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Abstract

On Body Mass Index Analysis from Human Visual Appearance

Min Jiang

In the past few decades, overweight and obesity are spreading widely like an epidemic.

Generally, a person is considered overweight by body mass index (BMI). In addition to a

body fat measurement, BMI is also a risk factor for many diseases, such as cardiovascular

diseases, cancers and diabetes, etc. Therefore, BMI is important for personal health

monitoring and medical research. Currently, BMI is measured in person with special

devices. It is an urgent demand to explore conveniently preventive tools. This work

investigates the feasibility of analyzing BMI from human visual appearances, including

2-dimensional (2D)/3-dimensional (3D) body and face data.

Motivated by health science studies which have shown that anthropometric measures,

such as waist-hip ratio, waist circumference, etc., are indicators for obesity, we analyze

body weight from frontal view human body images. A framework is developed for

body weight analysis from body images, along with the computation methods of five

anthropometric features for body weight characterization. Then, we study BMI estimation

from the 3D data by measuring the correlation between the estimated body volume and

BMIs, and develop an efficient BMI computation method which consists of body weight

and height estimation from normally dressed people in 3D space.

We also intensively study BMI estimation from frontal view face images via two key

aspects: facial representation extracting and BMI estimator learning. First, we investigate

the visual BMI estimation problem from the aspect of the characteristics and performance

of different facial representation extracting methods by three designed experiments. Then

we study visual BMI estimation from facial images by a two-stage learning framework.

BMI related facial features are learned in the first stage. To address the ambiguity of BMI

labels, a label distribution based BMI estimator is proposed for the second stage. The

experimental results show that this framework improves the performance step by step.

Finally, to address the challenges caused by BMI data and labels, we integrate feature

learning and estimator learning in one convolutional neural network (CNN). A label

assignment matching scheme is proposed which successfully achieves an improvement in

BMI estimation from face images.
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Chapter 1

Introduction

Biometrics [1] refers to metrics of human physiological and behavioral characteristics,

such as the face, fingerprint, iris, DNA, voice, gait, gender, height, weight and age, etc.

Researchers working on biometrics put a spotlight on the so-called soft biometrics [2, 3],

including height, weight, age and hair color, etc. Different from hard biometrics (such as

the face, fingerprint, iris and DNA, etc) which have some peculiar characteristics such as

robustness and distinctiveness [4, 5], soft biometrics do not exhibit such characteristics.

However, recently it has been demonstrated that soft biometrics are useful to ameliorate

the quality of identification and recognition [6–8].

Among the soft biometric measures, body mass index (BMI) is a good indicator of

health condition and a risk factor for many diseases such as diabetes, cancer and renal

disease, etc [9–13]. BMI is calculated by an individual’s height and weight. It is an

important visual characteristic to describe a person, which is widely used for measuring

adiposity, especially for the overweight issue [14–16]. Generally, BMI is measured in

person with special devices. Thereby, automatically accessing BMI values from human

visual appearance is a great benefit to health condition monitoring and researchers who

are interested in studying obesity in large populations.

This dissertation is devoted to the soft biometrics using human visual appearance

as the trait known as visual BMI estimation. The main cases of interest discussed

in this work are BMI estimation from various types of visual appearances, such as 2-

dimensional (2D) body images, 3-dimensional (3D) body reconstruction, and 2D face
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images. Computational methods are proposed in turn for these cases. The main focus of

this dissertation is to develop new computational approaches for BMI estimation.

1.1 Background and Motivation

Extreme overweight and obesity are spreading widely like an epidemic. The United

States spends more than 300 billion each year to treat obesity, diabetes, and cardiovascular

diseases [17]. Overweight has been identified as one of the main factors that generate

those diseases. Generally, a person is considered overweight or obese by the BMI value,

which is used as a general measure for body fat. BMI is an attempt to quantify the

amount of tissue mass (muscle, fat, and bone) in an individual. It has been widely

used in public health and clinical practice. Given an individual’s height and weight, the

calculation of BMI is computed by [18]:

BMI =
weight(lb)× 703

height(in)2
(1.1)

According to the values of BMI, people are categorized as underweight (BMI ≤ 18.5),

normal weight (18.5 < BMI ≤ 25), overweight (25 < BMI ≤ 30) and obese (BMI > 30).

In addition to a body fat measurement, BMI is also a risk factor for many diseases.

For example, several works [10,11] demonstrated that increased BMI is associated with

some cancers for both males and females, such as breast cancer, colon cancer, thyroid

cancer, etc. Wolk et al. [13] presented that BMI is a risk factor for unstable angina and

myocardial infarction in patients. Meigs et al. [9] studied the risk of type 2 diabetes or

cardiovascular disease (CVD) stratified by BMI.

Taking into account the close connection between BMI and some diseases, BMI

is important for personal health monitoring and medical research. Generally, BMI is

measured in person with special devices. Populations feel the urge for conveniently

preventive tools and methods to increase their self-awareness so as to achieve a better

state of health. Computer vision, by now entered in our daily life could be a favored

mean for providing such new techniques. This dissertation investigates the feasibility

of analyzing BMI from visual appearance. In other words, we want to decode the BMI

information from the aspect of visual appearance.

The motivation for this proposal comes from several aspects. First, from human

vision, body weight and fat can be intuitively observed by humans from the 2D body and

face images. Some examples with corresponding BMI values are shown in Fig 1.1. The

increase in body and face adiposity can be observed by human vision without difficulty.
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BMI:

under weight normal over weight obese

16.9 23.7 27.6 53.1

18.4 25.823.9 38.0BMI:

Figure 1.1: Some images with BMI values and corresponding categories. The increase in

body adiposity is observed as the BMI value increases.

Second, many studies in health science [19–26] had shown that some anthropometric

measures, such as waist-thigh ratio, waist-hip ratio, waist circumference, the cheekbone

width to jaw width ratio, average size of eyes and facial shape, etc. are indicators for

obesity and are correlated to BMI values. Based on the above intuitive observation and

health science studies, we believe that it is worth analyzing body weight or BMI from

human visual appearance.

1.2 Related Work

This section gives a detailed literature review on BMI related study, including health

science studies and computer vision based computational methods. Existing works study

BMI and body weight from various types of data, such as anthropometric measurements,

3D body data, face images, etc. According to the types of the data, first, we simply

divide them into two parts: body related data and face related data. In the following

section, we introduce the related work from these two types of data and present their

limitations and existing challenges.

1.2.1 Study Body Weight and Obesity from Body Data

Anthropometric indicators for obesity or BMI: In the past few years, a lot of

studies in the health science had shown that some anthropometric measures, such as

waist-thigh ratio, waist-hip ratio, waist circumference, etc., are indicators for obesity or

are correlated to BMI values. Ashwell et al. [20] proposed a simple method to classify
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the female fat distribution from two factors: waist and thigh circumferences. Later

on, Ashwell et al. [27] found that the correlations between body measurements and

intra-abdominal/subcutaneous fat are related to the fat distribution of the female body.

The body measurements they studied include the ratio of waist to hip circumference, and

the ratio of waist to thigh circumference. In addition to analyzing the correlation between

body measurements and intra-abdominal fat, Seidell et al. [22] showed that the amounts

of intra-abdominal fat and subcutaneous abdominal fat could be accurately predicted

from several circumferences, skinfold measurements, BMI and age. Considering skinfold

thicknesses and body circumferences both are associated with body fat, Mueller et al. [28]

addressed the question of whether body circumferences are inherently more reliable than

skinfold thicknesses. According to their study, it is shown that the reliability of six

body circumferences is significantly higher than that of skinfold thicknesses at five sites,

suggesting that circumferences are a more reliable method. These six body circumferences

include that of the forearm, mid-upper arm, calf, chest, waist, hip. Though a variety of

anthropometric indicators for abdominal obesity have been suggested in many studies,

the literature lacks a systematic evaluation of the proposed indicators taking into account

possible differences between genders, age categories and ethnic groups and different

diseases and mortality. To provide solid basis for the selection and use of anthropometric

indicators for analyzing abdominal obesity, Molarius et al. [19] listed a number of different

indicators suggested in the literature as best measures for abdominal obesity, such as

waist-thigh ratio, waist-hip ratio, waist-height ratio and waist circumference, etc, and

evaluated their performance taking into account possible differences.

Analyzing human weight from anthropometric data: Taking into account

the abundant literature in health science have shown the close association between

anthropometric measurements and obesity, Velardo et al. [29] studied the feasibility

of estimating weight from given anthropometric. A polynomial regression model was

employed to predict body weight from the anthropometric data. A large health database

NHANES [30] was exploited for the model training, while its validation was performed

both on ideal and realistic conditions. The experimental results showed that under noisy

data conditions the method could provide accurate estimations, putting the basis for

future work towards an automatic weight estimation. Later on, Cao et al. [31] investigated

the method of predicting certain soft biometrics, such as gender and weight from a large

set of true measurements of the body (provided by CAESAR 1D database). Detailed

definitions, usage and performance of 43 anthropometric measurements were included in



Min Jiang Chapter 1. Introduction 5

their work.

Estimating human weight from body RGB-D data: There are a few works

analyzing body weight from RGB-D data. Nahavandi et al. [32] presented a neural

network based method to estimate BMI from simulated depth images of the human

body. First, 3D manikins are generated using the MakeHuman open source software.

During this stage, body weight is estimated as the ground-truth. Then depth images are

generated from 3D manikins by Blender open source software. Pfitzner et al. [33] presents

a method for estimating body weight from RGB-D body data and thermal data of lying

people in clinical environment. First, anthropometric features are extracted from the

frontal view of RGB-D data. Thermal data is used to ease the segmentation of a person

from the background. Then the features are forwarded to an artificial neural network

for weight estimation. Later on, Pfitzner et al. [34] extended their previous work [33] by

adding two more scenarios: standing and walking people.

Estimating human weight from video frames: Besides the body weight esti-

mation from RGB-D data, it is also possible to estimate it from a sequence of video

frames. Labati et al. [35] developed a weight estimation approach from frame sequences

representing a walking person. The method analyzes pairs of frame sequences captured

by two cameras (frontal and side views) and extracts features related to the dimensional

characteristics of the silhouette. A computational approach is then used to estimate

weight from extracted features by evaluating the relations between the visual characteris-

tics and the weight of the person. Experiments were performed with 20 subjects, walking

in eight different directions. A maximum absolute mean error was recorded with less

than 2.4 kg. In another work, Arigbabu et al. [36] presented an approach for estimating

soft biometrics, e.g., body height and weight, from video frames which record the walk

process of each participant (frontal and side views). First, they extracted the silhouette

of people from each frame by image processing techniques like background subtraction.

Then 13 pixel-density based features are extracted from the segmented body regions. The

features are finally forwarded to an artificial neural network (ANN) to estimate body

weight. In experiments with 80 subjects, they reached a mean average error of 4.66 kg

the estimation of body weight.

Predicting human weight from body 3D Data: Taking the advantages of 3D

reconstruction technology, such KinectFusion, researchers began to study body weight

from 3D body data. In 2012, Velardo et al. [37] studied the weight estimation from 3D

body data collected by Microsoft Kinect sensor. Several anthropometric measures (same
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as those used in their previous work [29]) are extracted from the body 3D data. They

utilized a neural network regressor instead of a polynomial regression model used in [29]

to learn the map between the extracted features and body weight. Velardo et al. [38]

presented an approach to estimate the weight of a person within 4% error using 2D and

3D data extracted from a low-cost Kinect RGB-D camera output. To obtain accurate 3D

data, they smoothed the depth map by convolving its 2D projection with a Gaussian

kernel, and then they removed the outliers at the edges by taking only the pixel belonging

to the binary mask provided by the background separation algorithm. The body weight

is estimated from the extracted anthropometric features by a regression model. Both [37]

and [38] estimate BMI from the extracted anthropometric features, a new method which

directly estimates BMI from people in 3D space is desired.

From the above reviewed literatures, we found that there are two limitations of

estimating weight from body data. First, existing methods [32–34] depend on both color

and depth images. Is it possible to analyze weight just from single-shot body images?

Second, both [37] and [38] estimate BMI from the extracted anthropometric features, a

new method which directly estimates BMI from people in 3D space is desired.

1.2.2 Study BMI from Facial Data

Relationship between facial appearance and health: The relationship between

facial cues and perceptions of health have been studied by many researchers from various

aspects for a long time. There are several studies explored the association between facial

adiposity and various diseases. Coetzee et al. [23] demonstrated that facial adiposity

(the perception of weight in the face) significantly improve the prediction of perceived

health and attractiveness in a curvilinear relationship, and perceived facial adiposity is

significantly associated with measures of cardiovascular health and reported infections.

Tinlin et al. [39] showed that young adult women’s facial adiposity is better predicted by

their body weight than by their body shape, and are correlated with a composite measure

of their physical and psychological condition (such as stress, anxiety, and depression).

In [40], De Jager et al. reviewed that facial adiposity has also been linked to various health

outcomes such as cardiovascular disease, respiratory disease, blood pressure, immune

function, diabetes, arthritis, oxidative stress, hormones, and mental health. In addition

to facial adiposity, facial skin coloration also affects perceived health. Stephen et al. [41]

suggested that facial skin colors are associated with health and also play a role in the

perception of health in human faces. Increased skin yellowness and lightness suggest a
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role for high carotenoid and low melanin coloration in the healthy appearance of faces.

Furthermore, the facial shape has been successfully used for predicting physiological

health. Stephen et al. [42] applied the geometric morphometric methodology to facial

shape data, producing models that successfully predict aspects of physiological health

(including percentage body fat, body mass index and blood pressure) from 272 Asian,

African, and Caucasian. The experimental results suggested that facial shape provides a

valid cue to aspects of physiological health.

Association between facial appearance and BMIs/body fat: Over the past

decade, researchers began to pay attention to the association between facial appearance

and BMI. Coetzee et al. [24] studied the correlation between BMI and three facial

geometric metrics−cheek-to-jaw-width ratio (CJWR), face width-to-height ratio (WHR)

and face perimeter to area ratio (PAR). They recruited 95 Caucasian and 99 African

participants to capture face images for this study. According to the experimental results,

there is a significant correlation existing between the facial feature and BMI values.

Later on, Pham et al. [25] further analyzed the correlation between BMI values and four

other geometric metrics−eye size, lower face to face height ratio (LF/FH), face width

to lower face height ratio (FW/LFH) and mean of eyebrow height among the group of

young and elder in Korean. Facial images of 911 participants were analyzed. These

data indicated that these four facial metrics are correlated with BMI. To estimate the

strength of the relationship between perceived facial adiposity and BMI, De Jager et

al. [40] conducted a meta-analysis to evaluate the quantified the relationship between

perceived facial adiposity and BMI. A model weighted by sample size was performed. The

analysis revealed a strong positive overall correlation between perceived facial adiposity

ratings and BMI with r = 0.71. In addition to BMI, facial metrics are correlated to

visceral obesity. To determine the best predictor of the normal waist and visceral obesity

among these characteristics, Lee et al. [43] investigated the association of visceral obesity

with facial characteristics. They extracted 15 facial characteristics from 2D images and

identified the strongest predictor for each age-gender group. They also assessed the

predictive power of different combinations of characteristics. Recently, researchers found

facial skin color and texture are also associated with BMI prediction. Henderson et

al. [26] investigated the effect of multiple facial cues on health judgments from both 2D

and 3D face images. They found that except general face geometric features, global face

shape and skin color are also associated with BMI prediction. Mayer et al. [44] assessed

the association of BMI values with facial attributes−shape and texture (color pattern) in
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the female group. The experiment was conducted on 49 standardized images of female

participants. They found that the faces of women with high BMIs had wider and rounder

facial outlines relative to the size of the eyes and lips, and relatively lower eyebrows.

Furthermore, they showed that women with higher BMIs have brighter and more reddish

facial skin color.

Estimating BMI from 3D face data: There are a few works estimating BMI

from 3D volume reconstruction of the face. Pascali et al. [45] proposed a framework for

estimating body weight from 3D facial data collected by low-cost depth scanners. Body

weight is estimated by the geometric features extracted from the 3D model. A method for

automatically computing geometric features is proposed. Given a 3D face scan labeled

with a set of landmarks, Giorgi et al. [46] utilized persistent homology descriptors to

get geometric and topological information of the face. By applying dimension reduction

techniques to the dissimilarity matrix of descriptors, they got a space in which each

face was a point and face shape variations are encoded as trajectories in that space. By

analyzing the shape patterns of single individuals as trajectories, it is shown that this

method helps to assess the weight gain or loss of individuals.

Estimating BMI from 2D face images by geometric feature: The compu-

tational method which predicts BMI values from 2D face images began with utilizing

geometry based facial features. Wen et al. [47] proposed a novel geometry based compu-

tational method for automatically predicting BMI values from 2D face images. This is

the first work on visual BMI estimation from facial images. The psychology inspired geo-

metric features (PIGF) are computed for BMI prediction. Three regression methods: the

support vector regression (SVR) [48], Gaussian process (GP) [49], and the least-squares

estimation [50] are used for learning the map between facial features and BMI values. This

method was evaluated on a large dataset: Morph II database [51]. Barr et al. [52] utilized

the method proposed in [47] to identify whether BMI values can be correctly identified

from participants’ facial images in order to improve data capturing in dissemination

and implementation research. According to the BMI values, there are mainly four BMI

categories: underweight (BMI≤18.5), normal (18.5<BMI≤25), overweight (25<BMI≤30),

obese (BMI>30). Experimental analysis indicated estimated BMIs are more accurate in

normal and overweight categories while they are less accurate in underweight and obese

categories. [53] explored the utility of a data-driven approach for assessing BMI from

face images. They employed a data-driven approach in which statistical models were

built using principal components (PCs) derived from the objectively defined shape and
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color characteristics in face images. The predictive power of these models is compared

with models based on previously studied facial proportions (perimeter-to-area ratio,

width-to-height ratio, and cheek-to-jaw width). Experimental results showed that 2D

shape/color PCs based models perform better than others.

Estimating BMI from 2D face images by deep feature: Recently, deep learning

based approaches have shown promising results in face recognition [54–56], and other

visual tasks, such as image retrieval [57, 58] and pose estimation [59, 60]. To take

advantages of deep learning based features, some works utilize pre-trained deep network

for BMI estimation. Kocabey et al. [61] analyzed BMIs from face images collected from a

social media website. The pre-trained VGG-Net and VGG-Face models [62] are used to

extract features from facial images. They employed SVR models to predict BMIs from

the extracted features. A comparison of BMI prediction between this method and human

cognition was presented. It is shown that human performs better on small BMI differences

predictions, and there is no performance difference for larger BMI difference predictions.

Dantcheva et al. [63] explored the possibility of estimating height, weight and BMI from

facial images by a regression method based on the 50-layers ResNet architecture. They

evaluated their methods on a celebrity dataset of facial images with the annotation of

weight, height and gender. They also analyzed the influence of gender on BMI estimation.

According to the above literatures review, we found that there are two challenges

have not been well studied yet. First, so far there is no literature systematically evaluate

and compare various face representations for visual BMI analysis, especially the two

types of facial representations: the geometric features and deep learning based features.

Second, the above existing methods for estimating BMI from 2D images all consider the

estimation as a regression problem. They ignore the ambiguity of BMI labels.

1.3 Research Goals

With the above limitations and challenges for BMI estimation from human visual

appearance, in this dissertation, we focus on addressing these problems. Specifically, we

describe these research goals (RG1-RG2) in detail as follows:

• RG1-Body weight analysis from 2D and 3D body data: Existing methods [32–34]

use both color and depth images to estimate weight. Our first research goal is to

investigate the feasibility of analyzing body weight from single 2D frontal view

human body images. To the best of our knowledge, there is no existing work that
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Figure 1.2: A typical framework for visual BMI estimation from 2D face images.

explores weight or BMI from 2D body images only. In addition, considering [37]

and [38] which estimate BMI by anthropometric features extracted from 3D data,

we aim to develop a computational approach that directly estimates body weight

and height from dressed people in 3D space.

• RG2-BMI analysis from facial images: Fig. 1.2 shows a typical framework for

BMI estimation from 2D facial images. It consists of four steps: face detection,

image alignment, facial representation extraction, and BMI estimator learning.

The third and fourth steps both are important which dominantly determines the

performance of a BMI estimation method. For the third step, so far there is no

literature systematically evaluate various facial feature extraction methods for BMI

estimation, thereby we dedicate to this blank research area. For the fourth step, all

existing methods consider the estimation as a regression problem and ignore the

ambiguity of the BMI labels. We aim to explore the efficient method to address

the ambiguity of BMI labels.

1.4 Summary of Contributions

In this dissertation, to address the aforementioned research problems, we conduct

the feasibility study for weight estimation from body images, evaluate facial extraction

methods for BMI estimation, propose a two-stage learning framework to address label

ambiguity and develop an end-to-end convolutional neural network (CNN) for BMI

estimation. The contributions can be summarized as follows:

• Analyze body weight from human body images [64]: Motivated by the recent health

science studies [19, 21], we investigate the feasibility of analyzing body weight from

2D frontal view human body images. A framework is developed for analyzing body

weight and BMI from 2D human body images. Computation of five anthropometric

features is proposed for body weight characterization. Correlation is analyzed

between the extracted anthropometric features and BMI values, which validates the

usability of the selected features. A visual-body-to-BMI dataset is collected and
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cleaned to facilitate the study, which contains 5900 images of 2950 subjects along

with weight, height and gender information. Body weight analysis is studied at

three levels of difficulties (from easy to difficult, based on human perception). The

proposed method outperforms two state-of-art facial images based weight analysis

approaches on most test sets. To the best of our knowledge, this is the first work

to explore BMIs from 2D body images only.

• Estimate BMI from dressed people in 3D Space [65]: We study BMI estimation

from the 3-dimensional (3D) visual data by measuring the correlation between the

estimated body volume and BMIs and then develop an efficient BMI computation

method. Our approach consists of body weight and height estimation from nor-

mally dressed people in 3D space. To address the influence of loose clothes on

body volume estimation, two clothes models are developed to make the volume

estimation more accurate. A new RGB-D video dataset is collected for this study,

and the reconstructed 3D data are provided by the KinectFusion on depth data.

Experimental results show the effectiveness of the approach to work on normal

conditions of dressed people. The MAE of the estimated BMI can achieve 2.54 in

our experiments.

• Evaluate and analyze facial feature extraction methods for BMI estimation [66]: We

studied the visual BMI estimation problem based on the characteristics and perfor-

mance of different facial representations. Various facial representations, including

geometry based and deep learning based representations, are comprehensively eval-

uated and analyzed from three perspectives: the overall performance on visual BMI

prediction, the redundancy in facial representations and the sensitivity to head

pose changes. The experiments are conducted on two databases: a new dataset we

collected, called the FIW-BMI and an existing large dataset Morph II. Our studies

provide some deep insights into the facial representations for visual BMI analysis.

• Propose a two-stage learning method for visual BMI estimation [67]: We investigate

the problem of visual BMI estimation from facial images by a two-stage learning

framework. BMI related facial features are learned from the first stage. Then a

label distribution based BMI estimator is proposed for the second stage. Two label

assignment strategies are analyzed for modeling the single BMI value as a discrete

probability distribution over the whole ranges of BMIs. Extensive experiments

are conducted on FIW-BMI and Morph II databases. The experimental results
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show that the two-stage learning framework improves the performance step by step.

More importantly, the proposed estimator efficiently reduces the estimated error

and outperforms other regression and label distribution methods (LDL-IIS and

LDL-CPNN).

• Propose a label assignment matching based neural network for BMI estimation: To

address the challenges caused by limited BMI data and ambiguity of BMI labels,

we integrate feature learning and estimator learning in one neural network. A label

assignment scheme is embedded into the deep network which models the scalar

BMI label as a probability distribution. A triple-loss function is proposed for label

assignment matching which minimizes the discrepancy between estimated labels and

ground-truth labels. Extensive experiments are conducted on two datasets: Morph

II and FIW-BMI. The experimental results show that the three loss functions all

contribute to the improvement of the performance. Furthermore, the proposed

method is more accurate than other state-of-the-art regression based and label

distribution based methods.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows.

Chapter 2 addresses the problem of analyzing body weight from 2D frontal view

body images. It begins with describing the three problems to be studied in Section

2.1. A newly collected and cleaned visual-body-to-BMI dataset is introduced in Section

2.2. Then Sections 2.3 and 2.4 present the feature extraction and learning methods.

Detailed experimental results and discussion are provided in Section 2.6. Conclusions are

summarized in Section 2.7.

Chapter 3 studies BMI estimation from the 3D visual data. We present the methods

developed for weight and height estimation and the two clothes models for correcting the

estimated body weight in Section 3.2. Then the RGB-D video dataset newly collected for

this work is introduced in Section 3.3. The correlation between the estimated body volume

and BMIs, and experimental results are given in Section 3.5. Section 3.6 summaries the

major conclusions of this chapter.

