3,687 research outputs found

    On Body Mass Index Analysis from Human Visual Appearance

    Get PDF
    In the past few decades, overweight and obesity are spreading widely like an epidemic. Generally, a person is considered overweight by body mass index (BMI). In addition to a body fat measurement, BMI is also a risk factor for many diseases, such as cardiovascular diseases, cancers and diabetes, etc. Therefore, BMI is important for personal health monitoring and medical research. Currently, BMI is measured in person with special devices. It is an urgent demand to explore conveniently preventive tools. This work investigates the feasibility of analyzing BMI from human visual appearances, including 2-dimensional (2D)/3-dimensional (3D) body and face data. Motivated by health science studies which have shown that anthropometric measures, such as waist-hip ratio, waist circumference, etc., are indicators for obesity, we analyze body weight from frontal view human body images. A framework is developed for body weight analysis from body images, along with the computation methods of five anthropometric features for body weight characterization. Then, we study BMI estimation from the 3D data by measuring the correlation between the estimated body volume and BMIs, and develop an efficient BMI computation method which consists of body weight and height estimation from normally dressed people in 3D space. We also intensively study BMI estimation from frontal view face images via two key aspects: facial representation extracting and BMI estimator learning. First, we investigate the visual BMI estimation problem from the aspect of the characteristics and performance of different facial representation extracting methods by three designed experiments. Then we study visual BMI estimation from facial images by a two-stage learning framework. BMI related facial features are learned in the first stage. To address the ambiguity of BMI labels, a label distribution based BMI estimator is proposed for the second stage. The experimental results show that this framework improves the performance step by step. Finally, to address the challenges caused by BMI data and labels, we integrate feature learning and estimator learning in one convolutional neural network (CNN). A label assignment matching scheme is proposed which successfully achieves an improvement in BMI estimation from face images

    Facial Analysis: Looking at Biometric Recognition and Genome-Wide Association

    Get PDF

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Biometric security: A novel ear recognition approach using a 3D morphable ear model

    Get PDF
    Biometrics is a critical component of cybersecurity that identifies persons by verifying their behavioral and physical traits. In biometric-based authentication, each individual can be correctly recognized based on their intrinsic behavioral or physical features, such as face, fingerprint, iris, and ears. This work proposes a novel approach for human identification using 3D ear images. Usually, in conventional methods, the probe image is registered with each gallery image using computational heavy registration algorithms, making it practically infeasible due to the time-consuming recognition process. Therefore, this work proposes a recognition pipeline that reduces the one-to-one registration between probe and gallery. First, a deep learning-based algorithm is used for ear detection in 3D side face images. Second, a statistical ear model known as a 3D morphable ear model (3DMEM), was constructed to use as a feature extractor from the detected ear images. Finally, a novel recognition algorithm named you morph once (YMO) is proposed for human recognition that reduces the computational time by eliminating one-to-one registration between probe and gallery, which only calculates the distance between the parameters stored in the gallery and the probe. The experimental results show the significance of the proposed method for a real-time application

    Evaluation of a novel computer vision-based livestock monitoring system to identify and track specific behaviors of individual nursery pigs within a group-housed environment

    Get PDF
    Animal behavior is indicative of health status and changes in behavior can indicate health issues (i.e., illness, stress, or injury). Currently, human observation (HO) is the only method for detecting behavior changes that may indicate problems in group-housed pigs. While HO is effective, limitations exist. Limitations include HO being time consuming, HO obfuscates natural behaviors, and it is not possible to maintain continuous HO. To address these limitations, a computer vision platform (NUtrack) was developed to identify (ID) and continuously monitor specific behaviors of group-housed pigs on an individual basis. The objectives of this study were to evaluate the capabilities of the NUtrack system and evaluate changes in behavior patterns over time of group-housed nursery pigs. The NUtrack system was installed above four nursery pens to monitor the behavior of 28 newly weaned pigs during a 42-d nursery period. Pigs were stratified by sex, litter, and randomly assigned to one of two pens (14 pigs/pen) for the first 22 d. On day 23, pigs were split into four pens (7 pigs/pen). To evaluate the NUtrack system’s capabilities, 800 video frames containing 11,200 individual observations were randomly selected across the nursery period. Each frame was visually evaluated to verify the NUtrack system’s accuracy for ID and classification of behavior. The NUtrack system achieved an overall accuracy for ID of 95.6%. This accuracy for ID was 93.5% during the first 22 d and increased (P \u3c 0.001) to 98.2% for the final 20 d. Of the ID errors, 72.2% were due to mislabeled ID and 27.8% were due to loss of ID. The NUtrack system classified lying, standing, walking, at the feeder (ATF), and at the waterer (ATW) behaviors accurately at a rate of 98.7%, 89.7%, 88.5%, 95.6%, and 79.9%, respectively. Behavior data indicated that the time budget for lying, standing, and walking in nursery pigs was 77.7% ± 1.6%, 8.5% ± 1.1%, and 2.9% ± 0.4%, respectively. In addition, behavior data indicated that nursery pigs spent 9.9% ± 1.7% and 1.0% ± 0.3% time ATF and ATW, respectively. Results suggest that the NUtrack system can detect, identify, maintain ID, and classify specific behavior of group-housed nursery pigs for the duration of the 42-d nursery period. Overall, results suggest that, with continued research, the NUtrack system may provide a viable real-time precision livestock tool with the ability to assist producers in monitoring behaviors and potential changes in the behavior of group-housed pigs

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    • …
    corecore