119,378 research outputs found

    TF2Network : predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information

    Get PDF
    A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidop-sis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75-92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response

    Deep Learning Approach To Gene Network Inference

    Get PDF
    Gene regulatory network(GRN) inference remains a challenging problem in the field of bioinformatics. GRN contain valuable information needed to get a deeper understanding of the regulatory network. This could lead to advances in disease treatment or help drug discovery. Our approach to solving the problem of GRN inference is to train multilayered perceptrons (MLPs) to recreate the dynamics of the biological function. With the trained models able to module the dynamics, we hope to extract the underlying relationships between the species through feature attribution algorithms. We apply our method to a regulatory network for cell apoptosis and a network regulating the T-cell response to a pathogen.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Complex-based analysis of dysregulated cellular processes in cancer

    Full text link
    Background: Differential expression analysis of (individual) genes is often used to study their roles in diseases. However, diseases such as cancer are a result of the combined effect of multiple genes. Gene products such as proteins seldom act in isolation, but instead constitute stable multi-protein complexes performing dedicated functions. Therefore, complexes aggregate the effect of individual genes (proteins) and can be used to gain a better understanding of cancer mechanisms. Here, we observe that complexes show considerable changes in their expression, in turn directed by the concerted action of transcription factors (TFs), across cancer conditions. We seek to gain novel insights into cancer mechanisms through a systematic analysis of complexes and their transcriptional regulation. Results: We integrated large-scale protein-interaction (PPI) and gene-expression datasets to identify complexes that exhibit significant changes in their expression across different conditions in cancer. We devised a log-linear model to relate these changes to the differential regulation of complexes by TFs. The application of our model on two case studies involving pancreatic and familial breast tumour conditions revealed: (i) complexes in core cellular processes, especially those responsible for maintaining genome stability and cell proliferation (e.g. DNA damage repair and cell cycle) show considerable changes in expression; (ii) these changes include decrease and countering increase for different sets of complexes indicative of compensatory mechanisms coming into play in tumours; and (iii) TFs work in cooperative and counteractive ways to regulate these mechanisms. Such aberrant complexes and their regulating TFs play vital roles in the initiation and progression of cancer.Comment: 22 pages, BMC Systems Biolog

    Genetic regulation of mouse liver metabolite levels.

    Get PDF
    We profiled and analyzed 283 metabolites representing eight major classes of molecules including Lipids, Carbohydrates, Amino Acids, Peptides, Xenobiotics, Vitamins and Cofactors, Energy Metabolism, and Nucleotides in mouse liver of 104 inbred and recombinant inbred strains. We find that metabolites exhibit a wide range of variation, as has been previously observed with metabolites in blood serum. Using genome-wide association analysis, we mapped 40% of the quantified metabolites to at least one locus in the genome and for 75% of the loci mapped we identified at least one candidate gene by local expression QTL analysis of the transcripts. Moreover, we validated 2 of 3 of the significant loci examined by adenoviral overexpression of the genes in mice. In our GWAS results, we find that at significant loci the peak markers explained on average between 20 and 40% of variation in the metabolites. Moreover, 39% of loci found to be regulating liver metabolites in mice were also found in human GWAS results for serum metabolites, providing support for similarity in genetic regulation of metabolites between mice and human. We also integrated the metabolomic data with transcriptomic and clinical phenotypic data to evaluate the extent of co-variation across various biological scales

    Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    Get PDF
    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant’s sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes use of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. The resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance

    A systems biology analysis of brain microvascular endothelial cell lipotoxicity.

    Get PDF
    BackgroundNeurovascular inflammation is associated with a number of neurological diseases including vascular dementia and Alzheimer's disease, which are increasingly important causes of morbidity and mortality around the world. Lipotoxicity is a metabolic disorder that results from accumulation of lipids, particularly fatty acids, in non-adipose tissue leading to cellular dysfunction, lipid droplet formation, and cell death.ResultsOur studies indicate for the first time that the neurovascular circulation also can manifest lipotoxicity, which could have major effects on cognitive function. The penetration of integrative systems biology approaches is limited in this area of research, which reduces our capacity to gain an objective insight into the signal transduction and regulation dynamics at a systems level. To address this question, we treated human microvascular endothelial cells with triglyceride-rich lipoprotein (TGRL) lipolysis products and then we used genome-wide transcriptional profiling to obtain transcript abundances over four conditions. We then identified regulatory genes and their targets that have been differentially expressed through analysis of the datasets with various statistical methods. We created a functional gene network by exploiting co-expression observations through a guilt-by-association assumption. Concomitantly, we used various network inference algorithms to identify putative regulatory interactions and we integrated all predictions to construct a consensus gene regulatory network that is TGRL lipolysis product specific.ConclusionSystem biology analysis has led to the validation of putative lipid-related targets and the discovery of several genes that may be implicated in lipotoxic-related brain microvascular endothelial cell responses. Here, we report that activating transcription factors 3 (ATF3) is a principal regulator of TGRL lipolysis products-induced gene expression in human brain microvascular endothelial cell
    • …
    corecore