In Chapter 4, we investigate the visual BMI estimation from the aspect of the facial

feature extracting methods. First, the problem to be studied is described in Section

4.1. The principles and existing facial feature extraction methods are systematically
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presented and discussed in Section 4.2. Then, Section 4.3 presents two databases used

for performance evaluation: the newly collected FIW-BMI and Morph II. Detailed

experimental results and analysis are provided in Section 4.4. The conclusions are given

in Section 4.5.

Chapter 5 proposed a two-stage learning framework for visual BMI estimation from

facial images. First of all, the existing challenges of facial BMI estimation are described

in Section 5.1. Then, Section 5.2 presents the proposed method for BMI estimation. The

results of extensive experiments are reported in Section 5.4. Finally, a brief summary of

this chapter is given in Section 5.5.

In Chapter 6, we propose a convolutional neural network (CNN) for visual BMI

estimation which integrates feature learning and estimator learning in one network. This

chapter begins with introducing the challenge of this topic in Section 6.1. Then regression

based, ranking based and label distribution based methods are reviewed in Section 6.2.

Section 6.3 describes the details about the label assignment matching based learning

network and the triple-loss function. The experimental setting and results are presented

in Section 6.5. Conclusions and future work are given in Section 6.6.

Chapter 7 summarizes the conclusions obtained in this dissertation and addresses the

future work.
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Chapter 2

Body Weight Analysis from

Human Body Images

This chapter is dedicated to a new problem termed as body weight analysis from

single-shot 2D human body images. Considering there is no existing work that has

addressed this problem, the purpose of this chapter is to investigate the feasibility of

analyzing the body weight from 2-dimensional (2D) frontal view human body images.

To investigate the problems at different levels of difficulties, three feasibility problems,

from easy to hard, are studied. More specifically, a framework is developed for analyzing

body weight from human body images. Computation of five anthropometric features is

proposed for body weight characterization. Correlation is analyzed between the extracted

anthropometric features and the BMI values, which validates the usability of the selected

features. The social networks provide abundant data. A visual-body-to-BMI dataset is

collected and cleaned to facilitate this study.

The outline of this chapter is as the following. Section 2.1 introduces the three

problems we study and presents the framework for body weight analysis. Section 2.2

describes the newly collected and cleaned visual-body-to-BMI dataset. Details about

feature detection and computational method are presented in Section 2.3. Section 2.4

describes the employed machine learning models. The calculation of Pearson’s correlation

and performance measurements are presented in Section 2.5. In Section 2.6, we first

calculate the correlation between the extracted features and the BMI values; then

the detailed experimental results and discussion are provided. Finally, summery and

discoveries of this chapter are given in Section 2.7.
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Predicted BMI 
difference : 5.7

How different?
(from left to right)

Weight Increased,
Decreased or 

keep the same?
(from left to right)

BMI value?
(single image)

Figure 2.1: Three kinds of problems explored for body weight analysis. For the pairwise

images, the change is from the left one to right one.

2.1 Problems to Study

The studies in health science [19–21] show evidence on the relation between some

anthropometric measures and obesity. Considering that the BMI is a widely used body

weight/fat indicator, we employ this index as the measure for the body weight. This

study explores the relation between the BMI values and the visual appearance of the

human body. The correlation between BMI values and the computed anthropometric

features is studied first. Given the correlation, we analyze the body weight issue from

2D human body images at different levels of difficulties (from easy to difficult, based on

human perception).

Fig. 2.1 shows the three problems studied for body weight analysis. First, we

recognize the weight difference from a pair of frontal view body images. This is defined

as a three-class classification problem. The output is a triple classification result which

decides whether the weight of the subject is increased, decreased or keeping the same.

In our dataset, the height of each subject remains the same height in the corresponding

pairwise images, thereby the weight difference is equivalent to BMI difference. Then, we

go further and estimate how big the weight or BMI difference between the pairwise images

is. The above two problems are studied based on the pairwise images from the same

individual. The key of these two problems is to measure whether the change between the

two images can be computed or not. A more challenging task is to directly estimate the

BMI value from a single body image.

Fig. 2.2 depicts the framework of the body weight analysis approach, which consists

of three steps:
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Pair-wise images

Feature Extraction

Classification
(Multi-SVMs)

Regression
(SVR/GPR)

Prediction

Weight change
[0,1,-1]

BMI value

Anthropometric 
feature

computation

WTR
WHpR
WHdR
HpHdR
Area

Body contour
and skeleton 

joints
DetectionA single image

Difference value

Figure 2.2: The framework of our proposed weight analysis approach. The approach can

take either pairwise body images or a single image as input. It classifies and predicts

the BMI difference from pairwise images, or estimate the exact BMI value from a single

image.

1. Body contour and skeleton-joints detection.

2. Anthropometric feature computation from the body images.

3. Apply statistical models to map the features to the weight differences or the BMI

values.

As shown in Fig. 2.2, the approach can classify the weight difference from the pairwise

images. The classification is an output of three different results {0,1,-1}: 0 indicates no

weight change, 1 indicates weight increased, and -1 means weight decreased. The order

of the images in the pair does matter, and the change is from ‘previous” left to ‘current”

right, as indicated in Fig. 2.1. Note that the prediction of the BMI differences and the

BMI values are solved by two different regression models. The details about feature

extraction and mapping will be given in Section 2.3 and 2.4, respectively.

2.2 Dataset with Cleaning

The human body images are downloaded from the website Reddit posts 1. In

total there are 47, 574 images of 16, 483 individuals. Each individual has at least one

“previous” and one “current” images (or a collage which was made by sticking several

images). As shown in Fig. 2.3, all the images under the same individual folder have the

same annotations (except the image number). The format of the original annotation

1Website: http://www.reddit.com/r/progresspics

http://www.reddit.com/r/progresspics
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Original annotation:
3i8pst_HZST6QP_205

_130_65_true

Weight: 205 lb, 
height: 65 in, female

Weight: 130 lb, 
height: 65 in, female

(a) (b)

Original annotation: 
4fwxey_F0H3Hy7_220

_155_67_true

Original annotation: 
4fwxey_LjO3ujg_220

_155_67_true

Original annotation: 
4fwxey_LjO3ujg_220

_155_67_true

Weight: 155 lb, 
height: 67 in, female

Weight: 220 lb, 
height: 67 in, female

Figure 2.3: The illustration of cleaning images with automatic and manual steps. Two

cases are given. The first case (left panel) shows the individual just contains one collage

(an image made by sticking several images). The second case (right panel) shows the

individual contains 3 images, among them there are 2 group photos (more than one

person shown on the image). The blue arrow represents the process of cropping each

single body from a composite image based on automated body detection. The orange

arrow represents the manual process of correcting annotations. The annotations for the

“previous” and “current” images are visually distinguished by body size and shape.

is “ID image number previous weight current weight height gender”. Thereby, all the

images under the same individual folder share the same information about weights

(“previous” and “current”) and height, the weight for each image cannot be automatically

distinguished by algorithms. It needs manual processing (visually check) to correct the

weight for the individuals.

We processed and cleaned the dataset with automatic and manual steps which are

described below. First, we went through the original images by a body detector, using

a method similar to [59]. Then, given the detected bodies, each single body image was

cropped from the original images. During the process, we kept the cropped body images

containing both head and frontal body (with required joints detected). If there are

greater than or equal to 2 cropped images kept for the individual, the algorithm kept

the individual folder. Now the left (cropped) images under the same individual folder

still share the same annotation (“ID image number crop number previous weight current

weight height gender”). The next step was to visually distinguish which image has the

“previous” weight and which has the “current” weight. Since the annotations only have

the “previous” and “current” body weights for each individual, just one “previous” image

and one “current” image was kept for each individual. Finally, we manually corrected
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Figure 2.4: The BMI distributions of the body-to-BMI dataset. The BMI distribution is

in a wide range from 15 to 75.

the annotations for these images.

Fig. 2.3 shows the procedure of processing the images with automatic and manual

steps. Two cases are introduced: the first case shows the individual just contains one

collage (an image made by sticking several images); the second case shows the individual

contains 3 images, among them there are 2 group photos (more than one person shown

in the image). The blue arrow represents the automatic process of cropping every single

body from the images. Each cropped body in the image is labeled by a red boundary

box. The orange arrow represents the manual process of distinguishing and correcting

annotations. The annotations for the “previous” and “current” body images are visually

distinguished by body size and shape. A pair of images mentioned throughout this work

is one “previous” and one “current” body images from the same individual.

After these procedures, there are 2950 subjects (individuals) left, each contains two

images: one “previous” and one “current”. This leads to a total of 5900 images with

corresponding labels of gender, height, and weight. The set of images is noted as visual-

body-to-BMI dataset containing 966 females and 1984 males. The ground truth of BMI

can be calculated. The BMIs distribution of the body-to-BMI dataset is shown in Fig.

2.4. The BMIs distribution is in a wide range from 15 to 75. Specifically, 46 body images

are in the underweight range (BMI ≤ 18.5), 1416 are normal (18.5 < BMI ≤ 25), 1863

are overweight (25 < BMI ≤ 30) and 2575 are obese (BMI > 30). By comparing the

weight of the “previous” and “current” images, we conclude that 1246 subjects show the

increase in weight, 1233 subjects show the decrease in weight, and the rest 481 subjects

have the same weight in both images. The height of each subject remains the same in a

pair of images. The subjects are natural with various clothing styles.
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Figure 2.5: The body contour and skeleton-joints detected by the CSJ detector. The

brick red area represent the detected body part. The asterisks represents the skeleton

joints.

2.3 Feature Extraction

In this section, we present the details about feature extraction for the proposed

approach. Body contour and skeleton joints (CSJ) detection is the first step for feature

extraction. The output of the detection is used for anthropometric feature computation.

2.3.1 Contour and Skeleton-joints Detection

Body contour and skeleton joints (CSJ) detection are based on deep networks for

contour and skeleton joints detection. Fig. 2.5 shows the body contour and skeleton

joints detected by the CSJ detector. The brick-red area represents the detected body

part. The asterisks represent the detected skeleton joints.

To detect the body contour from an image, pixel-level image segmentation is applied

to it. We use the conditional random fields as recurrent neural networks (CRF-RNN)

method [68] for body detection. The mean-field CRF inference is reformulated as a RNN,

then the CRF-RNN layer (iterative mean-field layer) is plugged into a fully convolutional

neural network (FCN). By applying the CRF-RNN method to the image, the body

regions are labeled out, while all other regions in the image are labeled as the background.

This leads to a set B contains all pixels which are labeled as the human body, and a

set G contains all pixels which are labeled as the background. lx,y represents the label

assigned to the pixel locates at (x, y), where (x, y) denotes the horizontal and vertical

coordinates on the image. lx,y is from a pre-defined set of labels L = {b, g}. Here b is the

label for the human body and g is for the background. Then B = {(x, y) : lx,y = b} and

G = {(x, y) : lx,y = g}. We will use this in Section 2.3.2 for computing anthropometric
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features.

With the locations of skeleton joints in an image, the key parts (waist, hip, etc.)

are located for extracting the anthropometric features. In this work, the convolutional

pose machine (CPM) [69] is employed to detect the skeleton joints from body images.

CPM consists of a series of convolutional neural networks (CNN) that repeatedly produce

2D belief maps for the location of each body part. The belief maps produced by the

previous CNN are used as the input of the next CNN. By using the CPM, a list of

coordinates of the key skeleton joints can be obtained, such as left hip, right hip, left

shoulder, and right shoulder, etc. The coordinates of skeleton joints will be used for

computing anthropometric features.

2.3.2 Anthropometric Feature Computation

Several anthropometric indicators suggested in health science [19–22] are used as

measures for obesity. Some listed indicators include waist-thigh ratio, waist-hip ratio,

abdominal sagittal diameter, waist circumference, and hip circumference. Taking into

account these indicators, we have five anthropometric features automatically detected

and computed from the body images, including waist width to thigh width ratio (WTR),

waist width to hip width ratio (WHpR), waist width to head width ratio (WHdR), hip width

to head width ratio (HpHdR), and body area between waist and hip (Area). Among these

features, Area is inspired by our human perception.

The measurement of the waist circumference and the hip circumference cannot be

directly obtained from 2D images. We consider the particular body part as a cylinder.

Then we use the width of the body part (on a 2D image) to approximately represent

the circumference of a particular body part. A similar approximation has been utilized

and verified in [29]. They used the width of the upper arm, leg, waist, and calf to test a

polynomial regression model, which was trained by the real circumferences of the body

parts. Since the absolute measures of the waist width and hip width cannot be obtained

from 2D images without metric/scale information, thereby we compute the ratio to

characterize the relative measures.

Fig. 2.6 illustrates the anthropometric features visually. There are 18 detected

skeleton joints shown in the figure labeled with asterisks. In the following, we use the

coordinates of 8 detected skeleton joints for computing anthropometric features. These 8

skeleton joints are the nose, left ear, right ear, center shoulder, left hip, right hip, left

knee, and right knee. The abbreviations of skeleton joints or boundaries involved for
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( lwb, lwb) ( rwb, rwb)

( lhb, lhb)

( ltb, ltb)

( rhb, rhb)

( rtb, rtb)

Figure 2.6: The anthropometric features computed for body weight analysis. The 18

skeleton joints (labeled by asterisks) are nose, left eye, right eye, left ear, right ear, center

shoulder, left shoulder, right shoulder, left elbow, left hand, right elbow, right hand, left

hip, right hip, left knee, right knee, left ankle and right ankle. The area filled with green

dash dots denotes the feature Area.

Table 2.1: Abbreviations of body parts for feature computation.

Body part Abbrev. Body part Abbrev.

Nose n Hip h

Left ear le Left hip lh

Right ear re Right hip rh

Center shoulder cs Left hip boundary lhb

Waist w Right hip boundary rhb

Left waist lw Thigh t

Right waist rw Left thigh boundary ltb

Left waist boundary lwb Right thigh boundary rtb

Right waist boundary rwb Knee k

Left knee lk Right knee rk

feature computation are given in Table 2.1. The abbreviation of a body part is used as an

index that denotes the location of the pixel. For example, the pixel of left hip is denoted

as plh, and its coordinate is denoted as (xlh, ylh). The size of the input image is M ×N .

The methods for computing the five anthropometric features are described below:

1) WTR the ratio of waist width to thigh width. A general knowledge about human

body proportions [70] is used to initially estimate the location of waist and thigh based
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on the detected locations of hip and head. As shown in Fig. 2.6, the vertical location of

the waist is computed by: yw = 2
3yh + 1

6(yn + ycs), where yh = 1
2(ylh + yrh). Similarly, the

vertical location of the thigh yt = 1
2(yk + yh), where yk = 1

2(ylk + yrk). With the vertical

locations of waist and thigh, the next step is to estimate the waist width and thigh width.

Taking waist width as an example, this calculation can be considered as fixing y = yw,

and searching for the x-axis coordinates of the left and right waist boundaries xlwb and

xrwb from the contour image. The x-axis coordinate of left waist boundary xlwb can be

computed by:

xlwb = argmin
x
|x− xcw| ,

s.t. x ∈ [0, xcw], (x, ylw) ∈ G.
(2.1)

Here xcw is x-axis coordinate of the center waist, which can be approximated by x-axis

coordinate of the center shoulder xcs. ylw and yrw both are equal to yw. G is a set

contains all pixels labeled as the background. Similarly, xrwb is given by:

xrwb = argmin
x
|x− xcw| ,

s.t. x ∈ [xcw,M ], (x, yrw) ∈ G.
(2.2)

Here M is the width of the image. ylwb and yrwb both are equal to yw. The thigh

boundary along the x-axis is determined by xltb and xrtb, which can be calculated in

the same way as Eqn. (2.1) and (2.2). With the coordinates of these boundaries, the

waist width is the Euclidean distance between plwb and prwb. Thigh width is half of the

Euclidean distance between pltb and prtb. So WTR is computed by:

WTR =
d (plwb, prwb)

0.5 · d (pltb, prtb))
, (2.3)

where d(·) denotes the Euclidean distance between the two pixels.

2) WHpR the ratio of waist width to hip width. Given the left and right hip skeleton-

joints plh and prh, the left hip boundary plhb and right hip boundary prhb are calculated

following the rules in Eqns. (2.1) and (2.2). Then hip width is the Euclidean distance

between plhb and prhb. The WHpR is computed by:

WHpR =
d (plwb, prwb)

d (plhb, prhb)
. (2.4)

3) WHdR the ratio of waist width to head width. Since the images may have different

scales, the waist widths computed from the images cannot directly represent the measured
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waist width. According to the anthropometry study on adult head circumferences [71],

there are tiny differences on the width of adult heads. Thereby, WHdR is computed to

represent the waist width. Here head width is the Euclidean distance between left ear ple

and right ear pre. Then WHdR is given by:

WHdR =
d (plwb, prwb)

d (ple, pre)
. (2.5)

4) HpHdR the ratio of hip width to head width. As described above, we use this ratio to

represent the hip width in each body image. The HpHdR is computed by:

HpHdR =
d (plhb, prhb)

d (ple, pre)
. (2.6)

5) Area the area between waist and hip. Because of the unknown scale information for

each image, Area is expressed as the number of pixels per unit area between waist and

hip. The number of pixels between waist and hip is given by:

#pixels =
∑

x∈[0,M ]
y∈[yw,yh]

1 [lx,y = b] , (2.7)

here 1 [·] is a indicator function. lx,y represents the label (obtained from CSJ detection)

assigned to the pixel locates at (x, y). Then the Area is calculated by:

Area =
#pixels

(yh − yw) · 0.5 · [d(plwb, prwb) + d(plhb, prhb)]
(2.8)

As shown in Fig. 2.4, the prediction approach can take the different input: either a

pair of images or a single image. The BMI difference can be classified and estimated from

a pair of input images. On the other hand, the BMI value can be estimated from a single

body image. Five anthropometric features are extracted from each body image, resulting

in a feature vector f =[WTR,WHpR,WHdR,HpHdR,Area]T . For a single image, f is the feature

used for estimation. For pairwise images, the following transformation is applied to the

features f1 and f2 for generating the transformed feature:

ft = logf1 − logf2, (2.9)

where f1 and f2 are features extracted from the “previous” and “current” images, respec-

tively. log(·) denotes applying logarithmic operation to each element in the vector.

After extracting the features from a pair of images or single images, we apply a

normalization to the features by:

m′ =
m− µ
σ

, (2.10)



Min Jiang Chapter 2. Body Weight Analysis from Human Body Images 24

where m is the extracted feature (denoted as f or ft above). µ is the mean value and σ

is the standard deviation, both are calculated from the training data along each feature

dimension (there are 5 feature dimensions). Normalization is essential in order to obtain

a robust estimation.

2.4 Learning Method

Weight/BMI analysis is to map the anthropometric features to BMI values. The

training process is to learn the mapping function. In the estimation, the learned function

is used to estimate the BMI values from extracted features. We study the problem with

different settings. Since the problem is relatively new and challenging, we explore how

well we can achieve at different levels of difficulties:

• Recognize the weight difference (increase, decrease or the same) t̂c, given a pair of

images.

• Predict how big is the weight or BMI difference t̂d between a given pair of images.

• Estimate the BMI value t̂v from a single body image.

Weight difference recognition is a three-class classification problem. The pairwise

features ft used for training and testing in this problem are obtained from Eqn. (2.9).

The ground-truth label tc is generated based on the weight change on the pairwise images

(suppose each subject has the same height in the image pair). tc ∈ [0, 1,−1]: 0 denotes

keeping the same weight, 1 denotes weight increased, and -1 denotes weight decreased.

The level of BMI differences is considered as a regression problem. The pairwise-

features ft are also used for training and testing in this problem. The ground-truth label

td is the BMI difference of the pair image which may be positive or negative.

BMI value estimation is also defined as a regression problem. The features extracted

from each single image f =[WTR,WHpR,WHdR,HpHdR,Area]T are used for this problem. The

ground-truth label tv is the BMI value.

We employ the multi-class support vector machines (multi-SVMs) [72] for classification,

and the support vector regression (SVR) [48] and Gaussian process regression (GPR) [73]

for weight or BMI differences mapping and BMI estimation.

1) Support vector machine (SVMs) are supervised learning algorithms that analyze

data for classification or regression. There are two main categories for SVMs: support
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vector classification (SVC) and support vector regression (SVR). It has been widely

utilized in many problems [74, 75]. SVM can do nonlinear classification using kernel

functions. Gaussian radial basis Function (RFB) kernel is one of the most popular kernels.

The RBF achieves a better performance in classification or regression than some other

kernels.

The SVC is a binary classifier. To get multi-class classification, a set of binary

classifiers can be constructed with each trained to separate one class from another.

For n classes, this results in (n−1)n
2 binary classifiers. Since our classification on BMI

difference has three classes {0,1,-1} for the a pair of images, 3 binary classifiers are

trained accordingly. The SVR uses the same principle is similar to the SVC, but with

differences in the optimization.

2)Gaussian processing regression: A Gaussian process (GP) is a collection of ran-

dom variables, and a finite number of variables that have a joint Gaussian distribution [76].

GPR means Gaussian process regression. The prior mean and covariance of the GP need

to be specified. The prior mean is assigned constant and zero, or the mean of the training

data. The prior covariance is specified by passing a kernel object. The hyperparameters of

the kernel are optimized by maximizing the log-marginal-likelihood. A rational quadratic

kernel is employed for GPR. Given a set of training examples (a1, b1), ....(an, bn), the

rational quadratic kernel is defined as:

k(ai, aj) =

(
1 +

D(ai, aj)
2

2αι2

)−α
, (2.11)

here ι is a length-scale parameter, α is a scale mixture parameter, and D(·) denotes the

distance between two sample points.

2.5 Performance Measures

It is critical to measure the correlation between the extracted anthropometric fea-

tures and body weight or BMI. Pearson’s correlation coefficient (PCC) is employed for

measuring the correlation. It is a measure of the linear correlation between two variables.

It was developed by Karl Pearson in 1895 from a related idea introduced by Francis

Galton [77]. Given two sets of data {a1, ..., an} and {b1, ..., bn}, the formula for PCC is:

PCC =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2
, (2.12)
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here PCC is a scalar value between −1 and 1. If PCC < 0, it shows a negative correlation

between the two sets. If PCC > 0, it shows a positive correlation. When PCC = 0, it

indicates that there is no correlation between the two sets. When PCC is close to −1 or

1, there is a very strong correlation.

We apply a hypothesis testing with a statistical significance measure [78]. A p-value

is utilized to decide whether a significant correlation exists between the two sets of data.

We can make a decision by:

• If the p-value is smaller than the significance level α, it can reject the null hypothesis

(there is no correlation between the two sets).

• If the p-value is larger than the significance level α, it fails to reject the null

hypothesis.

The significance level α can be set to, e.g., 0.001, 0.01 or 0.05. If the p-value is equal or

smaller than the thresholds, it indicates a significant correlation between the two data

sets.

In addition to the correlation, we measure the performance of the proposed approach

for weight or BMI estimation. The recall is used to evaluate the classification. And mean

absolute error (MAE), mean absolute percentage error (MAPE) and absolute percentage

error (APE) are used to measure the regression results:

• Recall: It is a performance measure that quantifies the ability of the classifier to

correctly classify the positive training instances (also true positive rate, sensitivity).

It is computed as the number of corrected classification divided by the number of

samples that should have been classified as this class.

• MAE: It is defined as the average of absolute error between the estimated values

and the ground truth:

MAE =
1

N

N∑
j=1

|r̂j − rj | , (2.13)

here r̂i is the estimated value for j − th sample, rj is the ground truth for j − th
sample, and N is the total number of test samples.

• MAPE: It is the mean absolute percentage error, computed as:

MAPE =
100

N

N∑
j=1

∣∣∣∣ r̂j − rjrj

∣∣∣∣ , (2.14)
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Table 2.2: Pearson’s correlation between the extracted features and the BMI in different

gender groups.

Male Female Overall

n = 1334 n = 666 n = 2000

p−value correlation p−value correlation p−value correlation

WTR 0.0000 0.1774 0.0078 0.1033 0.0000 0.1320

WHpR 0.0000 0.1771 0.0018 0.1301 0.0000 0.1371

WHdR 0.0000 0.3317 0.0000 0.2992 0.0000 0.3038

HpHdR 0.0000 0.2791 0.0000 0.2769 0.0000 0.2785

Area 0.0000 0.4082 0.0000 0.3219 0.0000 0.3873

where all variables in Eqn. (2.14) have the same meaning as in Eqn. (2.13).

Considering the large BMI range (15 to 75) of the visual-body-to-BMI dataset, the

absolute percentage error can be another useful measure for the performance of

BMI prediction from single images. For example, two individuals with the same

height, one’s BMI is 20 and another is 40. If they both have their BMI increase

by 2, such a change is more obvious on the individual with BMI = 20. MAPE

measures the error by taking the BMI as the base. APE is calculated by a single

estimated value and ground-truth. It is a relative error.

2.6 Experiments

In this section, we explore the feasibility of analyzing body weight from 2D body

images. We first examine the correlation between the extracted anthropometric features

and the BMI values and then perform three estimation experiments using the extracted

features.

