argue that the classification based system is preferable for many reasons including performance, simplicity and robustness. Our best systems attain a balanced precision and recall in the range of 74%–92%, depending on the organism

    Information retrieval systems adapted to the biomedical domain

    Get PDF
    The terminology used in biomedicine has lexical characteristics that have required the elaboration of terminological resources and information retrieval systems with specific functionalities. The main characteristics are the high rates of synonymy and homonymy, due to phenomena such as the proliferation of polysemic acronyms and their interaction with common language. Information retrieval systems in the biomedical domain use techniques oriented to the treatment of these lexical peculiarities. In this paper we review some of these techniques, such as the application of Natural Language Processing (BioNLP), the incorporation of lexical-semantic resources, and the application of Named Entity Recognition (BioNER). Finally, we present the evaluation methods adopted to assess the suitability of these techniques for retrieving biomedical resources

    AnnotationBustR: an R package to extract subsequences from GenBank annotations

    Get PDF
    Background DNA sequences are pivotal for a wide array of research in biology. Large sequence databases, like GenBank, provide an amazing resource to utilize DNA sequences for large scale analyses. However, many sequence records on GenBank contain more than one gene or are portions of genomes. Inconsistencies in the way genes are annotated and the numerous synonyms a single gene may be listed under provide major challenges for extracting large numbers of subsequences for comparative analysis across taxa. At present, there is no easy way to extract portions from many GenBank accessions based on annotations where gene names may vary extensively. Results The R package AnnotationBustR allows users to extract sequences based on GenBank annotations through the ACNUC retrieval system given search terms of gene synonyms and accession numbers. AnnotationBustR extracts subsequences of interest and then writes them to a FASTA file for users to employ in their research endeavors. Conclusion FASTA files of extracted subsequences and accession tables generated by AnnotationBustR allow users to quickly find and extract subsequences from GenBank accessions. These sequences can then be incorporated in various analyses, like the construction of phylogenies to test a wide range of ecological and evolutionary hypotheses

    Soft tagging of overlapping high confidence gene mention variants for cross-species full-text gene normalization

    Get PDF
    Abstract Background Previously, gene normalization (GN) systems are mostly focused on disambiguation using contextual information. An effective gene mention tagger is deemed unnecessary because the subsequent steps will filter out false positives and high recall is sufficient. However, unlike similar tasks in the past BioCreative challenges, the BioCreative III GN task is particularly challenging because it is not species-specific. Required to process full-length articles, an ineffective gene mention tagger may produce a huge number of ambiguous false positives that overwhelm subsequent filtering steps while still missing many true positives. Results We present our GN system participated in the BioCreative III GN task. Our system applies a typical 2-stage approach to GN but features a soft tagging gene mention tagger that generates a set of overlapping gene mention variants with a nearly perfect recall. The overlapping gene mention variants increase the chance of precise match in the dictionary and alleviate the need of disambiguation. Our GN system achieved a precision of 0.9 (F-score 0.63) on the BioCreative III GN test corpus with the silver annotation of 507 articles. Its TAP-k scores are competitive to the best results among all participants. Conclusions We show that despite the lack of clever disambiguation in our gene normalization system, effective soft tagging of gene mention variants can indeed contribute to performance in cross-species and full-text gene normalization.</p
    corecore