36,224 research outputs found

    Gene Expression Variability within and between Human Populations and Implications toward Disease Susceptibility

    Get PDF
    Variations in gene expression level might lead to phenotypic diversity across individuals or populations. Although many human genes are found to have differential mRNA levels between populations, the extent of gene expression that could vary within and between populations largely remains elusive. To investigate the dynamic range of gene expression, we analyzed the expression variability of āˆ¼18, 000 human genes across individuals within HapMap populations. Although āˆ¼20% of human genes show differentiated mRNA levels between populations, our results show that expression variability of most human genes in one population is not significantly deviant from another population, except for a small fraction that do show substantially higher expression variability in a particular population. By associating expression variability with sequence polymorphism, intriguingly, we found SNPs in the untranslated regions (5ā€² and 3ā€²UTRs) of these variable genes show consistently elevated population heterozygosity. We performed differential expression analysis on a genome-wide scale, and found substantially reduced expression variability for a large number of genes, prohibiting them from being differentially expressed between populations. Functional analysis revealed that genes with the greatest within-population expression variability are significantly enriched for chemokine signaling in HIV-1 infection, and for HIV-interacting proteins that control viral entry, replication, and propagation. This observation combined with the finding that known human HIV host factors show substantially elevated expression variability, collectively suggest that gene expression variability might explain differential HIV susceptibility across individuals

    Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent

    Get PDF
    Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that markers can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response

    Pharmacogenetics : the science of predictive clinical pharmacology

    Get PDF
    The study of pharmacogenetics has expanded from what were initially casual family-based clinical drug response observations, to a fully-fledged science with direct therapeutic applications, all within a time-span of less than 60 years. A wide spectrum of polymorphisms, located within several genes, are now recognised to influence the pharmacokinetics and pharmacodynamics of the majority of drugs within our therapeutic armamentarium. This information forms the basis for the new development of pharmacogenetic genotyping tests, which can be used to predict the therapeutic and/or adverse effects of a specific drug in a particular patient. Pharmacogenetic-guided, patient targeted therapy has now become the developing fulcrum of personalized medicine, as it provides the best means to optimize benefit/risk ratio in pharmacological management.peer-reviewe

    Personalized medicineā€”a modern approach for the diagnosis and management of hypertension

    Get PDF
    The main goal of treating hypertension is to reduce blood pressure to physiological levels and thereby prevent risk of cardiovascular disease and hypertension-associated target organ damage. Despite reductions in major risk factors and the availability of a plethora of effective antihypertensive drugs, the control of blood pressure to target values is still poor due to multiple factors including apparent drug resistance and lack of adherence. An explanation for this problem is related to the current reductionist and ā€˜trial-and-errorā€™ approach in the management of hypertension, as we may oversimplify the complex nature of the disease and not pay enough attention to the heterogeneity of the pathophysiology and clinical presentation of the disorder. Taking into account specific risk factors, genetic phenotype, pharmacokinetic characteristics, and other particular features unique to each patient, would allow a personalized approach to managing the disease. Personalized medicine therefore represents the tailoring of medical approach and treatment to the individual characteristics of each patient and is expected to become the paradigm of future healthcare. The advancement of systems biology research and the rapid development of high-throughput technologies, as well as the characterization of different ā€“omics, have contributed to a shift in modern biological and medical research from traditional hypothesis-driven designs toward data-driven studies and have facilitated the evolution of personalized or precision medicine for chronic diseases such as hypertension

    Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human alpha-synuclein in transgenic mouse brain.

    Get PDF
    Alpha-synuclein (SNCA) gene has been implicated in the development of rare forms of familial Parkinson disease (PD). Recently, it was shown that an increase in SNCA copy numbers leads to elevated levels of wild-type SNCA-mRNA and protein and is sufficient to cause early-onset, familial PD. A critical question concerning the molecular pathogenesis of PD is what contributory role, if any, is played by the SNCA gene in sporadic PD. The expansion of SNCA-Rep1, an upstream, polymorphic microsatellite of the SNCA gene, is associated with elevated risk for sporadic PD. However, whether SNCA-Rep1 is the causal variant and the underlying mechanism with which its effect is mediated by remained elusive. We report here the effects of three distinct SNCA-Rep1 variants in the brains of 72 mice transgenic for the entire human SNCA locus. Human SNCA-mRNA and protein levels were increased 1.7- and 1.25-fold, respectively, in homozygotes for the expanded, PD risk-conferring allele compared with homozygotes for the shorter, protective allele. When adjusting for the total SNCA-protein concentration (endogenous mouse and transgenic human) expressed in each brain, the expanded risk allele contributed 2.6-fold more to the SNCA steady-state than the shorter allele. Furthermore, targeted deletion of Rep1 resulted in the lowest human SNCA-mRNA and protein concentrations in murine brain. In contrast, the Rep1 effect was not observed in blood lysates from the same mice. These results demonstrate that Rep1 regulates human SNCA expression by enhancing its transcription in the adult nervous system and suggest that homozygosity for the expanded Rep1 allele may mimic locus multiplication, thereby elevating PD risk

    Maternal BMI as a predictor of methylation of obesity-related genes in saliva samples from preschool-age Hispanic children at-risk for obesity.

    Get PDF
    BackgroundThe study of epigenetic processes and mechanisms present a dynamic approach to assess complex individual variation in obesity susceptibility. However, few studies have examined epigenetic patterns in preschool-age children at-risk for obesity despite the relevance of this developmental stage to trajectories of weight gain. We hypothesized that salivary DNA methylation patterns of key obesogenic genes in Hispanic children would 1) correlate with maternal BMI and 2) allow for identification of pathways associated with children at-risk for obesity.ResultsGenome-wide DNA methylation was conducted on 92 saliva samples collected from Hispanic preschool children using the Infinium Illumina HumanMethylation 450Ā K BeadChip (Illumina, San Diego, CA, USA), which interrogates >484,000 CpG sites associated with ~24,000 genes. The analysis was limited to 936 genes that have been associated with obesity in a prior GWAS Study. Child DNA methylation at 17 CpG sites was found to be significantly associated with maternal BMI, with increased methylation at 12 CpG sites and decreased methylation at 5 CpG sites. Pathway analysis revealed methylation at these sites related to homocysteine and methionine degradation as well as cysteine biosynthesis and circadian rhythm. Furthermore, eight of the 17 CpG sites reside in genes (FSTL1, SORCS2, NRF1, DLC1, PPARGC1B, CHN2, NXPH1) that have prior known associations with obesity, diabetes, and the insulin pathway.ConclusionsOur study confirms that saliva is a practical human tissue to obtain in community settings and in pediatric populations. These salivary findings indicate potential epigenetic differences in Hispanic preschool children at risk for pediatric obesity. Identifying early biomarkers and understanding pathways that are epigenetically regulated during this critical stage of child development may present an opportunity for prevention or early intervention for addressing childhood obesity.Trial registrationThe clinical trial protocol is available at ClinicalTrials.gov ( NCT01316653 ). Registered 3 March 2011
    • ā€¦
    corecore