The visual-body-to-BMI dataset is randomly split into training and test sets. The

training set contains 2000 subjects (4000 images) of 1334 males and 666 females. The

test set contains 950 subjects (1900 images): 650 males and 300 females. There is no

overlap of subjects between the training and test sets.

2.6.1 Correlations between Body Features and BMI Values

According to the hypothesis test, we can measure whether the extracted features and

BMI values are correlated. Here we assume the correlation with p−value < 0.01 is a

significant correlation, and vice versa.
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We measure the correlation between the extracted anthropometric features and BMI

values on the training set. The results are shown in Table 2.2. p−value = 0.0000 indicates

that the value which is smaller than 0.0001. From Table 2.1 we can see that the feature

Area shows a higher correlation with BMI than other features. The correlation is a little

lower in the female group than that in the male group, which may be caused by the

different dress styles or body fat distribution between females and males. The dress and

other loose clothes bring negative influence on the extracted features. The correlation

coefficients of WTR and WHpR are a little lower than the other three features. Velardo

et. al [22] reported an average correlation coefficient of 0.27 for BMI and waist to thigh

ratio and Vazquez et. al [21] reported a correlation coefficient of 0.34 for BMI and waist

to hip ratio. These correlation coefficients reported in health studies were calculated

from the precise body size measurements (in person). And considering the various

clothes styles that exist in this dataset may bring a negative influence to calculation, the

correlation coefficients of these two features obtained in Table 2.1 are acceptable. Given

the significant correlation (most p−values < 0.0001) between the anthropometric features

and BMI, we draw the conclusion that the extracted features are correlated with the BMI

values. Thereby, it is reasonable to estimate BMI values using the extracted features.

2.6.2 Recognize Weight Difference from A Pair of Images

The proposed approach takes either a pair of body images or a single body image

as the input. For the pairwise images, the approach performs a three-class classification

which decides the subject in the pairwise images as weight increased, decreased or keeping

the same. Furthermore, we estimate how much the BMI difference between the pairwise

images is.

1) Three-class classification: The approach can process a three-class classification

{0,1,-1} for a pair of images from the same subjects. We use the features calculated by

Eqn. (2.9) in Section 2.3.2 to train a multi-SVMs which contains 3 binary classifiers for

this task. Gaussian Radial Basis Function (RBF) is utilized for the SVM kernel. RBF

achieves a better performance in classification than other kernels.

The recall of weight difference classification is given in Table 2.3. Taking into account

the different body fat rate between males and females, the recall is measured for each

gender group. It is seen that the accuracy for class 0 (keep the same weight) is much

lower than the other two classes: 1 (weight increase) and -1 (weight decrease). The
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Table 2.3: Recall of triple classification from the pair-wise images.

Recall (%)

Class Male Female Overall

0 63.6 40.0 56.3

1 81.0 89.2 83.6

-1 77.3 88.0 81.1

Figure 2.7: Confusion matrix of weight difference classification results, the diagonal cells

show the number and percentage of correct classifications by the method.
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Figure 2.8: Some results of the weight difference classification. The upper panel shows

good cases, and the lower panel shows failure cases. The BMI difference is from the left

one to the right one.
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Table 2.4: The MAEs and standard deviations of the estimated BMI differences using

SVR and GPR models.

MAE Std

Model Male Female Overall Male Female Overall

SVR 3.6 4.1 3.8 3.6 3.5 3.6

GPR 3.6 4.0 3.7 3.4 3.5 3.5

reason may be that the number of subjects in class 0 (481) is much less than the other

two classes (1246 + 1223). There is an uneven distribution among the three classes. Fig.

2.7 shows the confusion matrix of weight change classification. The accuracy of weight

increased pairs is 83.6%, and the accuracy of weight decreased pairs is 81.1%. They are

both within the acceptable range. Fig. 2.8 shows some examples of the classification.

The upper panel shows some good cases, while the lower panel shows some failure cases.

Failure cases are observed due to the interference, occlusion of the body, or large body

pose, etc.

2) How big is the weight difference? Further exploration is to discover how big

the weight or BMI change between pairwise images is. The features computed by Eqn.

(2.9) are used to train the regression model. Here we employ the SVR (with the RBF

kernel) and GPR models. Table 2.4 shows the MAEs and standard deviations of the

estimated BMI differences by the two regression models. We can see that the GPR model

performs slightly better than the SVR model. Fig. 2.9 depicts the comparison of MAEs

between the SVR and the GPR broken down by the absolute BMI differences. The

differences between SVR and GPR for all ranges are less than 1 except for the range of

0.5− 5.5 (approximately 1.16). The MAEs in the absolute BMI difference range > 15.5

are relatively higher than other ranges. This may be caused by the small number of

subjects (about 7.90%) with BMI differences larger than 15.5. The distribution of BMI

differences in the visual-body-to-BMI dataset is given as: 492 subjects are in the range of

BMI difference < 0.5, 921 are between 0.5 and 5.5, 866 are between 5.5 and 10.5, 438 are

between 10.5 and 15.5 and 233 are in the range of BMI difference > 15.5. The proposed

approach shows effectiveness in predicting how big the weight or BMI change is from a

pair of body images.
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Figure 2.9: Comparison of MAEs between SVR and GPR broken down by the absolute

BMI differences.

2.6.3 Estimate BMI from A Single Image

Now we study the BMI estimation from single images, by the SVR and GPR models for

regression. Different from the previous, we use the anthropometric features f (calculated

by Eqn. 2.9) extracted from every single image for BMI estimation.

The MAEs and MAPEs of the estimated BMI values by two regression models are

given in Tables 2.5 and 2.6, respectively. The overall MAEs of the predicted BMI is

between 3 and 4, the range of BMI values in the dataset is among 15 to 75, as shown in

Fig. 2.2. The error of BMI estimation is relatively small compared to the large range of

BMI values in the dataset. Fig. 2.10 shows the MAEs and MAPEs between SVR and

GPR in different BMI categories: underweight, normal, overweight and obese. We can

see that the two regression methods perform better in the normal category. Though the

MAEs in obese category is between 5 and 6.5, taking into account the large range of BMI

distribution in the obese category (30 to 75), the MAPEs of this category are acceptable.

To compare the ground-truth BMIs with the estimations, a scatter plot based on the SVR

results is shown in Fig. 2.11. The red dash-dot line shows where the two values are the

same. The two green lines show where the absolute differences between the two values

are 5. It is shown that points mainly distribute around the red line. Most outliers have

the ground truth BMI values larger than 55. It can be seen that the proposed method

tends to have a bias with an overestimation for low BMIs (BMI values between 20 and

30) and have an underestimation of high BMIs (BMI values larger than 35).

Figure 2.12 shows some examples of prediction. The absolute percentage error

(APE =
∣∣∣ r̂j−rjrj

∣∣∣) is calculated for each case. Some failure cases are caused by ambiguous

boundaries between the foreground and background, image blur, or large body pose. A



Min Jiang Chapter 2. Body Weight Analysis from Human Body Images 32

underweight normal overweight obese

BMI Categories

0

2

4

6

8

M
A

E

SVR
GPR

underweight normal overweight obese

BMI Categories

0

5

10

15

20
SVR
GPR

Figure 2.10: Comparison of MAEs and MAPEs between SVR and GPR in different BMI

categories: underweight (BMI ≤ 18.5), normal (18.5 < BMI ≤ 25), overweight (25 <

BMI ≤ 30) and obese (BMI > 30).

Table 2.5: The MAEs and standard deviations of predicted BMI in different gender

groups using SVR and GPR models.

MAE Std

Model Male Female Overall Male Female Overall

SVR 3.4 4.5 3.8 3.3 4.8 3.6

GPR 3.5 4.4 3.9 3.5 4.0 3.7

Table 2.6: MAPEs of predicted BMI in different gender groups using SVR and GPR

models.

Model Male Female Overall

SVR 11.3% 15.0% 12.5%

GPR 12.1% 15.2% 13.1%

detailed discussion about estimation errors and failure cases will be given in Section 2.6.5.

2.6.4 Comparison with Other Methods

To the best of our knowledge, there is no previous approach that can estimate the

BMI values from 2D body images only. Thereby, we compare with two methods that

predict BMI values from face images. One is a geometric feature based method [47] and

another is a VGG-face feature based method [61]. They are denoted as PIGF (psychology

inspired geometric feature) and VGG features, respectively. These two methods both

require clear frontal face images as the input, while some images in visual-body-to-BMI

dataset do not meet this requirement. For a fair comparison, we select 2000 images which

contain the clear frontal view face and then crop the face images. The 2000 images are



Min Jiang Chapter 2. Body Weight Analysis from Human Body Images 33

20 30 40 50 60 70

Ground-truth BMI

20

30

40

50

60

70

E
st

im
at

ed
 B

M
I

Figure 2.11: Scatter plot of the ground-truth BMIs over the estimated BMIs based on

SVR model. The red dash-dot line shows where the two values are same. The two green

lines show where the absolute differences of the two values are 5.
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Figure 2.12: Examples of estimating BMI from a single body image.

split into training and test sets, which contains 1500 and 500 images, respectively. The

input of our approach is a single body image, and the input of the other two methods

is a face image cropped from the same body image. The comparison of the results is

shown in Table 2.7. It can be seen that the proposed method outperforms the PIGF

and VGG-face feature based methods in most cases, except on the male set. Moreover,

the proposed method does not require a clear frontal view face image as input, which is

useful for more general applications.

Furthermore, considering the features learned in deep neural networks (DNN) are

demonstrated to be transferable and effective when used in other visual recognition

tasks [79], we compare our anthropometric features with that the deep features. In

this experiment, we employ the VGG-Net [80] model which is pre-trained on ImageNet
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Table 2.7: Comparison of BMI estimation between our method and other methods.

MAE MAPE (%)

Method Male Female Overall Male Female Overall

PIGF 4.61 4.58 4.60 15.50 15.64 15.54

VGG feature 3.72 4.48 3.94 12.69 16.04 13.66

Ours 3.74 4.16 3.86 12.68 14.15 13.11

Table 2.8: Results of BMI estimation from our anthropometric features and the VGG-Net

feature.

MAE MAPE (%)

Feature Male Female Overall Male Female Overall

VGG-Net 4.65 5.55 4.94 15.6 17.8 16.3

Ours 3.41 4.52 3.76 11.3 15.0 12.5

database [81] to extract the deep feature. Then an SVR model is trained based on the

extracted deep feature. The feature from the fc6 layer is extracted for each body image

in the training and test sets. VGG-Net takes an image of size 224 × 224 with the average

image subtracted as the input. To normalize the images in visual-body-to-BMI dataset

to a common size, we apply zero-padding to the images, and then resize them to 224 ×
224. The training and test sets in this experiment are the same as the experiment in

Section VII-C. Table 2.8 presents the results obtained based on the two features. It can

be seen that our anthropometric features outperform the VGG-Net feature significantly.

2.6.5 Discussion

We analyze the errors in feature extraction and regression. The statistical analysis

will be given, discussing whether the errors are acceptable for the application of BMI

estimation from a single image. Finally, some failure cases are shown, and we analyze

the influencing factors for the proposed method and possible reasons for the failure cases.

For feature extraction and regression, the widths of head, waist, hip and thigh are

estimated from the 2D body images, and used to calculate the four anthropometric

features (WTR, WHpR, WHdR, HpHdR). To analyze the error, we randomly selected 300

images from the dataset and manually labeled the widths of the head, waist, hip, and

thigh for each image. Then the labeled widths are used as the ground truth values (v)

to calculate the relative error (ε) of the estimated values (v̂) by: ε = |v−v̂|
v . The mean
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Table 2.9: The mean relative errors of the extracted features.

Head Waist Hip Thigh

Error 2.1% 5.4% 4.7% 9.7%

Table 2.10: The accuracy of predicted category.

Underweight Normal Overweight Obese

Accuracy 11.1% 78.3% 64.2% 81.0%

relative errors of the extracted widths are shown in Table 2.9. The four errors are within

a relatively low range. Since it is hard to label the area between waist and hip, where

the relative error of estimated Area is not given.

To demonstrate whether the errors are acceptable for BMI estimation from a single

body image, we further calculate the accuracy of the predicted category. According

to the estimated BMI values, we can classify the body belong to which BMI category

(underweight, normal, overweight and obese). The accuracy of the predicted category is

the proportion of the total number of predictions that are correct. This measurement is

helpful to decide if the errors are acceptable. For example, given a body image with a

ground truth BMI value of 24.5, the estimated value is 20. Though the absolute error is

4.5 which is larger than the MAE (3.8), the predicted category (normal) is correct. On

the other hand, this measurement has a limitation. For example, if the ground truth

BMI is 25 and the estimated value is 25.5, though the absolute error is 0.5, the predicted

category (overweight) is not correct. Considering the advantage and limitation of this

measure, we combine the accuracies of the predicted category (as shown in Table 2.9)

with the MAEs of predicted BMIs (shown in Fig. 2.10) to evaluate the performance.

All predicted results shown in Table 2.10 are based on the SVR method. As it can be

observed from Table 2.9 and Fig. 2.10, the prediction accuracy and MAE of the obese

category are 81% and 5.5, respectively. Taking into account the large range of BMI on the

obese category (30 to 75), the error of the obese category is reasonable. The prediction

accuracy and MAE of the overweight category are 64.2% and 4.6, respectively. The

performance in the overweight category is a little lower than the obese. The prediction

accuracy of the underweight category is the lowest since there are only 46 body images

in the database belong to the underweight category, among them, 9 are in the test set

and 37 are in training set. The lack of enough underweight body images in the training

set could be the reason for this lower performance.
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Figure 2.13: Examples of failure cases with the corresponding body contour and skeleton-

joints detection. The upper panel shows the cases with the large pose. The middle panel

shows the cases with body occlusion or loose clothes. The lower panels show the incorrect

segmentation cases.

To analyze influencing factors (such as pose, occlusion, loose clothes, and scale) for

the proposed method, and the reasons (such as incorrect body contour) of failure, Fig.

2.13 shows some failure cases with the detected body contour and skeleton joints. Most

images in the dataset are frontal view body images with limited pose changes. Since there

is no annotation about body pose, it is difficult to conduct an experiment to evaluate the

performance with regard to pose changes. Theoretically, the extracted anthropometric

features can tolerate small pose changes. The estimation may be significantly influenced

if the input is a profile view image or with a large pose. The upper panel of Fig. 2.13

shows three failure cases with different poses. Though the detected body contour and

skeleton joints are correct, the absolute errors are large. The occlusion always brings
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negative influences to the method, decreasing the accuracy of body contour detection.

Loose clothes are another negative factor to influence the real body shape. Three cases

with large body occlusions and loose clothes are shown in the middle panel of Fig. 2.13.

Because all the extracted anthropometric features are relative values (see details in Section

2.3.2), the scale changes in the image will not impact the method. The lower panel of Fig.

2.13 shows three failure cases caused by inaccurate contour. The incorrect or inaccurate

body contour direct influences the accuracy of the extracted features. The failure of

contour detection could be caused by image blurs, ambiguous boundaries between the

foreground and background, etc. The proposed method can be further improved by

employing more accurate body contour detection algorithms.

2.7 Summary

This chapter raises a new topic of study: estimating the BMI values from 2D body

images. We investigate the relation between body weight and visual body appearance

and estimate the BMI values from 2D body images. Correlation is analyzed between the

extracted anthropometric features and BMI values, which validates the usability of the

selected features. More specifically, body weight analysis is studied at three different levels

of difficulties: the weight change classification is first investigated from a pair of body

images of the same subjects; further investigation is conducted to estimate how big the

weight change between the pairwise images is; the last is to predict the BMI value from a

single body image. To address the visual body weight analysis problem, the computational

method of five anthropometric features is developed. And a new visual-body-to-BMI

image dataset has been collected and cleaned to facilitate this study. The errors of

the three estimation tasks evaluated by several measurements are within acceptable

ranges. Comparing with the facial images analysis approaches, the proposed method

performs better in most cases. Furthermore, our anthropometric features significantly

outperform the VGG-Net feature on BMI estimation. Based on all experimental results,

it is promising to analyze body weight or BMI from the 2D body images visually. In the

future, we will combine body images with face images to improve the BMI prediction, and

will explore the DNN-based method to address this visual body weight analysis problem.
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Chapter 3

Body Mass Index Estimation

from Dressed People in 3D Space

This chapter is dedicated to studying BMI estimation from the 3D visual data. The

proposed BMI computation approach consists of body weight and height estimation from

normally dressed people in 3D space. To address the influence of loose clothes on body

volume estimation, two clothes models are developed to make the volume estimation more

accurate. A new RGB-D video dataset is collected for this study, and the reconstructed

3D data are provided by the KinectFusion on the depth data. Experimental results show

the effectiveness of the approach to work on normal conditions of dressed people.

The outline of this chapter is as follows. Section 3.2 describes the method developed

for weight and height estimation, and the two clothes models for correcting the estimated

body weight. Section 3.3 describes the RGB-D video dataset newly collected for this

work. The measure metrics used to evaluate the performance of the estimated BMIs are

introduced in Section 3.4. The experimental results and analysis are presented in Section

3.5. Finally, some conclusions are drawn in Section 3.6.

3.1 Problem Definition

Body mass index (BMI) is an important soft biometric measure that is related to

people’s daily lives. Given an individual’s height and weight, BMI= weight(lb)
height(in)2

× 703.

BMI is an important visual characteristic to describe a person. It is widely used for

measuring the adiposity, especially for the overweight issue [14]. In medical science, both

BMI and body weight can be used to estimate the risk for some diseases, such as breast

and endometrial cancers [11,82]. Currently, computer vision has been a favored approach
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for providing new techniques to automatically detect various diseases [83,84]. Considering

the inconvenience of measuring BMI with special devices, exploring an automatic BMI

estimation method from visual images/3D data could make it efficient to monitor the

health conditions in a large scale setting.

The standard approach to collect 3D data of the human body involves laser scanning

and RBG-D sensor fusion [85]. The commercial laser scanning systems cost approximately

from $35,000 to $500,000 dollars. A Kinect sensor [86] contains a depth sensor, a color

camera, and a four-microphone array. With the depth data streamed from the sensor, a

global surface model of the observed scene can be generated in real-time by the Kinect

fusion technique [87]. The cost of collecting 3D data by Kinect sensors is much lower

than the traditional laser systems. And Kinect 3D data can be generated in real-time by

the KinectFusion algorithm, the time cost is also much lower. Thereby, the Kinect 3D

data have more general applications in the real world than laser scanning data.

Considering the advantages of the Kinect 3D data, this work analyzes BMI from 3D

data of the human body collected by the Kinect sensor. We propose to estimate the

body weight and height of dressed people from the Kinect sensor, and compute the BMI

based on the two estimations. The proposed weight estimation approach is based on the

volume estimation. RGB-D videos are collected to facilitate this study. The condition for

collecting the data is simple. Though the noise may be complicated with the scanning

and fusion process, the proposed weight estimation approach includes clustering and

fitting stages to suppress such noise.

The significance of this study comes from several aspects. First, this work provides a

non-contact way by using affordable Kinect devices for accessing BMI and body weight.

It can be used as a convenient self-monitoring tool or telemedical equipment for users

rather than asking them to find scales and metric tapes to measure their body weight and

height. Second, this approach, as well as data acquisition, may give more opportunities in

real applications. As the first step, we focus on BMI estimation from 3D data, which is a

frequently used index parameter in reality. However, BMI estimation is not the only goal.

Given the 3D data capture, more properties can be examined in addition to BMI. For

instance, in smart health, one can assess the body volume, body shape, etc. to get a more

accurate estimation of a person’s health condition; In E-commence, one can assess the 3D

body in whole for clothes selection with different fashions. Third, BMI and body weight

are soft biometric traits that can be utilized as auxiliary information for recognition or

tracking of persons. Currently, it is still a challenge to visually extract BMI and weight
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from visual 2D or 3D data. Thereby, it is of great importance to estimate weight or BMI

from 3D data.

In the past few years, 3D related techniques rapidly developed on various applications

[88, 89]. There are some studies estimating the body shape from clothing 3D body data.

Bualan et al. [90] proposed a method to estimate the detailed 3D shape of a person from

images of that person wearing clothing by a shape model that is independent of the body

pose. Hasler et al. [91] proposed a method to estimate the detailed 3D body shape of

a person even if heavy or loose clothing is worn by fitting the statistical model. Zhang

et al. [92] presented an approach to recover a personalized shape of the person under

clothing from a sequence of 3D scans.

There are a few works analyzed body weight from 3D body data. Velardo et al. [37]

studied the weight estimation from 3D human body data by analyzing the anthropometric

features. Pfitzner et al. [33] presents a method for estimating body weight from RGB-

D body data and thermal data of lying people in the clinical environment. First,

anthropometric features are extracted from the frontal view RGB-D data. Thermal data

is used to ease the segmentation of a person from the background. Then the features

are forwarded to an artificial neural network for weight estimation. Later on, Pfitzner et

al. [34] extended their previous work [33] by adding two more scenarios: standing and

walking people. There are two limitations of the above three work. First, [37] estimate

BMI from the extracted anthropometric features. Second, [33] and [34] reply on thermal

data to accomplish body segmentation. Considering these limitations, a new method

which directly estimates BMI from people in 3D space is desired.

Different from all the above studies, we explore a new application for BMI estimation

from 3D body volume. Though in [91, 92] some simple biometric features, such as height,

arm length, leg length, etc., can be computed directly on the estimated 3D body shape

model, the body weight cannot be computed simply. They employed another independent

step (statistical model fitting) to compute the body weight. While our method is to

measure from real 3D data.

The main contributions include:

• A new RGB-D video dataset is collected which comprises human body 3D data,

color video and depth video, using the Kinect sensor for 163 subjects, along with

the corresponding gender, age, weight and height labels.

• An efficient weight estimation approach is developed to work on normally dressed

people in 3D space.
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Figure 3.1: The framework of our BMI estimation approach.

• Two clothes models are proposed to reduce the negative influence of loose clothes

on body volume and weight estimation.

3.2 Method

The framework of our proposed BMI estimation approach is shown in Fig. 3.1. The

input data includes the depth and color image streams, and the reconstructed 3D data of

the human body provided by the KinectFusion. The BMI estimation approach consists of

four main steps: skeleton joints mapping (Section 3.2.2), 3D volume computing (Section

3.2.3), clothes recognition (Section 3.2.4), and 3D volume correction by clothes models

(Section 3.2.5). There are two stages in this approach. Both height and weight are

estimated in stage 1, then the estimated weight (volume) is corrected in stage 2. BMI is

calculated from the estimated weight and height. As shown in Fig. 3.1, weight W1 is

estimated directly from the 3D volume of the body. We multiply the volume of the body

by the body density to obtain the body weight. Weight W2 is the outcome of applying

3D volume correction to V1. The clothes model is selected based on the output of clothes

recognition.

3.2.1 KinectFusion

3D body volume reconstruction is provided by the KinectFusion, which reconstructs

a single dense surface model smoothly by integrating the depth data from multiple

viewpoints continuously [87]. In this work, we do not focus on 3D volume reconstruction

but rather utilizing the KinectFusion. The output of the fusion is a 3D body volume

reconstruction in the format of a voxel grid.
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Figure 3.2: The pipeline of skeleton joints coordinates mapping. The input is depth

image, color image and 3D body data. The output is the skeleton-joints coordinates

located in the 3D body data.

3.2.2 Skeleton joints mapping

Skeleton joints mapping is a preprocessing step for 3D volume estimation. Since two

different fitting methods (see details in Section 3.2.3) are applied to various body parts

of the 3D data, the skeleton-joints coordinates of the body are used to mark different

body parts. The skeleton-joints coordinates computed from the depth images need to be

mapped to 3D data results.

First, skeleton tracking is applied to the depth video, and then the skeleton-joints

coordinates are computed for each frame of the depth video. One frame that contains a

frontal face image in depth video and its corresponding frame in color video is selected as

the input depth and color images. From the skeleton-joints coordinates of the chosen

depth image, the approximated coordinates of a person’s feet can be obtained. Then

a face detector is applied to the chosen color image and the bounding box of the head

is obtained. The coordinates of the head are estimated from the location of the head

bounding box. Since the color image and depth image are aligned, the coordinates of

them can be mapped simply. Now the approximated coordinates of head and feet in color

and depth images are obtained. Then we automatically locate the head and feet on 3D

data and obtain the head and feet coordinates accordingly. The height of the body is

computed from the coordinates of the head and feet in 3D data. Note that such height

estimation method works within scenario where people are standing straight up. Using

the coordinates of head and feet obtained on color/depth images and 3D data, we can

find a linear mapping from color/depth image to 3D data. Thereby the skeleton-joints

coordinates in the 3D data of the full body can be obtained. Fig. 3.2 shows the processing

for this mapping.
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Figure 3.3: Block diagram of the 3D volume calculation process applied to the 3D data

after the KinectFusion.

Figure 3.4: The planar view of a single slice from the 3D volume.

3.2.3 3D volume computing

To estimate the body weight, the 3D volume is estimated first and then the body

weight is calculated by multiplying the volume by the body density. The volume is

calculated by integrating the volume of sliced layers that are parallel to the x-z planer, as

shown in Fig. 3.4. The 3D data is sliced into many thin layers (the thickness of each layer

is set to 0.5cm), and each layer is considered as a cylinder. Then the area of each sliced

layer is calculated, and the volume of the cylinder is estimated by multiplying the area

by the height of the layer. Finally, the volumes of all these layers (cylinders) are added

together to get the whole volume of the 3D body. Fig. 3.3 depicts the volume calculation

process applied to the 3D data from the KinectFusion. And Fig. 3.4 shows the planar

view of a single slice of the 3D body. In the following part, two methods (clustering and

fitting) employed for volume calculation are described.

Clustering

After slicing the 3D data horizontally, the numbers of independent sections on the

sliced layers depend on the specific part of the body. For instance, when slicing around

the knee, there are two independent sections (two knees) shown on the sliced layer; when

slicing around the waist, there are three sections (waist and two arms) on the layer as

shown in Fig. 3.5. The skeleton-joints coordinates of 3D data (the output in Fig. 3.2)
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Figure 3.5: The left panel is a sliced layer around the waist, there are three independent

sections (waist and two arms) on this layer. The right panel is the outcome after being

applied DBSCAN. The noisy data which lays inside and outside of the biggest circle

(waist) are all removed after clustering. The data are clustered into 3 groups (drawn by

blue, red and green, respectively).

are used to identify different body parts.

Meanwhile, the reconstructed 3D data by KinectFusion contains some noise. As

shown in the left panel of Fig. 3.5, there are some noisy points which are inside and

outside of the biggest circle (waist section). To do denoising in the data and identify the

number of independent sections on the layer, we apply clustering to the 3D points in each

sliced layer. Density-based spatial clustering for applications with noise (DBSCAN) [93]

is employed for clustering. It is a density-based clustering algorithm, designed to discover

clusters of arbitrary shape as well as to distinguish noise in the spatial data. There are

two main parameters for this algorithm, the maximum radius of the neighborhood from

the core point (ε) and the minimum number of points required to form a dense region

(MinPts). In this work, we set ε = 0.02 and MinPts=10. Fig. 3.5 shows the result of

applying DBSCAN to the sliced layer which is around the waist. We can see the noisy

data inside and outside of the largest section are all removed, and the points are clustered

into 3 groups.

Fitting

After applying the clustering to the data of the sliced layers, fitting is applied next.

With the parameters obtained from fitting, the area of the sections on the sliced layer can

be calculated. Then using this area to calculate the volume of a sliced layer (cylinder).

The shape of the sections on the sliced layers can vary if they are from different body

parts. In this work, two fitting methods are utilized. The shape of the sliced section of

head, neck, arm, leg and hip can be approximated as the ellipses. For the other parts,

since people wear casual clothes during the data collection, the shape of these sliced

sections can be very different from an ellipse, as shown in Fig. 3.7. To address this
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Table 3.1: Fitting methods applied to the corresponding body parts.

Fitting method Body parts

Ellipse Head, neck, arm, leg, hip

B-spline Shoulder, chest, waist

x-axis (m)
0.18 0.2 0.22 0.24 0.26 0.28

y-
ax

is
 (

m
)

-2.48
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Figure 3.6: Applying ellipse fitting to the data of a sliced section.

issue, he B-spline fitting [94, 95] is applied to these data. Table 3.1 shows the fitting

methods applied to the corresponding body parts. During the data collection stage, all

participants keep a similar specific pose (see details in Section 3.3), thereby different

parts of the reconstructed 3D body data can be divided by the skeleton joints obtained

from the previous stage: skeleton joints mapping (Section 3.2.2).

The ellipse fitting [96] is done by minimizing the least squares error: E =
∑n

i=1(ax2
i +

bxiyi + cy2
i − ρ2)2. Fig. 3.6 shows the result of a sliced section of elbow being processed

by an ellipse fitting. After the fitting, the parameters of the fitted functions are used to

calculate the area of the ellipse, which is the estimated area of the section.

For B-spline fitting, given the unorganized data points, representing a target shape

Xk, k = 1, 2, ..., n, the control points Pi, i = 1, 2, ...,m are estimated to minimize the

following objective function:

f =
1

2

n∑
k=1

‖P (t), Xk‖+ λfs, (3.1)

fs is a regularization term to ensure a smooth solution curve, and λ is a positive constant

to modulate the weight of fs.

These unorganized data points Xk are approximated by a closed or open planar

B-spline curve:

P (t) =
m∑
i=1

Bi(t) · Pi, (3.2)

where Bi(t) are the B-spline basis functions of a fixed order and knots, and Pi are the

control points. Since in Eqn. (3.1), f is a nonlinear objective function, an iterative mini-

mization is performed. Suppose that given a specific B-spline curve Pc(t) =
∑m

i=1Bi(t)·Pc,i
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Figure 3.7: The area of a sliced section is divided into a collection of triangles.

with control points P = (Pc,1, Pc,2, ..., Pc,m), which can be an initial fitting curve,

or the current fitting generated from the last iteration. Let D = (D1, D2, ..., Dm)

be the variable updates to Pc to give the new control points P+ = Pc + D, then

P+(t) =
∑m

i=1Bi(t)(Pc,i +D) is the B-spline curve with updated control points P+.

After applying the B-spline curve fitting, the following steps are processed to estimate

the area of the section, as shown in Fig. 3.7. First, a number of samples (s0, s1, ..., sn)

are selected on the curve. Then, choosing a random point s on the plane. As shown in

Fig. 3.7, this collection of points define a sequence of triangles of the form (s, si, si−1),

with i = 1, 2, ..., n. The sum of all these triangles is equal to the area inside the curve,

subtracting the sum E of the small residuals ei as E =
∑n

i=1 ei, here ei is defined by the

line segment between points si and si−1. With the increasing number of samples si, there

are more triangles and smaller residuals ei, so the sum of the areas of these triangles gets

closer to the true area within the curve.

Figure 3.8: The left panel is the input color image. The middle and right panels show a

comparison of the pixel-level labeling based on the clothes parsing before and after the

mask correction computed from the depth image.
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3.2.4 Clothes recognition

When the weight W1 is calculated directly from the estimated 3D volume of the body,

loose clothes that people wear are the main reason for the error in estimating the true

body volume. In order to eliminate or reduce such errors as much as possible, clothes

recognition is applied to the color images and then the volume of the 3D data could be

corrected by different clothes models. The clothes recognition method employed in this

work is similar to the paper doll parsing work. The outcome is a pixel-level labeling

result. Given an input image, a labeling tag such as null, skin, pant and skirt, etc. (null

denotes the background of the image) is given for each pixel in the image.

However, the clothes parsing method [97,98] sometimes cannot perform well, especially

when the color of clothes is similar to the background, as shown in Fig. 3.8. To address

this issue, we combine the depth image with the result of clothes parsing to solve the

confusion between background and foreground. A mask M is generated from the depth

image to segment the background and foreground. For a depth image I, let i ∈ I be a

pixel, then the mask is given as:

Mi = 1[Ii > T ], (3.3)

where Mi denotes the mask for pixel i, Ii denotes the value of pixel i in the depth image

(the higher the value is, the closer the object to the camera) and T is a threshold. 1 [·] is

an indicator function. Then the correct results of clothes parsing can be obtained from:

parsingcorrect = parsing ·Mi. Fig. 3.8 shows a comparison of the pixel-level parsing

result of clothes recognition before and after the correction by using the Mask M .

3.2.5 3D volume correction

In this stage, the corrected pixel-level clothes parsing result (Section 3.2.4) are mapped

to the 3D data. The mapping method is similar to that in Section 3.2.2. For different

clothes parsing results, different clothes models are developed to correct the estimated

volumes. This work mainly focuses on correcting the volume estimation when wearing the

dress/skirt (female) and shorts (male). The two proposed clothes models are presented:

the dress (skirt) model and the shorts model.

Dress (skirt) model

We assume that the skirt/dress in 3D data can be considered as an elliptic truncated

cone, as shown in Fig. 3.9. The following equation is used to calculate the volume of the
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Figure 3.9: Dress model: the skirt/dress in 3D can be approximated by an elliptic

truncated cone.

skirt/dress:

Vdress =
π

3
· a

2
1b1h− a2

2b2h

a1 − a2
, (3.4)

where ai denotes the major radius and bi denotes minor radius of an ellipse. Subscript 1

and 2 denote the upper base and lower base, respectively, as shown in Fig. 3.9. h is the

height of the elliptic truncated cone (skirt). ai and bi can be estimated by ellipse fitting.

h can be estimated from mapping pixel-level parsing result to the 3D data.

The next step is calculating the volume of legs covered by the dress/skirt. We

also assume that this part of the leg (covered by the dress/skirt) can be approximately

considered as an elliptic truncated cone. The volume Vdress
′ need to be subtracted from

V1 as Vdress − Vlegs, which can be obtained from the following equation:

Vdress
′ =

πh

3
·
[
a2

1b1 − a2
2b2

a1 − a2
− 2 · a

2
4b4 − a2

3b3
a4 − a3

]
, (3.5)

Here a4 and b4 are the radius of upper base of leg elliptic truncated cone, which are

approximately equal to 0.5a2 and 0.5b2. Then a3 and b3 can be obtained by applying an

ellipse fitting to the sliced layer around the bottom of the skirt in 3D. Then the corrected

volume is: V2 = V1 − Vdress′, where V1 is the volume estimated in stage 1 (Section 3.2.3).

Shorts model

The shorts worn by males are usually very loose, so we try to eliminate such a negative

influence on weight estimation. A shorts model for the male is proposed to correct the

estimated volume, as shown in Fig. 3.10. The solid lines represent the shape of shorts and

the dash lines are the shape of legs. S1 is the area of the section at the short’s bottom,

S2 is the area of the leg section at the short’s bottom. We assume that:

Vlegs
Vshorts

=
S2

S1
, (3.6)

where Vlegs is the volume of legs covered by shorts and Vshorts is the volume of shorts.

Then the volume (Vshort
′) to be subtracted from V1 can be derived from Eqn. (3.6):
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Figure 3.10: Short model for male: the solid lines represent the shape of shorts and dash

lines are the shape of legs.

Vshort
′ = Vshort · (1− S2

S1
). The following five steps summarize the processing to correct

the volume of the 3D body based on the proposed shorts model:

• Map the pixel-level clothes parsing result to the location of the shorts (the coordi-

nates of shorts in the color image), from color image to 3D data.

• Using the coordinates of shorts, calculate the volume of shorts Vshort by integrating

the sliced layers, and calculate the area S1 and S2 by applying ellipse fittings to

the corresponding sliced layers.

• Obtain coefficient from: f = 1− S2
S1
· α. According to different ranges of S2

S1
, α is

empirically set to 1.5 in our implementation.

• The volume need to be subtracted: Vshort
′ = Vshort · f .

• The correct volume is V2 = V1 − Vshort′.

3.2.6 Weight estimation

The weight of the 3D body is estimated by multiplying the volume of the body by body

density. The body density varies with ages, gender and anthropometric measurements.

Several studies [99–101] employed multiple regression based methods to analyze body

density. The regression models consist of different variables, such as skinfolds, body

diameters and circumferences, etc. For instance, [99] used the following regression model

to analyze body density:

D = 1.11847− 0.00078V5 − 0.00048V27, (3.7)

here V5 is abdominal skinfold, V27 is abdomen circumference. Based on the regression

results from a large amount of data, [101] summarized a query table based on age and

gender for body density estimation, which is given in Table 3.2. In this work, the RGB-D
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Table 3.2: The base body density varies with different age and gender.

Density (kg/m3)

Age Male Female

17-19 1.066× 103 1.040× 103

20-29 1.064× 103 1.034× 103

30-39 1.046× 103 1.025× 103

40-49 1.043× 103 1.020× 103

50-59 1.036× 103 1.013× 103
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Figure 3.11: Distribution of BMI values on the dataset. The BMI values mainly distribute

between 18 to 30.

dataset has the annotation of age and gender for each subject. Thereby, we choose the

proper body density for each subject according to Table 3.2.

3.3 Dataset

We collected a new dataset, since there is no previous dataset appropriate for this

study. The dataset consists of 163 subjects captured by the Kinect sensor, with color

videos, depth videos and 3D fusion. Each subject has gender, age, weight and height

information recorded. There are 70 males and 93 females. The ages of people are in the

range of 16 to 52 years old. Fig. 3.11 shows the distribution of BMI values on the dataset.

The mean BMI value of the database is 21.4, the standard deviation of the BMI values is

3.1.

The Kinect sensor features a 640×480 pixels RGB camera, and 640×480 pixels depth

sensor. Each frame of the depth video is made up of pixels that contain the distance from

the camera plane to the nearest object [86]. The reconstructed 3D data of each subject

is obtained from the depth video by the KinectFusion [87]. The location of the Kinect
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Table 3.3: Pearson’s correlation cofficient PCC between weight/BMI and estimated

volume in clothes groups.

Dress/skirt Short Pant T-shirt Jacket/long sleeves

PCC p-value PCC p-value PCC p-value PCC p-value PCC p-value

weight 0.6051 0.0324 0.7978 0.0000 0.8301 0.0000 0.8476 0.0000 0.7280 0.0262

BMI 0.5444 0.0954 0.7024 0.0000 0.7731 0.0000 0.7895 0.0000 0.6269 0.0708

Figure 3.12: The left panel shows the measurement coordinate systems and the riht panel

shows the guesture during data collection.

sensor is set as the origin of coordinates. The x-axis is along the horizontal, the y-axis

is along the vertical and the z-axis represents the distance between the subject and the

Kinect sensor. Fig. 3.12 shows the measurement coordinate system and the specific pose

during data collection. The subject stands in front of the sensor and turns around for

360 degrees with a constant speed. Some samples of the 3D volume by the KinectFusion

are shown in Fig. 3.13.

3.4 Performance Measure

It is critical to measure the correlation between the estimated body volume and

body weights or BMIs. The Pearson’s correlation coefficient (PCC) is employed for

measuring the correlation. A hypothesis testing is used to test the significance of the

obtained correlations. Based on the hypothesis testing, we can understand whether the

estimated volumes and weights/BMIs (ground truth) are correlated. Pearson’s correlation

coefficient was developed by Karl Pearson in 1895 from a related idea introduced by

Francis Galton [102]. Given two variables X = x1, ..., xn and Y = y1, ..., yn, PCC is
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Figure 3.13: Samples of the under clothing 3D data reconstructed by KinectFusion.

given by:

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (3.8)

where PCC is between −1 and 1. If PCC < 0, it indicates a negative correlation between

X and Y. If PCC > 0, it indicates a positive correlation. If PCC = 0, it indicates no

correlation between X and Y . When PCC is close to −1 or 1, it indicates a very strong

correlation.

The above Pearson’s correlation coefficient is computed from the observed/tested

samples. To extend the correlation measure to a population, we need to do hypothesis

testing with a statistical significance measure. The p-value is used to indicate whether a

significant correlation exists between the estimated volume and weight (ground truth).

The p-value uses the t-distribution. First, t is calculated by:

t =
r(n− 2)√

1− r2
, (3.9)

where r is the correlation coefficient and n is the number of observations. Then computing
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p-value from t uses the t-distribution function. The number of degrees of freedom is

equal to (n− 2), and the tails is set to 2.

We can make a decision from the p-value by:

• If the p-value is smaller than the significance level α, it can reject the null hypothesis

(there is no correlation between the two sets).

• If the p-value is larger than the significance level α, it fails to reject the null

hypothesis.

Some significance level α can be set, e.g., 0.001, 0.01 or 0.05. If the p-value is equal to or

smaller than the thresholds, it indicates a significant correlation between the estimated

volume and weight.

In addition to correlation, the mean absolute error (MAE), percent error (ε) and are

used to evaluate the performance of the proposed approach for BMI estimation. MAE

is defined as the average of absolute error between the estimated value and the ground

truth: MAE = 1
N

∑N
i=1

∣∣∣b̂i − bi∣∣∣, where b̂i is the estimated BMI for i− th sample, bi is the

ground truth for i−th sample and N is the number of samples. This measure is motivated

by its usage in age estimation, e.g. [103]. Percent error is defined as: εi(%) = ŵi−wi
wi
×100,

where ŵi is the estimated weight for i − th sample, wi is the ground truth for i − th
sample.

3.5 Experiments

In this section, experiments are conducted to validate the proposed approach to BMI

estimation. We first examine the correlation between the estimated body volume and

body weights or BMIs, and then perform the estimation experiments.

3.5.1 Correlation between the estimated volumes and true weights

BMI is calculated from the estimated weight and height. The weight is calculated

directly from the volume of 3D data. The correlation between the estimated volumes and

weights/BMIs (ground truth) is analyzed. PCC is used to measure the correlations. Based

on the hypothesis testing, we can tell whether the estimated volumes and weights/BMIs

are correlated or not. Therefore the performance of the BMI estimation approach can be

verified.

Table 3.3 shows the correlations between the estimated volume and weight/BMI

(ground truth) in five clothes groups. In this table, p − value = 0.0000 indicates a
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Table 3.4: MAE of estimated height, weight and BMI in the two stages.

Stage 1 Stage 2

Height (cm) 3.72 −
Weight (kg) 7.28 5.15

BMI 3.40 2.54

very small value, which is less than 0.0001. Here we consider the correlation with

p− value < 0.05 as a significant correlation. From Table 3.3, we can see the correlation

between the estimated volumes and the weights/BMIs are significant in short, pant and

T-shirt groups. While the correlations are much lower in dress and jacket groups than in

others, which means the dress and jacket brings a large negative influence on the volume

estimation of the 3D body.

3.5.2 BMI estimation in two stages

As shown in Fig. 3.1, there are two stages for the BMI estimation. In stage 1, the

height and weight are directly estimated from the 3D data. In stage 2, clothes recognition

and clothes models (skirt and short models) are applied to correct the estimated weight

obtained in stage 1. Table 3.4 shows MAEs of the estimated weight and BMI in two

stages, respectively (height is only estimated in stage 1). We can see that the MAEs of

the estimated weight and BMI reduced significantly in stage 2.

Table 3.5 shows MAEs of weight estimated from the data wearing dress/skirt (female)

and shorts (male) in two stages. The first column is the category of data for testing.

The second column is the number of subjects. The third and fourth columns are the

MAEs of estimated weight in stage 1 and stage 2, respectively. Both MAEs are decreased

significantly in stage 2. It shows the necessity and effectiveness of the two clothes models

(dress/skirt and shorts) on volume correction and body weight estimation.

Table 3.5: MAE of estimated weight before and after applying clothes models to specified

data. Stage 1 is before applying the clothes models while stage 2 is after applying the

clothes models.

Data Number of subjects Stage 1 (W1) Stage 2 (W2)

wearing

skirt or dress
18 24.45 5.04

wearing

shorts (male)
15 5.89 2.05
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Figure 3.14: The upper panel is the error distribution of estimated weight of all data in

stage 1. The lower panel is the error distribution of estimated weight in stage 2.

Table 3.6: Mean and standard deviation of weight percentage error in two stages.

Stage 1 Stage 2

Mean of percentage errors 10.15 3.95

Standard deviation of percentage errors 2.45 1.28

Fig. 3.14 shows the error distribution of estimated weight from all subjects. The

x-axis is the percent error of the estimated weight. The y-axis is the number of subjects

whose percent errors are within the corresponding percent error interval. The upper

panel in Fig. 3.14 is the error distribution of estimated weight over all subjects in stage 1.

The lower panel is the error distribution of estimated weight in stage 2. The mean and

standard deviation of percent errors in both stages are given in Table 3.6. We can see

both the mean and standard deviation of percent errors become smaller in stage 2, which

means there are more subjects with reduced errors. This again shows the effectiveness of

the clothes models on weight estimation.

3.5.3 BMI estimation in separate clothes groups and gender groups

Based on the parsing results of clothes recognition, there are several groups of clothing

styles. The performance of the BMI estimation approach for different clothes groups is

evaluated. As shown in Table 3.7, there are five main clothes groups: dress/skirt, shorts,

pants, T-shirt and jackets/long-sleeves. Since the weight estimation approach is based on

estimating the volume of the 3D body, the errors of estimated weight vary with different

styles of clothes. In Table 3.7, the first column is the clothes group, the second column is

the number of subjects in each clothes group, the third and fourth columns are MAEs

of weight and BMI estimation in each clothes group. We can see the MAEs of weight

and BMI in shorts group are the smallest which means shorts have the lowest negative
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Table 3.7: MAE in different clothes groups

Clothes group # of subjects MAE of weight MAE of BMI

Dress/skirt 18 5.05 3.05

Shorts 43 4.01 2.09

Pants 107 5.55 2.70

T-shirt 135 4.84 2.32

Jacket/ long sleeves 9 10.7 5.55

Table 3.8: MAE calculated in gender groups

Number of subjects MAE of weight MAE of BMI

Female 93 5.92 3.02

Male 70 4.13 1.92

influence on our weight estimation approach. While the highest MAE of BMI 5.55 is

from jackets/long-sleeves group, which is much higher than MAEs over all subjects 2.54

(see details in Table 3.4). Since there are only 9 subjects wearing jackets or long-sleeves

in this dataset, we did not design a jackets/long-sleeves model for volume correction. The

MAEs vary in different clothes groups show that the performance of the BMI estimation

approach performs unevenly for different clothes style.

Then we study the performance of BMI estimation in separated gender groups. The

results are shown in Table 3.8. The third column is MAEs of estimated weight, the fourth

column is MAEs of estimated BMI. We can see that the MAEs are smaller for the males,

while is a little larger for females. This result suggests that our current BMI estimation

approach performs slightly better for males. The higher errors for females may be caused

by various clothing styles.

3.5.4 Compare with other volume calculating methods

In this work, the proposed volume calculating method for 3D reconstructed data

is based on slicing and integration. We compare it with another method for 3D data

volume calculation. It is a triangular projecting based method [104]. Given a projecting

plane, the volume of the pentahedron, which consists of the triangle and its projection,

is computed. The volume of the 3D data is the sum of the volume of all pentahedrons.

We first apply method [104] to the dataset and obtain the volume V1. Then the clothes

models are applied to correct V1. Finally the corrected volume V2 is used to estimate

the body weight. Table 3.9 gives the MAEs of body weight estimation based on these

two volume calculating methods. One can see that our method gives smaller errors for
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Table 3.9: Comparison of volume calculating between our method and other method.

Method Male Female Overall

[104] 4.93 7.02 6.12

Ours 4.13 5.92 5.3

different groups.

3.5.5 Compare with other visual BMI estimation methods

As shown in Table 3.4, the MAE of BMIs of the proposed approach is 2.54. Wen and

Guo [47] proposed a BMI computation approach from facial images with a reported MAE

of 3.13. Dantchev et. al [63] explored the possibility of estimating height, weight, and

BMI from facial images by a regression based deep network. The reported MAEs related

to BMI is in the range of 2.3 + 0.06. Jiang and Guo [64] developed a body weight analysis

method from frontal view body images with a reported MAE of 3.8. [66] evaluated the

performances of several facial representations for BMI estimation, the best performance

is from Arcface 3.15± 0.06. Comparing with the above existing visual BMI estimation

methods, the performance of the proposed method is quite acceptable, although the

datasets and extracted features are different. It shows that the use of 3D data could be

promising for BMI analysis.

3.6 Summary

This chapter presents an effective computational approach to BMI estimation from the

normally dressed people in 3D space. Two clothes models have been proposed to obtain

a more accurate estimation of the body volumes. Though the Kinect 3D fusions contain

some noise, the proposed BMI estimation includes clustering and fitting components to

suppress such noise. A new RGB-D dataset is collected for this study. Experimental

results have shown the effectiveness of the proposed approach to people with different

styles of clothes, for both females and males. Comparing to another 3D volume estimation

method, our method achieves a significantly lower error. In the future, we would like to

explore more precious clothes models (such as jackets and pants models) to make the

estimated weight and BMI become more accurate.
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Chapter 4

On Visual BMI Analysis from

Facial Images

In this chapter, we study an interesting and challenging problem in computer vision-

automatically assessing body mass index (BMI) from facial images. Facial feature

extraction is an important step for visual BMI estimation. This work studies the visual

BMI estimation problem based on the characteristics and performance of different facial

representations, which has not been well studied yet. Various facial representations,

including geometry based representations and deep learning based, are comprehensively

evaluated and analyzed from three perspectives: the overall performance on visual BMI

prediction, the redundancy in facial representations and the sensitivity to head pose

changes. The experiments are conducted on two databases: a new dataset we collected,

called the FIW-BMI and an existing large dataset Morph II. Our studies provide some

deep insights into the facial representations for visual BMI analysis.

The organization of this chapter is as follows. Section 4.1 describes the problem

studied in this chapter. The principles and related methods are systematically presented

and discussed in Section 4.2. Section 4.3 characterizes two databases used for performance

evaluation: a newly collected FIW-BMI dataset and Morph II. In Section 4.4, we conduct

three experiments: the overall performance on visual BMI prediction, the redundancy in

representations and the sensitivity to variant head pose, and provide detailed analysis

and discussion. Section 4.5 summarizes the work and discoveries of this chapter.



Min Jiang Chapter 4. On Visual BMI Analysis from Facial Images 59

Face 
Detection

Predicted
BMI

Image 
Alignment

Facial
Feature

Extraction
Regression

Original 
Images

Feature 1
Feature 2

.

.

.
Feature N

Figure 4.1: A typical framework for visual BMI estimation from two-dimensional (2D)

facial images.

4.1 Problem Definition

Fig. 4.1 shows a typical framework for BMI estimation from two-dimensional (2D)

facial images. It consists of four steps: face detection, image alignment, facial repre-

sentation extraction, and regression. The first and second steps are the preparation for

feature extraction. The third step is the most important which dominantly determines

the performance for BMI estimation. Thereby, in this work, we study the visual BMI

estimation problem from this key aspect: facial feature extraction methods, and explores

methods to improve their performance.

We study the visual BMI estimation problem by analyzing two types of facial repre-

sentation methods. The psychology inspired geometric features (PIGF) is used in [47,105].

Considering the whole facial shape may not be exactly defined by the PIGF, we explore

another method for extracting geometric facial representation-pointer feature (PF), which

defines the face shape by a series of facial landmarks. In addition, to take advantage

of the above two geometric representations, a fusion method is utilized to extract a

richer geometric representation, denoted as PIGF+PF. In terms of deep learning, the

VGG-Face model has been utilized for BMI prediction in [61]. Considering the very high

dimension of the VGG-Face feature, we also explore other deep models to extract the

deep representations, e.g. the LightCNN [106], Centerloss models [107] and Arcface [108].

Thus we can get a deep insight into deep learning based facial representations for visual

BMI analysis.

4.2 A deep insight into the visual BMI representations

As mentioned above, we consider that there are two representative types of facial

representations for visual BMI analysis from facial images. We examine the principles of

the facial representations systematically and discuss some related issues.
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Figure 4.2: Illustration of pointer feature (PF), which consists of a series of facial

landmarks.

4.2.1 Geometry based representations

The principle of a geometric model is to mathematically describe the facial shapes

related to body fat. It shows that facial geometry measures are correlated to body fat

or BMI. Inspired by these psychology studies [24, 25], the first computational method

PIGF was developed by Wen and Guo [47], using geometric features to estimate seven

facial metrics: cheek-to-jaw-width ratio (CJWR), face width-to-height ratio (WHR), face

perimeter to area ratio (PAR), eye size (ES), lower face to face height ratio (LF/FH),

face width to lower face height ratio (FW/LFH) and the mean of eyebrow height (MEH).

Given the geometric features, some statistical methods can be used to map the features

to BMI values. The facial landmarks need to be extracted prior to the geometric feature

extraction. So the performance of BMI estimation is related to the accuracy of facial

landmark detection. The experimental results reported in [47] show that the PIGF

performs quite well on BMI estimation.

On the other hand, Mayer et al. [44] analyzed the association of facial landmarks

with body fat. They found that comparing with WHR, the whole facial shape is also

good at reflecting the total fat proportion of the body. The facial shape based points

were used to study the correlation between facial shape and body fat. Inspired by this,

we want to explore another method for extracting the geometric facial representation,

called the pointer feature (PF). It defines the facial shape and features by a series of facial

landmarks as shown in Fig. 4.2. The PF consists of coordinates of M facial landmarks,

denoted as (xi, yi), i = 1, ...,M , which can be directly concatenated into a vector. Then

the PF representation is a 2M-dimensional vector: [x1, y1, ..., xn, yn, ..., xM , yM ]T . It is

obvious that PF relies on the accurate detection of facial landmarks.

In addition, a fusion of these two kinds of geometric features could be considered. A

simple way is to concatenate the PIGF and PF, denoted as PIGF+PF. Hopefully, it can
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Figure 4.3: The pipeline of deep learning approach.

take advantages of the two geometric representations.

As a result, we will investigate three different geometric features, in order to get

a deep understanding. The computation of geometric features is very fast, and the

geometric representations are with very low dimensions.

4.2.2 Deep learning based representations

Recently, deep neural networks have been successfully applied to various applications.

Fig. 4.3 shows a general pipeline of the deep learning approach. The VGG-Face is one of

the deep convolutional networks originally proposed for face recognition, which learns a

face embedding using a triplet loss function [62]. The network contains 13 convolutional

layers, 5 max-pooling layers, 3 fully-connected (fc) layers and a final layer with the

soft-max function. VGG-Face model is trained on 2.6 million face images from the web.

It takes a face image of size 224×224 with a constant image with all pixels equal to

(94,105,129) subtracted as the input. Having about 144 million parameters indicates

that the VGG-Face is a complex model. Kocabey et al. [61] employed the pre-trained

VGG-Face models to extract facial features for BMI analysis. The extracted features

from layer fc6 of VGG-Face is utilized. The size of the feature vector in VGG-Face is

4096. Thus the dimension of the VGG-Face representation is quite high.

Considering the high computational complexity for VGG-Face model, it is interesting

to investigate other deep models with a lower computational cost for visual BMI analysis.

Here we explore the LightCNN, Centerloss and Arcface models.

LightCNN is a network with a low computational complexity which learns a compact
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face embedding on a large-scale dataset with noisy labels [106]. It proposed a Max-

Feature-Max (MFM) activation function to suppress a small number of neurons and to

make CNN models light and robust. The model is trained on 493,456 face images from

CASIA WebFace dataset. The input of the network is a gray-scale face image of size

128×128. Considering the significant performance achieved by this model on the face

recognition task, the layer fc1 (with size 256× 1) of LightCNN is used to extract deep

facial features for BMI estimation.

The features learned by the deep networks trained under the supervision of softmax

loss [109] may not be discriminative enough. In order to improve the discriminative power

of the learned features, Wen et al. [107] proposed a center loss function to minimize the

intra-class variations while keeping features of different classes separable. The center loss

based network takes a face image of size 96×112 as the input. This model was developed

for face recognition, which we evaluate its use for visual BMI estimation. We extract

features for each image and its horizontally flipped one, and concatenate them as a 1024

dimensional feature vector.

Additive Angular Margin Loss (ArcFace) [108] can extract highly discriminative fea-

tures for face recognition by directly optimizing the geodesic distance margin through the

correspondence between the angle and arc in the normalized hypersphere. It outperforms

many other deep models for face recognition. The input of Arcface model is face images

of size 112×112. The final 512-dimension embedding feature of the network is utilized

for visual BMI analysis.

4.3 Databases

Given various face representations for BMI analysis, we conduct experiments on two

databases: a newly collected face database by us and the Morph II. They are different in

size and characteristics. The details about the two databases are given below.

4.3.1 FIW-BMI database

We collect a new dataset, called face in the wild for BMI analysis (FIW-BMI) 1. The

facial images were collected from a social website−Reddit posts 2. We went through

the original images by a deep cascaded multi-task based face detector [110]. Given the

detected face landmarks (two eyes, nose and mouth), each face image is cropped and

1Please contact the authors for the dataset.
2Website: http://www.reddit.com/r/progresspics

http://www.reddit.com/r/progresspics
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Figure 4.4: Distribution of BMI values on FIW-BMI database. The BMI values span a

wide range with most of the values distribute between 20 to 50.

Figure 4.5: Samples of the cleaned images in FIW-BMI database.

normalized to the size of 256×256. Considering all the images are from social networks,

they are not strictly frontal view face images with a clean background. We visually

checked all images and discarded the images which are not appropriate for visual BMI

analysis, such as large head pose changes or exaggerated facial expressions. Finally, the

annotation for each image is manually checked to generate the correct labels.

After all the above procedures, 7930 images from 4881 individuals were kept, along

with the corresponding gender, height, and weight labels. Among these individuals,

there are 3192 males (5197 images) and 1689 females (2733 images). Fig. 4.4 shows the

BMI distribution of the whole database. Because the Reddit posts is a social network

displaying people’s progress of weight loss, weight gain, or essentially any type of body

changes, the BMI values of these images distribute over a very wide range: 15 to 60. The

mean BMI value of the database is 30.8, the standard deviation of the BMI values is 6.97.

Among these images, 43 are underweight (BMI≤18.5), 1662 are normal (18.5<BMI≤25),

2455 are overweight (25<BMI≤30), 3770 are in obese (BMI>30). Fig. 4.5 shows a few

examples of the facial images from our FIW-BMI database.
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Figure 4.6: Distribution of BMI values on Morph II. The BMI values mainly distribute

between 15 to 35.

Table 4.1: Details about the selected Morph II database.

Black male Black female White male White female

#Subject 6497 1096 1565 535

#Images 19290 2824 4862 2057

4.3.2 Morph II database

Morph II database [51] contains 55,608 mugshot-style frontal view face images along

with the age, gender, and ethnicity labels. Most of them are with height and weight

values. The BMI values can be computed from the weight and height. There is an uneven

distribution of the ethnicity in the database, eg. about 96% identities are Black and

White, while 4% are Hispanic, Asian, Indian, and others. Only images from African

Americans and White are used for this study. Totally 29,033 images of 9693 identities

were selected. Details about the selected Morph II dataset are given in Table 4.1. The

images are separated into four groups by gender and ethnicity. The distribution of BMI

values on the selected database (includes training and test sets) is shown in Fig. 4.6.

Comparing to Fig. 4.4, the BMI values of Morph II mainly distribute on a relatively small

range: 15 to 35. The mean BMI value of selected Morph II is 24.8, the standard deviation

of the BMI values is 4.61. Among these, 893 are underweight, 16,582 are normal, 8,237

are overweight and 3,321 are obese.

4.4 Experiments and analysis

Experimentally, we evaluate and analyze the two major types of facial representations

for BMI estimation. The experiment settings and performance metrics are briefly described
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Table 4.2: Splitting FIW-BMI by gender.

Training set Test set

#Subject #Images #Subject #Images

Male 2551 4136 641 1061

Female 1329 2164 360 569

first. Then the overall performance of the facial representations on two databases is

presented. We further analyze the facial representations from two perspectives: the

redundancy of the facial representations, and the sensitivity of facial representations to

various head pose changes. Finally, two influence factors for BMI analysis are discussed.

4.4.1 Experiment setting

1) Database setting: The BMI values are estimated based on separated training in

each gender (and ethnicity) group using the SVR model in this work without any other

specification. To evaluate the overall performance of the seven facial representations,

FIW-BMI is split into 10 subsets for each gender group (10 subsets for the male group

and 10 subsets for female). A similar process is applied to Morph II. It is also split into

10 subsets for each gender and ethnicity group. We use cross-validation for performance

measure. 8 subsets are used as the training set and the remaining 2 are the testing set in

each round for each gender-ethnicity group. There is no overlap of individuals between

the training and test sets in each round. Such a process is repeated 30 rounds for each

group (the training and test sets are different for each round). Then 95% confidence

intervals are calculated based on the results of these 30 repeated experiments.

To analyze the redundancy of the facial representations and the sensitivity to head

pose variations, the training and test sets of the two databases are given in Tables 4.2

and 4.3, respectively. The same individual can only appear in either training or test set,

but not both.

2) Images preprocessing: The face image alignment is applied prior to the extraction

of geometric features. The alignment is based on the detected eye coordinates. It basically

performs translation, rotation, and scaling of the faces so as to align all face images into

the common eye coordinates. The output is a cropped 256×256 image. The Openface

toolkit [111] is employed for detecting 68 face landmarks. The output of the PIGF is a 7

dimensional representation: [CJWR,WHR,PAR,ES,LF/FH,FW/LFH,MEH]T . The PF consists of

the coordinates of 68 facial landmarks, denoted as (xi, yi), i = 1, ..., 68, resulting in a 136
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Table 4.3: Splitting selected Morph II by gender and ethnicity.

Training set Test set

#Subject #Images #Subject #Images

Black male 4568 13574 1929 5716

Black female 873 2218 223 606

White male 1245 3856 320 1006

White female 428 1615 107 442

dimensional representation: [x1, y1, ..., xn, yn, ..., x68, y68]T .

The implemented and pre-trained models of VGG-Face, LightCNN-29 and Centerloss

are used from the Caffe deep learning framework [112]. All weights of the fully-connected

layer of each deep network are used for feature extraction. These layers are noted as fc6 in

VGG-Face, fc1 in LightCNN and fc5 in Centerloss. The VGG-Face model takes a 224×224

color image with the mean subtracted and outputs a 4096 dimensional feature vector. The

LightCNN model provides a 256 dimensional representation extracted from a 128×128

gray-scale image. The Centerloss model outputs a 1024 dimensional representation

with the input 96×112 color images. The Arcface model takes 112×112 color image

and outputs a 512 dimensional feature vector. The image alignment is required before

extracting deep representations. It is done by following the alignment protocol provided

by each deep model.

3) Implementation details for machine learning: As shown in Fig. 4.1, the extracted

facial representations are then used to train a regression model. We employ the support

vector regression (SVR) [48] model to learn the mapping from the extracted representations

to BMI values. The SVR is selected due to its robust generalization behavior. The

Gaussian Radial Basis Function (RBF) is utilized as the SVR kernel.

4.4.2 Performance metrics

Mean absolute error (MAE) is employed to measure the performance on BMI estima-

tion. It is defined as the average of the absolute error between the estimated BMI values

and the ground truth BMI values, which is computed by: MAE = 1
N

∑N
k=1 |p̂k − pk|,

here pk is the ground truth BMI value for image k, p̂k is the corresponding estimated

BMI value, N is the number of test images. This measure is motivated by its use in age

estimation [103].

The second measurement is the accuracy of the predicted BMI category. According to
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the estimated BMI values, we can compute the corresponding BMI category (underweight,

normal, overweight and obese). The accuracy of the predicted category is the proportion

of the total number of predictions that are correct. This measurement is helpful to decide

if the errors are acceptable. For example, given an image with a ground-truth BMI value

24, the estimated value is 19. Though the absolute error is 5, the predicted category

(normal) is correct. On the other hand, the category has a limitation. For example, if the

ground-truth BMI of an image is 30 and the estimated value is 30.5, though the absolute

error is 0.5, the predicted category (obese) is incorrect.

Mean absolute percentage error (MAPE) is proposed as the third measure. It is a

relative error computed as:

MAPE =
100

N

N∑
k=1

∣∣∣∣ p̂k − pkpk

∣∣∣∣ . (4.1)

Considering the advantages and limitations of the above three measurements, we use

all of them to evaluate the performance.

A 95% confidence interval (CI) is a range of values that it can be 95% certain contains

the true mean of the population. We calculate the 95% confidence intervals of the above

three metrics based on the results of 30 repeated experiments. It is computed by:

CI = X̄ ± Z s√
n
, (4.2)

here n is the number of observations, X̄ is the mean of observations, and s is the standard

deviation. For 95% confidence interval, the Z value is 1.96.

4.4.3 Overall performance comparison

The 95% confidence interval of MAEs for the seven representations for BMI estimation

on the two databases are given in Tables 4.4 and 4.5. The MAEs are calculated from the

whole test set. To better present the details about the performance, we further calculated

the MAEs from each BMI category. In addition to the MAEs, the 95% confidence intervals

of the accuracy for the predicted BMI category are given in Tables 4.6 and 4.7. The

95% confidence interval of MAPEs are given in Tables 4.8 and 4.9. Combining MAEs

(Tables 4.4 and 4.5), the accuracy for category classification (Tables 4.6 and 4.7) and

MAPEs (Tables 4.8 and 4.9) to evaluate and analyze the performances with more specific

information, some interesting observations can be obtained.

Performance of the two types of facial representations: The performances of the seven

facial representations are different from each other. Overall, the experimental results
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Table 4.4: 95% confidence interval of MAEs for the seven facial representations for BMI

prediction on FIW-BMI.

Male

All Underweight Normal Overweight Obese

PIGF 3.78±0.07 7.90±0.25 3.79±0.08 2.52±0.50 4.76±0.14
PF 3.76±0.07 8.96±0.37 3.81±0.10 2.51±0.04 4.56±0.12
PIGF+PF 3.70±0.07 8.16±0.27 3.79±0.09 2.50±0.04 4.49±0.10
VGG-Face 3.26±0.06 5.61±0.34 2.99±0.10 2.50±0.05 4.24±0.10
LightCNN 3.44±0.06 5.76±0.36 3.17±0.09 2.50±0.05 4.30±0.09
Centerloss 3.40±0.05 8.02±0.35 3.19±0.08 2.54±0.05 4.30±0.11
ArcFace 3.15±0.07 5.52±0.21 3.18±0.04 2.25±0.05 4.07±0.14

Female

All Underweight Normal Overweight Obese

PIGF 4.26±0.08 10.37±1.10 5.30±0.07 2.68±0.05 4.68±0.13
PF 4.15±0.08 9.43±0.90 5.08±0.09 2.91±0.07 4.60±0.10
PIGF+PF 4.10±0.07 9.97±0.87 5.02±0.08 2.71±0.07 4.53±0.12
VGG-Face 3.66±0.08 9.79±0.95 4.42±0.11 2.67±0.09 3.81±0.12
LightCNN 3.90±0.03 9.94±1.00 4.62±0.09 2.86±0.07 4.12±0.06
Centerloss 3.82±0.11 8.56±0.50 5.00±0.21 2.70±0.11 3.97±0.11
ArcFace 3.51±0.09 9.76±0.85 4.47±0.08 2.53±0.08 3.62±0.17

show that these two types of facial representations both are effective for addressing BMI

estimation. And the deep model based methods (VGG-Face, LightCNN, Centerloss and

Arcface) perform better than the geometry based methods (PIGF, PF, and PIGF+PF).

Among them, measuring with MAEs, the VGG-Face and Arcface show more robustness

than the others in most cases.

For the white female group, the deep learning based representations do not show

clear advantages over the geometric representations as in other groups. From Table 4.1,

we can see this group has the least number of images for training and testing. Since the

training time of SVR models for deep representations is much longer than the geometric

representations. The geometric representations are more suitable for small datasets. The

deep representations perform better on a large dataset with much more time cost.

From Tables 4.4 and 4.5, it can be seen that the confidence intervals of PIGF+PF

are smaller than both PIGF and PF for most groups. To decide whether a significant

performance difference exists between the fused geometric feature (PIGF+PF) and the

individual feature (PIGF, PF), we apply a hypothesis testing with a statistical significance

measure. The null hypothesis is: there is no performance difference between the two

features. We can make a decision by:
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Table 4.5: 95% confidence interval of MAEs for the seven facial representations for BMI

prediction on Morph II database.

Black male

All Underweight Normal Overweight Obese

PIGF 2.70±0.04 6.61±0.22 1.82±0.02 2.36±0.01 7.38±0.10
PF 2.67±0.04 6.69±0.24 1.84±0.02 2.29±0.02 7.22±0.11
PIGF+PF 2.63±0.04 6.61±0.24 1.84±0.03 2.28±0.02 7.14±0.11
VGG-Face 2.45±0.05 6.01±0.21 1.87±0.03 2.10±0.03 5.73±0.11
LightCNN 2.42±0.10 5.81±0.16 1.78±0.02 2.16±0.02 5.84±0.10
Centerloss 2.50±0.04 6.23±0.28 1.84±0.03 2.12±0.04 6.37±0.12
ArcFace 2.40±0.03 6.24±0.28 1.85±0.03 2.01±0.03 5.65±0.08

Black female

All Underweight Normal Overweight Obese

PIGF 3.77±0.08 6.25±0.16 2.26±0.05 2.95±0.09 8.38±0.19
PF 3.76±0.08 6.53±0.15 2.35±0.05 2.43±0.09 8.33±0.19
PIGF+PF 3.68±0.07 6.37±0.14 2.39±0.06 2.60±0.08 8.11±0.15
VGG-Face 3.48±0.04 5.21±0.14 2.25±0.05 2.61±0.08 7.25±0.16
LightCNN 3.55±0.05 5.40±0.17 2.38±0.05 2.53±0.05 7.82±0.23
Centerloss 3.63±0.06 5.41±0.16 2.42±0.06 2.71±0.10 7.94±0.16
ArcFace 3.51±0.07 5.12±0.13 2.43±0.05 2.57±0.07 7.26±0.17

White male

All Underweight Normal Overweight Obese

PIGF 2.67±0.03 5.73±0.36 1.94±0.03 2.35±0.06 7.30±0.15
PF 2.57±0.03 5.85±0.43 1.86±0.03 2.28±0.04 7.17±0.15
PIGF+PF 2.49±0.03 5.69±0.37 1.84±0.03 2.22±0.05 7.15±0.17
VGG-Face 2.30±0.03 4.83±0.31 1.82±0.03 2.08±0.04 5.35±0.21
LightCNN 2.35±0.04 4.73±0.25 1.82±0.04 1.98±0.03 6.15±0.15
Centerloss 2.41±0.03 5.21±0.47 1.87±0.07 2.09±0.05 6.03±0.25
ArcFace 2.32±0.02 5.45±0.30 1.77±0.03 1.96±0.04 6.27±0.18

White female

All Underweight Normal Overweight Obese

PIGF 2.96±0.04 4.27±0.21 1.73±0.03 4.74±0.09 8.82±0.38
PF 3.13±0.07 4.68±0.18 1.88±0.03 4.41±0.10 8.88±0.38
PIGF+PF 3.01±0.05 4.42±0.17 1.78±0.04 4.35±0.09 8.80±0.41
VGG-Face 2.96±0.06 4.11±0.15 1.77±0.08 3.99±0.09 8.72±0.32
LightCNN 2.87±0.07 4.08±0.17 1.72±0.05 3.89±0.07 7.80±0.61
Centerloss 2.94±0.09 4.22±0.22 1.79±0.07 3.89±0.15 8.94±0.52
ArcFace 2.90±0.05 4.02±0.16 1.76±0.03 3.42±0.10 8.63±0.36
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Table 4.6: 95% confidence interval of BMI category prediction accuracy (%) for the seven

facial representations on FIW-BMI.

Male

All Underweight Normal Overweight Obese

PIGF 72.1±0.6 3.8±2.1 45.8±1.0 79.0±0.7 80.6±0.7
PF 73.9±0.6 4.0±2.7 46.0±1.3 76.7±0.8 81.7±0.7
PIGF+PF 74.1±0.5 4.1±2.5 46.2±1.1 78.5±0.7 82.3±0.6
VGG-face 78.0±0.6 15.5±5.8 62.5±1.3 79.8±1.2 85.5±0.8
LightCNN 76.3±0.5 3.3±2.2 60.0±2.6 74.3±0.8 86.7±0.5
Centerloss 75.4±0.5 4.1±3.0 60.3±1.6 72.9±1.0 85.8±0.6
ArcFace 79.1±0.3 5.7±2.7 62.4±0.9 77.5±0.9 90.3±0.6

Female

All Underweight Normal Overweight Obese

PIGF 68.6±0.7 3.5±2.1 18.0±1.5 78.9±1.0 82.5±1.2
PF 69.4±0.7 3.0±1.9 29.8±1.1 70.1±4.4 83.2±1.0
PIGF+PF 70.1±0.6 3.2±1.8 28.8±1.3 75.4±2.3 83.5±1.1
VGG-face 74.5±0.7 4.9±1.9 35.9±2.3 73.5±1.6 89.9±0.8
LightCNN 71.9±0.6 4.5±2.0 36.8±1.6 68.2±1.3 87.8±0.7
Centerloss 73.3±1.3 4.7±2.1 33.1±3.7 73.8±1.7 88.2±0.8
ArcFace 75.7±0.8 5.2±2.3 39.5±1.8 72.0±1.2 91.4±1.0

• If the p-value is smaller than the significance level α, it can reject the null hypothesis;

• If the p-value is larger than the significance level α, it fails to reject the null

hypothesis.

Here the significance level α is set to 0.01. The p-value is computed from the MAEs of

the two features obtained from the repeated (30 times) experiments on each group of

the two databases. According to the calculation, the range of p-value is from 2.7e-3 to

1.3e-06. This result reveals the significant differences between the fused geometric feature

(PIGF+PF) and the individual feature (PIGF, PF).

Performance on the four BMI categories: All seven representations have different

performances in the four categories. As shown in Tables 4.4, 4.5, 4.8 and 4.9, the MAEs

and MAPEs are higher for underweight category on FIW-BMI dataset; MAEs and

MAPEs are high for underweight and obese categories on selected Morph II dataset.

This is caused by the BMI distributions of the datasets. From Figs. 4.4 and 4.6, it can

be seen that most images in the FIW-BMI database are in the categories of overweight

and obese, while most images in Morph II are in the normal and overweight categories.

The performance of the facial representations is influenced by the number of training



Min Jiang Chapter 4. On Visual BMI Analysis from Facial Images 71

Table 4.7: 95% of BMI category prediction accuracy (%) confidence interval for the seven

facial representations on Morph II.

Black male

All Underweight Normal Overweight Obese

PIGF 71.7±0.7 4.0±0.3 94.7±0.2 51.0±0.9 19.5±0.9
PF 73.0±0.6 3.8±0.3 94.5±0.3 55.2±1.0 24.7±1.2
PIGF+PF 73.0±0.6 3.7±0.5 94.7±0.2 55.9±1.0 21.8±1.2
VGG-Face 73.5±0.3 14.1±2.5 89.0±0.7 57.1±2.1 35.4±1.7
LightCNN 77.1±0.2 17.3±3.5 90.7±0.2 62.7±0.3 48.3±1.1
Centerloss 75.6±0.4 16.9±4.1 93.1±0.6 61.7±1.9 33.5±1.7
ArcFace 78.4±0.4 18.7±3.5 93.0±0.7 66.4±1.6 47.3±1.3

Black female

All Underweight Normal Overweight Obese

PIGF 65.0±1.0 2.5±0.8 93.9±0.6 48.5±1.9 29.3±3.1
PF 67.7±1.2 0.6±0.5 91.4±1.0 58.5±1.9 33.2±2.5
PIGF+PF 67.9±1.1 0.9±0.3 92.4±1.3 59.7±1.0 31.2±2.6
VGG-Face 65.9±1.0 10.1±1.7 87.1±1.4 60.7±1.3 30.0±2.3
LightCNN 70.3±0.8 14.2±5.5 88.9±0.7 64.6±2.0 48.7±2.1
Centerloss 66.4±1.2 9.3±1.6 89.1±1.1 59.4±1.7 30.7±3.6
ArcFace 69.2±1.0 7.0±1.2 88.2±1.0 64.7±1.1 45.0±3.2

White male

All Underweight Normal Overweight Obese

PIGF 71.9±1.0 5.5±1.1 95.9±0.4 53.2±1.9 4.6±0.6
PF 72.5±0.9 4.5±0.9 95.7±0.3 54.4±1.6 7.7±1.4
PIGF+PF 74.5±1.0 4.7±1.0 91.7±0.4 61.5±2.0 28.9±1.5
VGG-Face 75.2±0.7 11.1±2.4 90.5±0.9 60.5±1.1 33.0±1.7
LightCNN 76.7±0.6 9.2±1.9 91.5±0.4 64.1±1.4 36.7±2.5
Centerloss 75.8±0.7 10.7±2.5 91.6±0.9 62.8±1.0 30.6±2.6
ArcFace 75.8±0.5 14.5±3.7 94.0±1.5 63.8±1.1 17.8±3.7

White female

All Underweight Normal Overweight Obese

PIGF 70.2±1.0 5.5±1.0 99.1±0.5 19.2±2.2 25.3±3.9
PF 70.6±1.2 13.9±3.6 99.6±0.2 22.5±1.9 24.7±1.4
PIGF+PF 69.1±1.1 9.5±1.5 99.7±0.2 14.1±3.4 15.1±4.9
VGG-Face 73.2±0.8 30.4±1.9 98.7±0.2 27.9±2.1 15.9±3.1
LightCNN 72.9±0.6 27.4±2.5 97.6±0.2 30.2±2.3 26.5±3.6
Centerloss 70.1±1.0 17.0±1.8 99.4±0.2 27.8±2.7 19.4±2.7
ArcFace 70.6±0.7 17.5±1.4 98.7±0.3 34.5±1.5 14.6±2.6
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Table 4.8: 95% confidence interval of MAPEs (%) for the seven facial representations for

BMI prediction on FIW-BMI.

Male

All Underweight Normal Overweight Obese

PIGF 13.7±0.3 31.6±0.7 14.0±0.3 8.7±0.2 17.5±0.5
PF 13.4±0.3 33.0±1.0 13.9±0.4 8.9±0.2 16.7±0.4
PIGF+PF 13.3±0.3 32.1±0.8 14.1±0.3 8.8±0.2 16.2±0.4
VGG-face 11.4±0.2 23.9±1.5 12.0±0.3 8.5±0.1 13.0±0.3
LightCNN 11.6±0.2 24.2±1.2 11.9±0.3 8.5±0.2 13.5±0.2
Centerloss 11.9±0.1 30.0±1.0 12.3±0.2 9.1±0.2 13.7±0.3
ArcFace 11.0±0.2 24.0±0.7 11.8±0.1 9.1±0.1 12.3±0.3

Female

All Underweight Normal Overweight Obese

PIGF 15.5±0.3 38.3±2.7 19.4±0.2 8.7±0.1 17.6±0.5
PF 15.0±0.5 34.4±2.3 18.8±0.3 9.5±0.2 16.3±0.6
PIGF+PF 14.9±0.3 36.7±2.5 18.2±0.2 8.8±0.1 16.3±0.5
VGG-face 12.3±0.2 35.5±3.5 17.1±0.4 9.0±0.2 12.5±0.3
LightCNN 12.7±0.1 34.8±2.7 16.2±0.3 9.1±0.2 13.4±0.3
Centerloss 12.6±0.3 35.6±1.9 17.5±0.7 8.8±0.3 12.7±0.4
ArcFace 12.0±0.2 35.9±2.2 16.7±0.3 9.3±0.2 11.8±0.4

images. Less training images in the specific category leads to worse performance for the

corresponding category.

Performance on the two databases: Comparing to Morph II, all facial representations

show less robustness on FIW-BMI database. This is caused by the wild data collection of

FIW-BMI. Slight head pose changes exist on this database, and the BMI values distribute

in a larger range on FIW-BMI (20-55) than the Morph II (15-35). To further analyze

the performances of these facial representations on the two databases, we do another

experiment that uses Morph II for training and FIW-BMI for testing, and vice versa.

The experimental results are given in Tables 4.10 and 4.11. Comparing with the results

in Tables 4.4 and 4.5, one can see that the performances of all seven facial representations

drop significantly. This may be caused by the quite different BMI distributions of the

two databases and the different “domains” of the images (Morph II has mugshot face

images, while FIW-BMI is with daily life face images).

4.4.4 Redundancy in facial representations

According to the overall performance of these facial representations on BMI estimation,

it is shown that the deep representations perform better on a large dataset. Since the
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Table 4.9: 95% confidence interval of MAPEs (%) for the seven facial representations for

BMI prediction on Morph II.

Black male

All Underweight Normal Overweight Obese

PIGF 10.9±0.2 27.9±0.9 7.5±0.1 9.7±0.1 28.5±0.4
PF 10.7±0.1 28.2±0.9 7.4±0.1 9.4±0.1 27.7±0.4
PIGF+PF 10.7±0.1 27.9±0.9 7.5±0.1 9.3±0.1 27.7±0.4
VGG-Face 9.5±0.1 25.9±0.8 7.8±0.1 8.7±0.3 21.3±0.4
LightCNN 9.3±0.1 24.7±0.6 7.0±0.1 8.3±0.1 20.9±0.2
Centerloss 10.0±0.1 26.4±1.0 7.5±0.1 8.7±0.2 23.7±0.5
ArcFace 9.1±0.1 25.5±1.1 7.4±0.1 8.1±0.1 20.2±0.3

Black female

All Underweight Normal Overweight Obese

PIGF 15.3±0.3 26.2±0.6 9.3±0.2 12.6±0.4 32.4±1.0
PF 15.1±0.3 26.0±0.5 9.6±0.2 11.8±0.4 31.7±0.9
PIGF+PF 15.1±0.2 26.1±0.5 9.0±.2 12.0±0.3 33.5±0.9
VGG-Face 12.4±0.2 21.9±0.5 9.2±0.1 9.7±0.4 24.3±0.6
LightCNN 12.9±0.2 21.1±0.7 9.5±0.2 9.8±0.3 24.5±0.8
Centerloss 14.5±0.2 23.0±0.6 10.0±0.2 11.2±0.3 29.8±0.7
ArcFace 12.8±0.3 22.1±0.5 10.0±0.2 10.5±0.3 24.3±0.7

White male

All Underweight Normal Overweight Obese

PIGF 10.5±0.1 24.6±1.5 7.6±0.1 9.5±0.2 28.5±0.6
PF 10.5±0.1 24.9±1.6 7.7±0.3 9.5±0.2 28.1±0.7
PIGF+PF 10.1±0.1 24.7±1.3 7.3±0.3 9.6±0.2 28.0±0.5
VGG-Face 8.6±0.1 22.1±1.1 7.0±0.2 7.5±0.1 19.3±0.7
LightCNN 8.5±0.1 20.3±0.9 6.8±0.2 7.7±0.1 18.9±0.6
Centerloss 9.7±0.1 24.1±1.8 7.7±0.2 8.5±0.2 22.6±1.0
ArcFace 9.6±0.1 24.0±1.2 7.7±0.1 8.4±0.1 23.0±0.6

White female

All Underweight Normal Overweight Obese

PIGF 13.8±0.2 19.6±0.8 7.9±0.1 22.0±0.4 36.8±1.9
PF 10.5±0.1 24.9±1.6 7.7±0.1 12.5±0.2 28.1±0.7
PIGF+PF 11.9±0.2 22.5±1.1 7.7±0.1 16.5±0.3 32.1±1.1
VGG-Face 13.9±0.5 17.3±0.9 8.7±0.2 19.9±0.5 37.1±2.3
LightCNN 11.3±0.3 16.6±0.6 7.4±0.2 13.6±0.3 28.7±3.1
Centerloss 13.4±0.4 19.2±0.8 8.7±0.2 17.4±0.7 36.0±2.6
ArcFace 12.8±0.2 18.7±0.6 8.2±0.1 15.3±0.1 34.4±1.8
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Table 4.10: Performance of the seven facial representations where using Morph II for

training and FIW-BMI for testing.

Male Female

MAE Accuracy (%) MAPE(%) MAE Accuracy(%) MAPE(%)

PIGF 5.41 53.5 20.6 6.73 39.4 25.2

PF 5.35 54.3 21.9 6.86 40.7 26.8

PIGF+PF 5.30 54.2 21.2 6.88 40.9 26.9

VGG-Face 4.32 64.5 15.3 5.79 51.9 20.5

LightCNN 4.45 63.2 15.6 5.91 51.3 20.6

Centerloss 4.61 60.8 16.5 6.22 49.5 22.6

ArcFace 4.21 64.1 15.1 5.73 52.2 20.1

Table 4.11: Performance of the seven facial representations where using FIW-BMI for

training and Morph II for testing.

Black male Black female

MAE Accuracy(%) MAPE(%) MAE Accuracy(%) MAPE(%)

PIGF 4.82 50.1 15.3 5.80 44.7 18.4

PF 4.95 46.7 16.7 5.95 42.6 20.0

PIGF+PF 4.72 48.5 16.1 5.86 43.6 19.8

VGG-Face 4.00 56.4 14.1 5.52 44.5 18.8

LightCNN 3.59 63.5 12.8 5.52 44.0 18.7

Centerloss 3.92 59.8 13.8 6.08 40.5 20.2

ArcFace 3.59 62.7 13.2 4.90 53.0 17.4

White male White female

MAE Accuracy(%) MAPE(%) MAE Accuracy(%) MAPE(%)

PIGF 5.58 40.2 18.3 6.43 37.7 22.4

PF 5.82 36.8 19.0 6.58 37.0 24.5

PIGF+PF 5.78 37.2 18.9 6.40 38.6 23.9

VGG-Face 3.69 63.6 13.1 5.00 46.7 18.3

LightCNN 3.51 64.9 12.5 4.99 49.1 18.0

Centerloss 4.08 60.0 14.1 5.23 48.5 18.5

ArcFace 3.32 67.4 11.1 5.03 48.6 18.1
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Figure 4.7: BMI estimation error (measured by MAEs) of applying PCA to facial

representations by different percentages of explained variance on FIW-BMI database. (a)

is the results of the male group, and (b) is the female group.

Table 4.12: Performance (MAEs) of applying PCA to the five facial representations for

BMI prediction. A downward arrow (↓) denotes the MAE decreases, comparing with the

method without PCA. And an upward arrow (↑) denotes the MAE increases.

Method
FIW-BMI Morph II

Male Female Black male Black female White male White female

PF + PCA 3.82 ↑ 4.14 ↑ 2.67 ↑ 3.75 ↑ 2.73 ↑ 3.14 ↑
VGGFace + PCA 3.15 ↓ 3.57 ↓ 2.41 ↓ 3.56 ↓ 2.41 ↓ 2.91 ↓
LightCNN + PCA 3.41 ↑ 3.86 ↑ 2.45 ↑ 3.71 ↑ 2.49 ↑ 3.08 ↑
Centerloss + PCA 3.31 ↓ 3.77 ↑ 2.50 ↑ 3.73 ↑ 2.50 ↑ 2.86 ↓
ArcFace + PCA 3.19 ↑ 3.62 ↑ 2.38 ↑ 3.51 ↑ 2.57 ↑ 2.94 ↓

number of training samples is limited, we try to eliminate the negative influence caused by

the small number of training samples. Thereby it is essential to analyze the redundancy

in facial representations and explore efficient methods to improve their performance.

One of the problems with high-dimensional features is that, in many cases, not all the

measured features are relevant or important for understanding the underlying phenomena

of interest. It is, therefore, interesting to analyze the redundancy in the representations.

To figure out the issue, we first apply dimension reduction to the five facial representations

(VGG-Face, LightCNN, Centerloss, Arcface and PF), then evaluate the performance of

the reduced dimensions. As one of the typical dimension reduction methods, Principal

Component Analysis (PCA) is selected. Note that the PCA projection is only learned
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Figure 4.8: BMI estimation error (measured by MAEs) of applying PCA to facial

representations by different percentages of explained variance on Morph II. Each sub-

figure shows the result of the different gender-ethnicity group: (a) black male, (b) black

female, (c) white male, and (d) white female.

with the training set. The dimensions of the four analyzed facial representations are as

follows: PF is 128-dimension, VGG-Face is 4096-dimension, LightCNN is 256-dimension,

Centerloss is 1024-dimension and Arcface is 512-dimension. Because the dimension of

PIGF is seven and each dimension has its physical meaning (as mentioned in Section

4.2), PIGF and PIGF+PF are not involved in this investigation.

The percentage of explained variance is an index of the goodness of fit when applying

PCA. It can be easily computed as the eigenvalues of corresponding components divided

by the total variance. Here the total variance is the sum of all eigenvalues. Because the

percentage of explained variance is a key factor to influence the performance of dimension

reduced representations, different percentages (99%, 98%, 95%, 90%, 85%, 80%, and
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Table 4.13: The number of kept dimensions corresponding to different percentages of

explained variance on FIW-BMI database.

Male Female

PF VGG LightCNN Centerloss ArcFace PF VGG LightCNN Centerloss ArcFace

99 % 19 1763 124 203 228 18 1326 121 199 218

98 % 15 1458 101 178 215 14 1101 99 174 203

95 % 10 988 67 138 189 10 755 67 130 174

90 % 7 616 50 104 160 7 479 47 94 145

85 % 6 414 41 85 138 6 325 38 74 124

80 % 5 285 34 71 121 5 224 32 61 107

75 % 4 196 29 60 106 4 153 27 51 93

Table 4.14: The number of kept dimensions corresponding to different percentages of

explained variance on Morph II.

Black male Black female

PF VGG LightCNN Centerloss ArcFace PF VGG LightCNN Centerloss ArcFace

99 % 18 1675 118 177 216 16 1140 115 181 208

98 % 14 1352 93 144 199 13 905 90 154 188

95 % 9 825 59 97 167 9 568 58 112 153

90 % 6 441 41 66 135 6 325 40 78 119

85 % 5 265 32 50 114 5 204 31 59 98

80 % 4 166 26 41 97 4 131 25 46 82

75 % 3 104 22 34 84 4 84 20 38 69

White male White female

PF VGG LightCNN Centerloss ArcFace PF VGG LightCNN Centerloss ArcFace

99 % 18 1625 115 184 226 18 1076 115 191 213

98 % 13 1311 91 158 213 14 885 91 167 196

95 % 9 845 59 120 186 8 591 60 127 165

90 % 6 502 44 91 156 6 363 44 94 134

85 % 5 328 36 74 134 5 242 35 74 112

80 % 4 222 30 61 116 4 166 30 61 95

75 % 3 151 26 52 101 4 114 25 51 82
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75%) of explained variance for PCA are analyzed.

This experiment is conducted on FIW-BMI and selected Morph II dataset, respectively.

And the details about the training and test sets are given in Tables 4.2 and 4.3. Table

4.12 presents the MAEs of applying PCA to the five facial representations for BMI

estimation. Here the reported MAE is the best performance of each representation

among the different percentages of explained variance. Comparing the MAEs of facial

representations without applying PCA as given in Table 4.4 and 4.5, we mark each MAE

with a sign indicating the positive or negative effect of applying PCA to the representation.

More specifically, a downward arrow (↓) denotes the MAE decreases (positive effect),

and an upward arrow (↑) denotes the MAE increases (negative effect). It can be seen

that VGG-Face+PCA performs better than VGG-Face in all groups on both databases.

Centerloss+PCA achieves lower MAEs than Centerloss in the male group (BMI analysis

database) and the white female group (Morph II). Arcface+PCA achieves lower MAE

only in the white female group (Morph II). While applying PCA to LightCNN and PF

representations does not bring any positive effect. Such different changes observed in

the five facial representations caused by the different feature redundancy. Thereby, it is

concluded that removing the redundancy in VGG-Face representation can increase the

accuracy and efficiency in BMI estimation.

More details about BMI estimation performance (MAEs) obtained by applying

different percentages of explained variance are shown in Fig. 4.7 (FIW-BMI database)

and Fig. 4.8 (Morph II). The horizontal axis denotes the percentages of explained variance.

We conduct the experiment by seven different percentages: 99%, 98%, 95%, 90%, 85%,

80% and 75%, respectively. Here 100% denotes the facial representation without applying

PCA. It can be seen that the curve denoted VGG-Face+PCA drops obviously after a

short rise, while most of the other curves are in a gradual uptrend. The best performance

of VGG-Face is obtained at 80%−85% of the explained variance. Tables 4.13 and 4.14

report the kept dimensions of the five facial representations after applying PCA based on

different percentages of explained variance on the two databases, respectively.

4.4.5 Sensitivity to head pose variations

The performance of face recognition is related to head pose changes. However, the

influence of head pose on visual BMI estimation has not been studied yet. BMI estimation

influenced by various head poses is conducted on the FIW-BMI dataset. As mentioned in

Section 4.3.1, head pose variations exist in this database. To benchmark the robustness
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Figure 4.9: The sensitivity of facial representations to invariant head pose. (a) shows the

performance on the male group, and (b) shows the performance on the female group.

of the seven facial representations against pose variations, we group the face images by

head pose angles.

Face pose distortion based sample pose (SP ) index proposed by Marsico et al. [113] is

utilized for measuring the head pose angles. SP index is given by the linear combination of

three components, which are inversely proportional to roll, yaw, and pitch, respectively:

SP = α(1− roll) + β(1− yaw) + γ(1− pitch), (4.3)

with α = 0.1, β = 0.6 and γ = 0.3. See details about the calculation for roll, yaw, and

pitch in [113], whose ranges are from 0 to 1, where 0 means almost no distortion and 1

means the worst distortion. Thereby, large SP represents small head pose and vice versa.

This experiment is conducted on FIW-BMI database. The dataset is divided as shown

in Table 4.2. The number of images of the test set for each range of SP values is given in

Table 4.15. The obtained MAEs of the seven facial representations for BMI estimation

with various head poses on FIW-BMI database are shown in Fig. 4.9. The values of SP

index are divided into four intervals: SP >= 0.9, 0.9 > SP >= 0.8, 0.8 > SP >= 0.7

and SP < 0.7. It can be seen that when the SP decreases (head pose increases), the

MAEs of the seven facial representation all increase, except the VGG-Face and Arcface
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Table 4.15: The number of images for each range of SP values in the test set of FIW-BMI

database.

Male Female

SP >= 0.9 464 307

0.9 > SP >= 0.8 468 57

0.8 > SP >= 0.7 109 202

SP < 0.7 20 3

representations on the male group in the interval 0.8 > SP >= 0.7. This experimental

result demonstrates that large head pose changes lead to low performance for both

geometric based and deep learning based representations. Thus the visual BMI estimation

can be further improved by employing efficient pose normalization approaches.

It is interesting to observe that the VGG-Face and Arcface perform better on the

range from 0.7 to 0.8 than on higher SP ranges in the male group. While such a

phenomenon does not exist in the performance of the other two deep features (Centerloss

and LightCNN). This may be caused by the different architectures of the four deep models

and the different properties of the training sets. The VGG-Face and Arcface were trained

on larger datasets that contain more pose conditions. In addition, the VGG-Face and

Arcface have more sophisticated architectures which may lead to richer representations.

Among the seven facial representations, the Arcface, VGG-Face and PIGF show

greater robustness than other representations w.r.t head pose variations, since the MAEs

increase much less than the others. LightCNN, PF and PIGF+PF show lower robustness

to head pose variations, since their performances drop significantly with the decrease of

SP value, especially when the SP values are smaller than 0.7.

4.4.6 Discussion

We discuss the two influence factors on the performance of facial representations. One

is the BMI distribution on the dataset. Another is the accuracy of landmark detection.

Influence of BMI distribution on the estimation: As shown in Figs. 4.4 and 4.6, there

is unbalanced BMI distribution over the two datasets. Very few samples distribute on

the underweight category (BMI≤18.5), while most samples distribute on the normal

and overweight categories. This phenomenon also exists in real life. Most people are

in normal and overweight ranges. To analyze the influence of unbalanced data on the

estimated BMIs, we conduct an experiment on a balanced dataset. 5556 images were
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Figure 4.10: The BMI distribution of the balanced dataset.

Table 4.16: MAE of estimated BMIs on the balanced dataset of selected Morph II.

Black male Black female White male White female

PIGF 3.91 4.87 3.53 3.92

PF 3.87 4.81 3.47 4.03

PIGF+PF 3.85 4.75 3.47 3.95

VGG-Face 3.43 4.22 2.90 3.54

LightCNN 3.50 4.38 3.43 3.99

Centerloss 3.43 4.46 2.91 3.43

Arcface 3.44 4.13 2.93 3.51

selected from the Morph II database. Among the selected images, 893 are underweight,

1788 are normal, 1505 are overweight and 1370 are obese. Fig. 4.10 shows the BMI

distribution over the selected dataset. Comparing with the BMI distribution in Fig. 4.6,

Fig. 4.10 shows a relatively balanced distribution (with a relatively higher portion for

underweight and obese). Then the images are randomly split into training and test sets.

The training set contains 4319 images, and the test set contains 1237 images. There is

non-overlap of individuals between the training and test sets. Considering the size of

the training set is small, we use mixed training without separating the four gender and

ethnicity groups. The experimental results on this balanced dataset are given in Table

4.16. Comparing with the results shown in Table 4.5, the performance on the balanced

test set becomes worse. The experimental results indicate that the performance of BMI

estimation depends on the prior distribution of the training set and the specific properties

of the test set.

Influence on accuracy by landmark detection: The three geometric facial representa-

tions are computed from the detected landmarks. Though the recently proposed facial

landmark detection methods [111,114] achieve quite a high accuracy with good resists
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Table 4.17: MAE of estimated BMIs from 119 landmarks and 68 landmarks.

Black male Black female White male White female

119 landmarks 2.85 3.97 2.82 3.15

68 landmarks 2.63 3.65 2.68 3.12
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Figure 4.11: Influence of accuracy of landmark detection to geometric facial representa-

tions.

for low resolution, blur and noisy images, an evaluation of the influence on the accuracy

of BMI analysis is still necessary. To report a fair evaluation, we generate three sets

of data. First, we randomly select 100 images from the Morph II dataset (there is no

head pose variations in this dataset), and manually label all the needed landmarks (68

landmarks) for each image. These manually labeled landmarks are used as the ground

truth. Then we apply an automatic landmark detection by Openface toolkit [111] to the

selected 100 images, with 68 landmarks detected for each image. Finally, we generated

noisy landmarks by adding white Gaussian noise to the ground truth landmarks with

the mean set to 3 pixels, variance set to 2 pixels. The BMIs are estimated from these

three sets of data by the three geometric representations. The experimental results are

presented in Fig. 4.11. One can see that the difference between the MAEs from manually

labeled landmarks and the automatically detected are very small. While the performance

degrades significantly on the noisy set. Among the three representations, PIGF shows

relatively more robust to inaccurate and noisy landmarks. These results justify that the

accuracy of landmark detection methods has the limited influence on geometric facial

representations.

Finally, we study another interesting problem. Whether more landmarks could

bring an improvement to BMI estimation? The performance of the PF feature with 119

landmarks [44] is analyzed on Morph II dataset, and compared with 68 landmarks. Fig.

4.12 shows an example of the detected 119 landmarks on a face image. The extended

landmarks are around the neck, ears, forehead and around the vertex to the ears. The
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Figure 4.12: An example of the detected 119 landmarks on a face image.

training and test sets are the same as shown in Table 4.3. Table 4.17 shows a comparison

of the performance between 119 landmarks and 68 landmarks. As it can be observed,

PF with 68 landmarks providing more promising results than 119 landmarks on each set.

This reveals that the facial points around the neck, ears, forehead and the vertex to the

ears are not as important as those around the face for estimating BMI values.

4.5 Summary

This chapter studies the visual BMI estimation problem systematically based on

facial representation or feature extraction. According to the inherent properties of

representations, they are grouped into two types: geometric based and deep learning

based. In addition to the two existing approaches (VGG-Face and PIGF), five other

facial approaches: PF, PIGF+PF, LightCNN, Centerloss and Arcface are explored for

the first time for BMI analysis. The performance and characteristics of the two types

of facial representations have been comprehensively evaluated and analyzed from three

perspectives: the overall performance on visual BMI prediction, the redundancy in

representations and the sensitivity to head pose changes. The experiments are conducted

on two databases: FIW-BMI and Morph II, exploring the capability of these approaches,

which are summarized below.

Experimentally we have found that the geometric representations are more suitable for

the small dataset while the deep representations could perform better on large datasets

with a much higher computation time cost. Among the seven representations, the

VGG-Face and Arcface perform better than the others in most cases. For geometric

features, more advantages can be achieved by the fused representation, PIGF+PF. The

performance of the representations could be influenced by the training images and the

BMI distribution.
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Considering the limited number of training samples and high dimensions of some facial

representations, we explored the efficient methods to improve the performance. We have

analyzed the redundancy of the five facial representations (VGG-Face, LightCNN, Center-

loss, Arcface and PF) by investigating the effect of applying PCA to the representations.

Experimental results have shown that applying PCA to VGG-Face representation leads

to better performance on BMI prediction with 80%−85% explained variance. Removing

the redundancy in VGG-Face representation can increase the accuracy and efficiency in

BMI estimation.

The sensitivity of facial representations to head pose variations for BMI estimation has

been investigated as well. Experimental results have shown that large head pose changes

lead to low performance. Among the seven representations, The Arcface, VGG-Face and

PIGF show better robustness than the others to head pose variations. The performance

of LightCNN, PF and PIGF+PF drop significantly with the increase of head pose angles.
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Chapter 5

Visual BMI Estimation using

Label Distribution based Method

In this chapter, we investigate the problem of visual BMI estimation from facial images

by a two-stage learning framework. BMI related facial features are learned from the

first stage. Then a label distribution based BMI estimator is learned by an optimization

procedure that is implemented by projecting the features and assigned labels to a new

domain which maximizing the correlation between them. Two label assignment strategies

are analyzed for modeling the single BMI value as a discrete probability distribution

over the whole ranges of BMIs. Extensive experiments are conducted on FIW-BMI

and Morph II datasets. The experimental results show that the two-stage learning

framework improves the performance step by step. More importantly, the proposed

estimator efficiently reduces the estimated error and outperforms other regression and

label distribution methods.

The organization of this chapter is as the following. Section 5.1 describes the challenge

existing in BMI estimation from facial images. The details of the proposed method for

BMI estimation are presented in Section 5.2. Section 5.3 describes the two databases

used in this work: Morph II and FIW-BMI. Extensive experiments, detailed analysis and

discussion are reported in Section 5.4. Finally, the conclusion is summarized in Section

5.5.

5.1 Introduction

Recent research shows that facial adiposity is associated with perceived health and is

important for body mass index (BMI) prediction [23,53]. As a body fat indicator, BMI
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Figure 5.1: Samples from Morph II and FIW-BMI dataset with corresponding BMI

values.

is widely used in health monitoring and health research. There are close connections

between BMI and some diseases, such as cancers, unstable angina and type 2 diabetes

and cardiovascular disease (CVD), etc [9, 10,13]. Generally, BMI is measured in person

with special devices. Therefore, automatically estimating BMI from facial images is a

great benefit to health monitoring and researchers who are interested in studying obesity

in large populations.

BMI estimation from facial images is a challenging problem in computer vision

and pattern recognition. First, different from other human visual tasks, such as face

recognition [115,116], motion capture [117,118] which have sufficient data for training

and testing, it is difficult to collect a database covering images with all BMI values.

Second, the distribution of BMIs on the database is uneven. According to the BMI values,

there are mainly four BMI categories: underweight (BMI≤18.5), normal (18.5<BMI≤25),

overweight (25<BMI≤30), obese (BMI>30). Very few BMIs distribute on underweight

and severe obese categories. Therefore, it is hard to ensure each category have enough

associated images. Currently, the number of public databases for visual BMI study is

limited. This work uses two databases: Morph II [51] and FIW-BMI [66]. Finally, the

BMI label is an ambiguous label. e.g., one person looks like with BMI around 25 which

means that some neighbor values (24.5 or 25.5) can also be used to describe this person;
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and some people may look lower than their real BMI, while others may look higher than

their real BMI. Fig. 5.1 shows some facial images from Morph II and FIW-BMI dataset

with corresponding BMI values. We can see some samples with the same gender and the

adjacent BMI values but have different facial appearances.

Single label estimation assumes one image has one label. Regression based method

directly predicts the label from the images which ignores the label ambiguity existing

in images. In order to describe the label ambiguity associated with the images, a label

distribution scheme is proposed by Geng et al. [119] to describe such ambiguity. Later

on, several distribution learning based approaches have been proposed for age estimation

and other tasks. These methods utilized label correlation or entropy model to solve

the problem. [119] proposed two label distribution based algorithms named IIS-LLD

and CPNN. Comparing with other single label methods, their methods showed good

performances. A multivariate label distribution (MLD) based method was also proposed

by Geng et al. [120] for further improving the performance on head pose estimation. In

addition, Xing et al. [121] used Logistic Boosting Regression (LogitBoost) to learn a

general label distribution model family which can avoid the potential influence of the

specific model.

Some work explored regression based methods for visual BMI estimation. Wen and

Guo [47] proposed a computational method for automatically predicting BMI from 2D

face images. This is the first work on visual BMI estimation from facial images. Kocabey

et al. [61] employed the pre-trained VGG-Face model [62] to extract facial representation

for BMI estimation. Then a support vector regression model is learned to map the facial

representation to predicted BMIs. The above two works treated BMI prediction as a

regression problem. The performance of such methods may be influenced by outliers.

Recently, convolution neural networks (CNN) have shown promising performance in many

applications [55,59,122]. A recent work using CNN for BMI estimation is proposed by

Dantcheva wt al. [63], where estimating height, weight, and BMI from single-shot facial

images by a regression method based on the 50-layers ResNet-architecture.

Different from the above work, this work addresses the visual BMI estimation problem

by a label distribution based method. Particularly, a two-stage learning framework is

shown in Fig. 5.2. First, the BMI related facial representation is learned by fine-tuning

the pre-trained deep face model. This step is expected to obtain sufficient visual BMI

characteristics and reinforce the learning process using the limited number of BMI data.

More importantly, the label distribution method models the single BMI value as a discrete
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BMI

Figure 5.2: The pipeline of two-stage learning framework: BMI related feature learning

and the BMI estimator learning.

probability distribution over the whole ranges of BMIs. Given the extracted facial features

from the first stage, a BMI estimator is trained by an optimization procedure which is

applied to the features and the assigned distribution labels. The main contributions of

this work include:

1. A two-stage learning framework is presented to address the visual BMI estimation

problem from face images.

2. A label distribution based learning method which regards each BMI label as a

discrete probability distribution is proposed to learn the BMI estimator.

3. Two distribution strategies are analyzed to model BMI labels. The output can

either be a discrete probability distribution or a single value.

5.2 Method

Fig. 5.2 depicts the two-stage learning framework, which contains BMI related facial

features learning and BMI estimator learning. The BMI related face model is learned

based on a pre-trained deep face model. Then two different strategies are analyzed for

assigning the distributed BMI labels. And a projection optimization is obtained by

maximizing the correlation between the facial features and the assigned labels. Finally,
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the BMI estimator is learned from the projected features and assigned labels. Below the

detailed procedure and derivation are presented.

5.2.1 Deep model for BMI related facial feature

1) Face model: Representing face structure using a pre-trained face model. We utilize

the feature extracted from publicly released Centerloss face model [107]. This network

improves the discriminative power of the learned features by using a new Centerloss

function to minimize the intra-class variations while keeping features of different classes

separable. This model performs impressively in face recognition tasks which achieved

face verification accuracy of 98.28% on LFW, 94.9% on YTF. fc5 layer of Center loss

model C is used to extract facial features.

2) Fine-tuning: Adapting from general facial structure model to BMI related face

model. Our goal is to estimate BMI values from face images. We tune the pre-trained

Centerloss face model to the BMI face model before feature extraction. FIW-BMI dataset

is used to fine-tuning the deep model. The aim of this step is to learn sufficient BMI

related facial structure. We replace the original softmax loss and centerloss functions in

Centerloss network with Euclidean loss function during the fine-tuning process. Euclidean

loss function E computes the sum of squares of differences between two inputs, which

can be written as:

E =
1

2N

N∑
i=1

‖ŷi − yi‖2 , (5.1)

where N is the number of samples, ŷi is the output from the network and yi is the true

BMI value. After the above steps, the fine-tuned face model is expected to have the

capability to capture more BMI related facial structures.

5.2.2 Modelling BMI values with label distribution

BMI value is labeled by a single real number. BMI estimation from facial images is

different from other traditional regression tasks because there is ambiguous information

among BMI labels. Based on this observation, given an image labeled with the BMI value

b, the BMI value is transformed to discrete probabilities distribution P = [p1, p2, ..., pk]
T ∈

Rk over the whole range of BMIs. Inside of the BMI range, every BMI value could be

a possible label to describe true BMI with different confidence. A similar definition is

proposed by [119].

We assume that the BMI range is from 15 to 60 in this work according to the BMI

distribution of the two databases. Two strategies are investigated for modeling the single
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Figure 5.3: Two strategies for BMI label distribution.

BMI value, namely normal distribution, and triangle distribution, which are shown in

Fig. 5.3.

Specifically, denoting the BMI value as b. For a normal distribution, the BMI labels

are modeled as a Gaussian distribution centered at b. It can be computed by:

p(zi) =
1

σ
√

2π
exp(−(zi − b)2

2σ2
), 15 ≤ z ≤ 60, (5.2)

where σ is the standard deviation of the Gaussian distribution, and Z = [z1, z2, ..., zk]
T ∈

Rk is a set of discrete values from 13 to 60 with interval of 0.1. For example, if the range

of BMI is from 15 to 60, then Z = [15, 15.2, ..., 59.8, 60]. Note that k can be adjusted

with different BMI ranges and intervals. Thereby, p(zi) denotes the probability that is

corresponding to the BMI value zi.

For a triangle distribution, the neighbor BMIs are considered with a length of ∆ on

each side of the BMI value, here Z = [z1, z2, ..., zk]
T ∈ Rk is a set of discrete values from

15 to 60 with interval of 0.1. The probability function p(zi) is defined as:

p(zi) =


∆−b+zi

∆2 , if b−∆ ≤ zi ≤ b
∆+b−zi

∆2 , if b ≤ zi ≤ b+ ∆

0, otherwise

(5.3)

A normalization process is applied to the assigned labels, which defined as: yi =
p(zi)∑k
i=1 p(zi)

. This leads to a discrete range of BMIs with different levels of “probabilities”.

5.2.3 Learning with assigned label

The BMI estimator is learned by a label optimization procedure based on the correla-

tion. The optimization procedure is implemented by projecting the features and assigned
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labels to a new domain which maximizes the correlation between them. Then the BMI

estimator is learned from the projected features and labels as the least square problem.

Given N training samples, denote xi =
[
x1
i , x

2
i , ..., x

d
i

]T ∈ Rd, yi =
[
y1
i , y

2
i , ..., y

k
i

]T ∈
Rk as the feature vector and assigned distribution label of i-th training sample, respectively.

Here d is the dimension of the feature vector xi, and k is the length of the assigned label

yi. We assume that both xi and yi are centered, i.e.,
∑N

i=1 xi = 0 and
∑N

i=1 yi = 0.

Denote X = [x1,x2, ...,xN] ∈ Rd×N , Y = [y1,y2, ...,yN] ∈ Rk×N , the main idea of

canonical correlation analysis (CCA) [123] is to project the two sets of variables into

latent variables (a new domain), such that the correlation ρ between them is maximized,

which can be written as:

ρ = max
wX,wY

wX
TCXYwY√

wX
TCXXwXwY

TCYYwY

, (5.4)

here wX and wY are projection vectors. Observe that the solution of Eqn. (5.4) is

invariant to re-scaling wX or wY either together or independently:

αwX
TCXYwY√

α2wX
TCXXwXwY

TCYYwY

=
wX

TCXYwY√
wX

TCXXwXwY
TCYYwY

. (5.5)

The solution of Eqn. (5.4) is only related to the direction of the two projection vectors

wX and wY. To obtain a unique solution, the constraints are added. Thereby the CCA

is equivalent to maximizing the numerator with the constraints:

max
wX,wY

wX
TXYTwY,

s.t.wX
TXXTwX = 1, wY

TYYTwY = 1.

(5.6)

The corresponding Lagrangian is:

L(λ,wX,wY) =wX
TCXYwY −

λX
2

(wX
TCXXwX − 1)

− λY
2

(wY
TCYYwY − 1).

Taking derivatives of wX and wY, respectively:

∂L

∂wX
= CXYwY − λXCXXwX = 0, (5.7)

∂L

∂wY
= CYXwX − λY CYYwY = 0. (5.8)

Then subtracting wY
T multiplies Eqn. (5.8) from wX

T multiplies Eqn. (5.7):

0 = wX
T (CXYwY − λXCXXwX)−wY

T (CYXwX − λY CYYwY)

= λY wY
TCYYwY − λXwX

TCXXwX.
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Taking into account the constraints wX
TXXTwX = 1 and wY

TYYTwY = 1, we can

obtain that λY − λX = 0. Let λ = λY = λX and assuming CYY is invertible, we can

obtain:

wY =
C−1
YYCYXwX

λ
. (5.9)

substituting Eqn. (5.9) into Eqn. (5.7):

CXYC
−1
YYCYXwX = λ2CXXwX. (5.10)

Now Eqn. (5.10) is a generalized eigenvalue problem of the form Ax = λBx. wX can be

obtained via solving the following generalized eigenvalue problem. To avoid the singularity

problem of YYT and XXT, we adopt regularized CCA to get wX by the following form:

CXY(CYY + ηyI)−1CYXwX = λ2(CXX + ηxI)wX. (5.11)

Let W = [w1,w2, ...,wq] denotes the matrix of top q eigenvectors of the generalized

eigenvalue problem. Here W is the projection vector which is used to project X into a

new domain, such that the correction ρ is maximized. For each original feature vector

x ∈ Rd, we obtain the new representation xCCA = WTx.

After obtaining the new representation of all N training samples xi
CCA = WTxi, we

can obtain the BMI distribution by solve the following least square problem:

min
B

N∑
i=1

∥∥xi
TWB− yi

T
∥∥ , (5.12)

where B ∈ Rq×k is a coefficient matrix, which can be shown that the solution to Eqn.

(5.12) is:

B =
(
XTW

)+
YT , (5.13)

where
(
XTW

)+
denotes the pseudoinverse of XTW. Given a test sample (feature) xt,

the corresponding estimated assigned label distribution can be obtained by:

ŷ = BTWTxt, (5.14)

here ŷ =
[
ŷ1, ŷ2, ..., ŷk

]
is a vector denotes the predicted probabilities distribution. ŷi is

a factor in vector ŷ which denotes the predicted probability belongs to the BMI label li.

Then the estimated BMI value b̂ is computed by:

b̂ =

k∑
i

ŷili. (5.15)

l =
[
l1, l2, ..., lk

]
is a set of discrete values from the whole range of BMIs (13− 60) with

the interval of 0.1.
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Table 5.1: Characteristic of FIW-BMI dataset. Mean and standard deviations pertained

to BMI for male and female.

Male Female

#Subjects 3192 1689

#Images 5197 2733

Mean 30.7 31.2

Std 7 6.9
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Figure 5.4: Distribution of BMI values on BMI-analysis face database. The BMI values

span a wide range with most of the values distribute between 20 to 50.

5.3 Dataset

We conduct extensive experiments on two databases. First, FIW-BMI dataset [66]

is used to fine-tune the deep face model. Then, Morph II database [51] is utilized to

evaluate the effectiveness of the proposed method.

Face in the wild for BMI analysis (FIW-BMI) dataset: It contains 7930 images from

4881 individuals, along with the corresponding gender, height and weight information.

Among these individuals, there are 3192 males and 1689 females. Each individual has 1

to 4 images. Details about the dataset are described in Table 5.1. It is separated into

two groups by gender. The same individual does not exist in both training and test

sets. Most images in this dataset are collected from a social network−Reddit posts 1.

Because this is a social network displaying people’s progress of weight loss, weight gain,

or essentially any type of body transformation, the BMI values of these images distribute

in a very wide range from 15 to 60 as shown in Fig. 5.4. Comparing with the distribution

of BMI values on Morph II database (as shown in Fig. 5.5), this database has a much

wider BMI distributed range. Thereby we select it to tune the deep face model.

Morph II database: It contains 55,608 passport-style frontal face images along with

1Website: http://www.reddit.com/r/progresspics

http://www.reddit.com/r/progresspics
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Table 5.2: Characteristic of selected data from Morph II. Mean and standard deviations

pertained to BMI for four gender and ethnicity groups.

Black male Black female White male White female

#Subjects 6497 1096 1565 535

#Images 19290 2824 4862 2057

Mean 25.0 25.2 24.6 22.8

Std 4.4 6.0 4.0 5.5

10 20 30 40 50 60
BMI

0

2000

4000

6000

8000

10000

N
u

m
b

er

Figure 5.5: Distribution of BMI values on Morph II. The BMI values mainly distribute

between 15 to 35.

age, gender and ethnicity information. Moreover, there are 40,330 images have height and

weight information. Considering the uneven distribution of the ethnicity in the database,

only images from Black and White are used for this work. There are 29033 images kept.

Details about the selected data are described in Table 5.2. The same individual does

not exist in both the training and test set. Most images from the same individual have

different BMI values. The BMI values of Morph II mainly distribute in the range of 15

to 35. Among these, 893 are underweight, 16,582 are normal, 8,237 are overweight and

3,321 are obese. In this work, this dataset is used for evaluating the methods.

5.4 Experiments

The performance metrics are introduced in this section. Then the experimental

setting and results are presented in detail.

5.4.1 Performance metrics

Two measure metrics are utilized for evaluating the performance of BMI estimators.

The first one is mean absolute error (MAE) which is motivated by that used in age
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Table 5.3: Performance of the five estimation methods on Morph II database based on

separated training in each of the gender and ethnicity groups.

Black male Black female White male White female

Feature Method MAE Accuracy MAE Accuracy MAE Accuracy MAE Accuracy

Face model

SVR 2.47 75.7% 3.67 66.8% 2.48 73.8% 2.89 74.4%

PCA-SVR 2.50 75.7% 3.73 66.8% 2.50 73.8% 2.86 73.5%

GPR 2.54 75.8% 3.73 66.3% 2.52 75.4% 3.09 75.1%

PLS 2.52 76.5% 4.76 54.1% 2.82 70.4% 4.64 51.8%

CCA 2.51 76.3% 4.42 56.1% 2.78 70.9% 4.05 60.7%

Fine-tuned

SVR 2.45 76.7% 3.40 68.6% 2.37 76.2% 2.78 75.8%

PCA-SVR 2.57 75.7% 3.56 67.8% 2.34 78.1% 3.47 69.0%

GPR 2.53 76.8% 3.62 68.3% 2.38 76.7% 2.79 78.1%

PLS 2.47 76.5% 4.54 56.2% 2.71 73.0% 4.27 58.4%

CCA 2.46 76.6% 4.36 55.7% 2.67 74.2% 3.84 62.9%

Table 5.4: BMI estimation results using label distribution based method on Morph II

database.

Black male Black female White male White female

Feature Method MAE Accuracy MAE Accuracy MAE Accuracy MAE Accuracy

Face model
LD-PLS 2.49 77.0% 3.49 66.0% 2.48 74.7% 2.96 71.5%

LD-CCA 2.42 76.5% 3.50 67.1% 2.38 77.1% 2.86 75.9%

Fine-tuned
LD-PLS 2.41 76.6% 3.69 59.4% 2.54 74.3% 2.98 72.0%

LD-CCA 2.35 77.0% 3.40 67.3% 2.25 75.6% 2.72 73.8%
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estimation, e.g., [103]. It is defined as the average of the absolute error between the

estimated BMIs and the ground truth BMIs: MAE = 1
N

∑N
j=1

∣∣∣b̂j − bj∣∣∣, here bj is the

ground truth BMI for image j, b̂j is the estimated BMI, N is the number of test images.

Another metric is the accuracy of the predicted category. According to the estimated BMI,

one can predict the image belong to which category (underweight, normal, overweight or

obese). The accuracy of the predicted category is the proportion of the total number of

predictions that are correct.

It should be noted that the two metrics have advantages and limitations. e.g. Given

an image with true BMI value is 24, the estimated value is 19. Though the absolute error

is 5, the predicted category (normal) is correct. While if the true BMI of an image is 30

and the estimated value is 30.5, though the absolute error is 0.5, the predicted category

(obese) is incorrect. Thereby we combine them together to evaluate the performance of

each method.

5.4.2 Experimental settings

1) Data preprocessing: Given the images, we first applied face detection and landmark

localization using Openface toolkit [111]. Then the images are aligned by the eye locations

and cropped with the size of a 96×112. In addition, two geometric facial BMI models-

PIGF and PF are utilized to further evaluate the effectiveness of the proposed method.

For these two geometric models, the face images are cropped with the size of 256× 256.

1) Implementation details for BMI related feature learning: The fine-tuning of Cen-

terloss network is implemented by the Caffe platform [112]. We fine-tune the network

parameters using face images with BMI labels in FIW-BMI dataset. In this fine-tuning

step, we used mini-batch stochastic gradient descent (SGD) with momentum settings.

The mini-batch size is set to 64 and momentum is set to 0.9. We initialize the learning

rate to 0.00001. The learning rate decreases in polynomial decay with a power of 0.1.

The training procedure stops after 20000 iterations. A feature vector of 512 dimensions

is extracted from layer fc5 in Centerloss. As mentioned in [107] which extracts the

features for each image and its horizontally flipped one, and concatenates them as the

representation with the size of 1024× 1.

2) Implementation details for evaluating different BMI estimators: After facial features

being extracted, five estimators are learned: Support Vector Regression (SVR) [48],

PCA-SVR, Gaussian Process Regression (GPR) [73], Canonical Correlation Analysis

(CCA) [123], and Partial Least Square analysis (PLS). Considering the dimension of
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Table 5.5: BMI estimation results using label distribution based method on Morph II

database by geometric features.

Black male Black female White male White male

Feature Method MAE Accuracy MAE Accuracy MAE Accuracy MAE Accuracy

PIGF
SVR 2.66 72.7% 3.73 65.8% 2.71 70.8% 2.96 70.7%

GPR 2.72 74.2% 3.74 66.5% 2.74 72.1% 2.99 70.7%

PLS 2.76 71.9% 3.81 67.1% 2.74 71.2% 3.15 74.5%

CCA 2.77 71.8% 3.77 67.1% 2.74 71.3% 3.14 74.5%

LD-CCA 2.62 72.4% 3.56 66.6% 2.62 71.6% 2.96 73.4%

LD-PLS 2.64 72.5% 3.61 67.7% 2.70 71.1% 2.87 72.0%

PF
SVR 2.63 73.6% 3.65 68.3% 2.68 70.8% 3.12 72.5%

GPR 2.68 75.0% 3.79 68.4% 2.79 71.0% 3.09 73.8%

PLS 2.73 73.1% 3.69 66.5% 2.73 70.9% 3.37 72.0%

CCA 2.71 73.4% 3.68 66.8% 2.71 70.9% 3.38 72.0%

LD-CCA 2.57 73.7% 3.52 67.2% 2.58 69.5% 2.91 76.9%

LD-PLS 2.61 73.5% 3.50 65.9% 2.64 69.4% 3.02 75.2%

the deep facial feature, principal component analysis (PCA) is applied to the features

before training the SVR, which denoted as PCA-SVR. The PCA percentage of explained

variance for different SVR is various, but all selected based on the best performance.

In our implementation, SVR is trained with RBF kernel, and GPR is trained with the

rational quadratic kernel. The parameters for each SVR and GPR lead to the best

predicted result are utilized.

3) Implementation details for label distribution based estimator: For label distribution

based method, the first step is to convert the BMI labels to distribution labels as described

in Section 5.2.2. Particularly in this implementation, the corresponding BMI range is

from 13 to 60 with the interval of 0.1. The assigned labels are calculated according to the

true BMI value. With the label distribution based method, we train the BMI estimator

which are named LD-CCA and LD-PLS.

5.4.3 Experimental results

1) Evaluation of BMI estimation based on deeply learned BMI features: First, we

conduct an evaluation based on features extracted from the pre-trained Centerloss face

model and fine-tuned BMI related face model. In order to explore the performance based

on different BMI estimators using the deep features, we conduct experiments using five

different estimators: SVR, PCA-SVR, GPR, PLS and CCA. Facial features extracted
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from the deep network are fed into the estimators for training thus they are more suitable

for the BMI estimation. Tables 5.3 presents the experimental results. All the results

are obtained based on separated training and testing in each of the gender and ethnicity

groups. Face model means the feature directly extracted from the pre-trained Centerloss

model. Fine-tuned means the feature extracted from the fine-tuned facial BMI model.

As described before, FIW-BMI dataset is used to fine-tuning the deep model. From

the results, one can see that the performance (MAEs and the accuracy of predicted

category) based on fine-tuned model are all better than face model, which shows that

fine-tuning the deep model using facial BMI data derives more robust representations for

BMI estimation. No matter which estimator is used, the errors are all reduced on the

test set. This demonstrates that after fine-tuning the deep face model is more capable of

capturing BMI related facial features.

Since all the results presented in Table 5.3 are obtained from the estimators trained

by original BMI labels (single BMI value for each face image), they will be compared

with the experimental results from label distribution based methods.

2) Experimental results on label distribution based methods: Now we conduct the

experiment using our proposed estimator for BMI estimation. The experiment uses the

features extracted from Centerloss face model and fine-tuned facial BMI model. The

results of applying label distribution based methods to the facial feature are presented

in Table 5.4. The estimated BMI values are obtained based on separated training and

testing in each of the gender and ethnicity groups. Note that the method is based on the

normal label distribution model as mentioned in Section 5.2.2. The comparison of the

performance between the two different label distribution strategies will be analyzed later.

Comparing with the results given in Table 5.3, LD-CCA and LD-PLS outperform

the previous five estimators-SVR, PCA-SVR, GPR, PLS and CCA. More specifically,

with the features extracted from the face model, MAEs of CCA and PLS are 2.51 and

2.52, respectively; while MAEs of LD-CCA and LD-PLS are 2.42 and 2.49, respectively.

With the features extracted from the fine-tuned model, MAEs of CCA and PLS are

2.46 and 2.47, respectively; while MAEs of LD-CCA and LD-PLS are 2.35 and 2.42,

respectively. This result shows the advantages of the proposed estimator when utilizing

the label distribution schemes. Given one facial image, its corresponding label distribution

consists of a series of probabilities. Each probability represents the confidence that the

corresponding label describes the image. The label distribution scheme well defines

the increase of BMI as a continuous process. With this scheme, one image not only
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Figure 5.6: Comparison of overall MAE on Morph II database in each step of our proposed

method.

contributes to the learning of its BMI but also provides auxiliary information to the

learning of its adjacent BMIs.

To further evaluate the performance, Fig. 5.6 shows the overall MAE of the estimated

BMI values in each step of the two-stage learning method. The overall MAE is calculated

from the whole test set. From this figure, one can see that the BMI estimation error is

reduced step by step using our proposed method on deeply learned representations. The

MAE of applying CCA to Centerloss face feature is 2.75. After BMI feature learning by

fine-tuning, it drops from 2.75 to 2.71. Then by applying LD-CCA to deeply learned BMI

features, the MAE significantly drops to 2.42. This further demonstrates the effectiveness

of the proposed two-stage learning method.

3) Experimental results using different label assignment strategies: As mentioned in

Section 5.2.2, there are two schemes for modeling BMI values with label distributions:

normal distribution and triangle distribution. We compare the performance of the two

different modeling strategies. Three facial features are used in this experiment, they are

Centerloss, PIGF and PF. Note that Centerloss feature is extracted from the fine-tuned

BMI face model. The results are shown in Fig. 5.7. One can see that the normal

distribution performs better than the triangle distribution in the three cases. This result

indicates that the normal distribution is more appropriate for defining the BMI labels

than triangle distribution. This may because the increase and decrease of facial BMI

(adiposity) is not a uniform change. The correlation between facial appearance and BMI

is related to age and gender [25]. This means with different age or gender the facial

appearance variance caused by BMI are different. However, the triangle distribution

describes the increase and decrease of facial BMI (adiposity) as a uniform change. In
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Table 5.6: Comparison of BMI estimation using our method to other methods.

Black male Black female White male White female

Feature Method MAE Accuracy MAE Accuracy MAE Accuracy MAE Accuracy

Deep feature

LDL-IIS 2.48 75.6% 3.33 69.0% 2.39 76.5% 2.89 73.4%

LDL-CPNN 7.60 30.4% 4.20 60.1% 3.73 59.8% 4.66 54.0%

LD-PLS (ours) 2.41 76.6% 3.69 59.4% 2.54 74.3% 2.98 72.0%

LD-CCA (ours) 2.35 77.0% 3.42 67.3% 2.25 75.6% 2.72 73.8%

PIGF

LDL-IIS 2.99 85.6% 4.10 74.4% 3.08 77.2% 3.34 66.8%

LDL-CPNN 2.98 80.0% 4.7 50.9% 3.19 78.4% 3.26 66.4%

LD-PLS (ours) 2.64 72.5% 3.61 67.7% 2.70 71.1% 2.87 72.0%

LD-CCA (ours) 2.62 72.4% 3.56 66.6% 2.62 71.6% 2.69 73.4%

PF

LDL-IIS 3.40 60.7% 4.50 72.4% 3.45 59.5% 3.75 64.1%

LDL-CPNN 3.70 54.7% 5.24 24.5% 4.47 30.5% 6.45 13.4%

LD-PLS (ours) 2.61 73.5% 3.50 65.9% 2.64 69.4% 3.02 75.2%

LD-CCA (ours) 2.57 73.7% 3.52 67.2% 2.58 69.5% 2.91 76.9%
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Figure 5.7: Comparison of BMI estimation results on Morph II dataset using different

label distribution strategies.

addition, it can be observed that in most cases LD-CCA method shows better performance

than LD-PLS by both two label assignment strategies.

To further analyze the parameters sensitivity of the two label assignment strategies,

we evaluate their performances with various parameter settings. Fig. 5.8 shows the

performance with the corresponding parameters. It can be seen that the best performance

is achieved with setting σ to 4, ∆ to 3 for LD-CCA, and setting σ to 5, ∆ to 2 for

LD-PLS.

4) Evaluate label distribution based estimators on geometric features: To further

evaluate the effectiveness of the proposed label distribution based estimator, we apply it

to two geometric features: psychology inspired geometric feature (PIGF) [47], pointer
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Figure 5.8: Parameters sensitivity in estimation results.

Table 5.7: The computing time (sec) taken for training the proposed methods and the

other methods.

LDL-IIS LDL-CPNN LD-PLS LD-CCA

Black male 21457.4 1206.0 423.1 154.8

Black female 30710.8 152.5 605.5 221.6

White male 17019.6 828.3 335.6 122.8

White female 20156.9 298.2 397.4 145.4

feature(PF) [66]. PF is the geometric facial representation which can well define the

face shape. It consists of coordinates of 68 facial landmarks extracted by Openface

toolkit [111]. Here the coordinates of detected landmarks are simply concatenated as:

[x1, y1, ..., xn, yn, ..., x68, y68]T . The dimension of the feature is 136. The results are given

in Table 5.5. It can be seen that LD-CCA and LD-PLS perform better than the other

four methods in most cases. LD-CCA shows more robustness than LD-PLS.

5) Comparing with other methods: Finally, we compare our methods with two label

distribution learning methods, namely LDL-IIS and LDL-CPNN [119] on Morph II dataset.

The two methods are first proposed for facial age estimation. One assumption made in

the IIS-LLD algorithm is the derivation of conditional probability p(y|x) as the maximum

entropy model [124]. A strategy similar to improved iterative scaling (IIS) [125] is used

to optimize the cost function. Alternatively, LDL-CPNN uses a three-layer network to

approximate p(y|x) to remove the above assumption. The results are given in Table 5.6.

Three features are utilized for comparison. Note that the deep feature is extracted from

the fine-tuned BMI face model. From the result, one can see that our method outperforms

LDL-IIS and LDL-CPNN in most cases. Table 5.7 shows the computing time taken for

training the proposed methods and the compared methods [119]. Note that the computing

time is based on applying deep features. One can see that our methods take significant
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Table 5.8: BMI estimation results by applying label distribution method twice on Morph

II dataset.

Black male Black female White male White female

Feature Method MAE Accuracy MAE Accuracy MAE Accuracy MAE Accuracy

Fine-tuned
LD-PLS 2.41 76.6% 3.69 59.4% 2.54 74.3% 2.98 72.0%

LD-CCA 2.35 77.0% 3.40 67.3% 2.25 75.6% 2.72 73.8%

Fine-tuned
LD-PLS(twice) 2.45 76.1% 3.60 62.4% 2.55 75.1% 2.96 71.8%

LD-CCA(twice) 2.40 75.3% 3.35 67.1% 2.31 75.2% 2.77 74.1%

less time for training than the LDL-IIS and LDL-CPNN methods. Though LDL-IIS

method performs competitively with the proposed methods, it takes much longer time

for training. This further demonstrates the effectiveness and efficiency of the proposed

methods.

5.4.4 Discussion

Considering many iterative methods have been proposed for optimization [126–128],

it is important to figure out if applying label distribution method twice will lead to better

performance on BMI estimation. To aim this, we conduct an experience on Morph II

dataset. The label distribution methods (LD-CCA and LD-PLS) are applied twice to the

BMI-related facial features. The experiment setting is described in Section 5.4.2. The

experimental results are compared with that of applying label distribution methods once.

As shown in Table 5.8, we can see that applying label distribution methods twice can not

lead to better performance on most sets except on black female by LD-CCA (twice). The

MAE is decreased from 3.40 to 3.35.

5.5 Summary

In this chapter, we study the problem of BMI estimation from facial images by a

two-stage learning framework. More specifically, first, a BMI related face model is fine-

tuned to learn more BMI related facial features. Then the facial features are extracted

from the fine-tuned face model, and the BMI labels are modeled into discrete probability

distributions. Finally given the extracted BMI related facial features and the probability

distributions, a BMI estimator is learned by maximizing the correlation between them.

Two different label assignment strategies are presented and compared in this work. The

results show that the two-stage framework reduces the estimated errors step by step.
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The proposed label distribution based estimator shows more robustness than regression

based methods and methods without label distribution schemes. We further evaluated

the effectiveness of the estimator on two geometric features. In addition, our method

outperforms the two label distribution based methods: LDL-IIS and LDL-CPNN.
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Chapter 6

Label Assignment Matching based

Network for BMI Estimation

Take into account the existing challenges in visual BMI estimation, we propose a label

assignment matching based convolutional neural network for BMI estimation from facial

images. First, considering the limited BMI training data, the network can simultaneously

learn the BMI related facial feature and BMI estimator. Second, the label assignment

scheme well defines the ambiguity of BMI labels. Third, the triple-loss function takes

advantage of both relative entropy loss and distribution shape matching. Extensive

experiments are conducted on two datasets to evaluate the proposed method. Comparing

with state-of-the-art methods, the proposed method successfully achieves an improvement

in BMI estimation from facial images.

The remainder of this paper begins with introducing the existing challenges in visual

BMI estimation in Section 6.1. Related works on BMI estimating methods, ranking

based and label distribution based methods are summarized in Section 6.2. Details

about the label assignment matching based learning network and the triple-loss function

are presented in Section 6.3. Section 6.4 presents two databases used for performance

evaluation: an extended version of FIW-BMI2 and Morph II. In Section 6.5, first, we

describe the evaluation metrics and experimental setting; and then we provide the detailed

experimental results and discussion. Finally, conclusions are given in Section 6.6.

6.1 Challenge

BMI estimation from facial images is a challenging problem in computer vision and

pattern recognition. The first challenge is caused by the BMI data. Different from the
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Figure 6.1: Some frontal face images with corresponding BMI values. The increase in

facial adiposity is a continuous process.

dataset used for age estimation and face recognition, it is difficult to collect a dataset

contains images that cover all BMI values. According to the BMI values, there are

four BMI categories: underweight (BMIs≤18.5), normal (18.5<BMIs≤25), overweight

(25<BMIs≤30), obese (BMIs>30). Most of BMI data distribute on normal and overweight

categories. The distribution of BMIs on the dataset is uneven. In addition, there are very

few public datasets for visual BMI estimation. Exploiting efficient learning method for

BMI estimation with limited training data is an urgent demand. The second challenge

is the ambiguity of BMI labels. As shown in Fig. 6.1, the increase in facial adiposity

is a continuous process. A person with ground-truth BMI 32 means the probability of

32 is higher than other adjacent BMI values (e.g. 31, 32.5 and 33, etc.). Though the

ground-truth is 32, other adjacent BMI values also have the probabilities to describe this

person. In addition, the correlation between facial appearance and BMI is related to age

and gender [25]. With different ages or gender, variances of facial appearance caused

by BMI are different. Both traditional regression based methods [47] and Euclidean

loss based neural networks [63] ignored such ambiguity. Several works have studied

the ambiguity problem in age estimation, such as ranking based methods [129], label

distribution based methods [130, 131]. They describe the ambiguity by different deep

network architectures, but the label assignment matching solution has not been fully

exploited in the existing works.

In this chapter, we propose an end-to-end convolutional neural network (CNN) for

visual BMI estimation which integrates feature learning and estimator learning in one
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network. A label assignment scheme is embedded into the deep network which models the

scalar BMI label as discrete probabilities distribution. A triple-loss function is proposed

for label assignment matching which minimizes the discrepancy between estimated labels

and ground-truth labels. We use a pre-trained face model as the based structure of

the network. Then the network is followed by the label assignment matching module.

There are three advantages of this proposed network. First, considering the limited BMI

training data, the network can simultaneously learn the BMI related facial feature and

BMI estimator. Second, the label assignment scheme well defines the ambiguity of BMI

labels. Third, the triple-loss function takes both advantages of relative entropy loss and

distribution shape matching. The main contributions of this work are summarized as

follows:

• A label assignment matching based learning network is designed for visual BMI

estimation from facial images. The structure of the network is evaluated by extensive

experiments.

• A triple-loss function is proposed for label matching which consists of relative

entropy loss, absolute value loss and variance loss.

6.2 Related Work

BMI Estimation Approaches: Computationally the BMI values can be estimated from

2D facial images by geometric features and deep features. Wen et al. [47] first proposed

geometric features based computational method for BMI prediction from face images.

The psychology inspired geometric features (PIGF) are computed from facial images.

Three regression methods: the support vector regression (SVR) [48], Gaussian process

regression (GPR) [49], and the least-squares estimation [50] are used for learning the map

between facial features and BMI values. The approach was evaluated on the selected

Morph II dataset [51]. Pascali et al. [45] proposed a method for automatically extracting

geometric features which are related to weight parameters, from 3D facial data collected

by low-cost depth scanners. Kocabey et al. [61] analyzed BMIs from face images collected

from a social media website. The pre-trained VGG-Net and VGG-Face model [62] are

used to extract features from facial images. Then they employed SVR models to predict

BMIs from the extracted features. Dantcheva et al. [63] explored the possibility of

estimating height, weight, and BMI from facial images by using a regression method

based on a 50-layer ResNet architecture. They evaluated their methods on a celebrity
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dataset. Jiang et al. [66] comprehensively studied the visual BMI estimation problem

based on the characteristics and performance of several geometric facial features (PIGF,

PF and PIGF+PF) and deep features (VGG-Face, Arcface, Centerloss and LightCNN).

SVR models are used for predicting BMI values. All the above work considered BMI

prediction as regression problems and ignored the ambiguity of BMI labels. In addition

to the above regression based methods, recently Jiang et al. [67] proposed a two-stage

learning framework for BMI estimation from facial images. A label distribution based

BMI estimator is learned by an optimization procedure that is implemented by projecting

the features and assigned labels to a new domain which maximizing the correlation

between them.

Ranking based Methods: Some ranking based methods are proposed for age estima-

tion. Considering age-related ordinal information, these methods transform the ordinal

regression problem to a series of binary classification. Li et al. [132] presented a reduction

framework from ordinal regression to binary classification based on extended examples.

Chen et al. [129] proposed a CNN based framework for age estimation which contains a

series of basic CNNs. Different from age labels (e.g. 18, 19, 20, etc.), BMI labels have a

much finer interval (e.g. 22.3, 22.7, 23, etc.) between each other. Thereby ranking based

methods can not well define the BMI labels.

Label Distribution Methods: Label distribution scheme was first proposed by Geng

et al. [119] for age estimation to describe the ambiguity of age labels. In [119], two

optimization methods−IIS-LLD and CPNN were presented. Later on, several distribution

learning based approaches have been proposed for age estimation and other tasks. A

multivariate label distribution (MLD) based method was also proposed by Geng et

al. [120] for further improving the performance. Xin et al. [121] used Logistic Boosting

Regression (LogitBoost) to learn a general label distribution model family which can

avoid the potential influence of the specific model. Gao et al. [130] proposed a deep

label distribution learning (DLDL) method by minimizing a Kullback–Leibler divergence

between the predicted and ground-truth label distributions. These methods utilized label

correlation or a single entropy model to optimize the divergence between the estimation

and ground-truth. The label matching problem has not been fully exploited in these

works.
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Figure 6.2: The pipeline of the proposed BMI estimation method. It consists of two main

steps: feature learning and label matching. A convolutional neural network is utilized to

extract features from the aligned images. Then extracted features are normalized by the

softmax function. The estimated BMI value is the dot product of the estimated labels

and the corresponding BMI range vector Z. The whole network is optimized by the

triple-loss function.

6.3 Method

Fig. 6.2 shows the pipeline of the proposed method which takes the aligned face

images as the input. The images are passed through convolutional layers and fully

connected (FC) layers. The output of the last fully connected layer is normalized by

the softmax function. The estimated BMI value is the dot product of the estimated

probabilities from the label matching module and the corresponding BMI range vector Z.

In this section, first we describe the definition of BMI estimation problem with the label

assignment scheme. Then we present the structure of the network and give the details

about the proposed label matching solution.

6.3.1 Modeling BMI values with label assignment

The ground-truth BMI value for each image is a real number usually rounding to one

decimal place. Considering the ambiguity of the BMI label discussed in Section 6.1, we

use the label assignment scheme to model BMI labels.

As shown in Fig. 6.3, given an image labeled with the BMI value m, the BMI value is

transformed to discrete probabilities distribution p = [p1, p2, ..., pk]
T ∈ Rk over the whole

range of BMIs which follows a Gaussian distribution centered at m:

p(zi) =
1

σ
√

2π
exp(−(zi −m)2

2σ2
) (6.1)
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Figure 6.3: Probability density function of Gaussian distribution N
(
m,σ2

)
.

where σ is the standard deviation of the Gaussian distribution. And z = [z1, z2, ..., zk]
T ∈

Rk is a set of discrete values from the whole range of BMIs with interval of 0.5, e.g. if the

range of BMI is from 15 to 60, then z = [15, 15.5, ..., 59.5, 60]. Note that k can be adjusted

with different BMI ranges and intervals. The final assigned labels y = [y1, y2, ..., yk]
T ∈ Rk

should be normalized by:

yi =
p(zi)∑k
i=1 p(zi)

. (6.2)

One advantage of the label assignment is that it covers a discrete range of BMIs with

different levels of “probabilities”. It is more suitable to represent BMI value, because

inside of this range, every BMI value could be a possible label to describe the true BMI

with different confidence. In addition, by applying label assignment, BMI estimation can

obtain a “continuous” value, which cannot be achieved by the classification approaches.

6.3.2 Label Matching solution

As shown in Fig. 6.2, softmax function is applied to the output of FC layer with the

purpose of normalizing the estimated labels. The parameters of the whole network are

optimized by matching the estimated labels with the ground-truth. A triple-loss function

is proposed to optimize the network which contains relative entropy loss, MAE loss and

variance loss. The details of this approach are given below.

Relative entropy loss

Given an image with BMI labeled as a scalar b, the assigned labels (ground-truth)

y = [y1, y2, ..., yk]
T are computed according to Eqns. (6.1) and (6.2). The estimated

labels from the network is denoted as ŷ = [ŷ1, ŷ2, ..., ŷk]
T . To maximize the similarity

between y and ŷ, a loss function is used to penalize their discrepancy. This work utilizes

Kullback-Leibler (KL) divergence to measure the discrepancy between the ground-truth
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and estimated labels:

DKL(y, ŷ) =
k∑
i=1

yi · log
yi
ŷi

=

k∑
i=1

yi · (logyi − logŷi) .

(6.3)

Because yi · logyi is a constant, the KL divergence based loss function is defined as the

following:

Lkld(w) = −
k∑
i=1

yi · logŷi, (6.4)

here w denotes the parameters to be optimized.

MAE loss

As shown in Fig. 6.2, the estimated BMI value is computed by:

m̂ =
k∑
i=1

ŷi · zi, (6.5)

here ŷi denotes the estimated probability that belongs to BMI value zi. m̂ is also the

mean of estimated labels ŷ. Euclidean loss function is utilized to match the ground-truth

BMI and estimated BMI:

Lmae(w) = |m− m̂| , (6.6)

As mentioned in Section 6.3.1, the assigned ground-truth labels follow the Gaussian

distribution P ∼ N
(
m,σ2

)
. Among the two parameters, m defines the location of the

Gaussian distribution, σ2 determines the shape of the distribution. Eqn. (6.6) not only

penalizes the distance between the estimated value and ground-truth, but also penalizes

the location difference between estimated distribution and true distribution.

Variance loss

The variance of estimated labels is expressed as:

ˆV ar =

(
k∑
i=1

ŷi · z2
i

)
− m̂2. (6.7)

Variance determines the shape of Gaussian distribution. The purpose of variance loss is

to match the shape of distributions. Variance loss penalizes the decentralized labels by:

Lvar(w) = max
(

0, ˆV ar − σ2
)
, (6.8)
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where σ2 is the variance used for generating the ground-truth labels in Eqn. (6.1), which

is predefined as a hyperparameter of the network. This loss function leads to concentrated

distributions by penalizing violated variance which is lager than σ2. Eq. (6.8) has the

same format as the hinge loss function. Though it is not differentiable, a sub-gradient of

the loss function can be computed as:

∂L

∂w
=

∂ ˆV ar
∂w , ˆV ar > σ2

0, otherwise
(6.9)

6.3.3 Full Objective

The proposed label matching solution is embedded in the convolutional network.

Such a framework takes both advantages of CNN and label matching scheme. The BMI

related features are learned with CNN, and the ambiguity of BMI label is addressed by

label matching scheme. Given a training set D, the goal of the network is to optimize

parameters w by the loss function. The final loss function is defined as a combination of

the three above loss functions:

L = Lkld(w) + λ1Lmae(w) + λ2Lvar(w), (6.10)

where λ1 and λ2 are the tradeoff parameters which balance the importance between three

losses. Substituting Eqns. (6.4), (6.6) and (6.8) into Eqn. (6.10):

L = −
k∑
i=1

yi · logŷi + λ1 |m− m̂|+ λ2max
(

0, ˆV ar − σ2
)
. (6.11)

The proposed label assignment matching solution can be easily implemented by deep

learning libraries, such as Tensorflow [133], Theano [134], etc. Furthermore, it can be

embedded into any CNNs. In this work, we embed it into a modified VGG13 [80] network.

Original VGG13 consists of 13 convolutional layers, 5 max-pooling layers and 3 fully

connected layers. We replace the last fully connected layer with the label assignment

matching module.

6.4 Dataset

Extensive experiments are conducted on three datasets: CASIA-WebFace, Morph

II and FIW-BMI. CASIA-WebFace is used to train the general face model by a face

recognition task. The proposed label assignment based network is finetuned and evaluated

on the other two datasets.
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Table 6.1: The number of images in the training and test set of Morph II.

Training Test

Male 17416
Black male 5713

White male 1006

Female 3828
Black female 605

White female 440

6.4.1 CASIA-WebFace

CASIA-WebFace [135] is a large-scale database including 494,414 face images from

10,575 subjects. Face images in this database are crawled from the Internet (i.e., IMDb

website) and annotated in a semiautomatic manner. First, the names of interested

celebrities are crawled from the website, then photos on their webpages are downloaded.

As most photos contain more than one face, a simple and fast clustering method was used

to annotate the identity of faces in the photos. Finally, the authors checked the whole

database manually and corrected false annotations. It was originally collected to train

a deep convolutional neural network for face recognition and obtained state-of-the-art

accuracy. This database is used to train the VGG13 network by a face recognition task.

We randomly split the dataset into two parts, 80% of the whole dataset for training and

the remaining 20% for validation. There is no overlap of subjects between the training

and validation sets.

6.4.2 Morph II

Morph II dataset [51] contains 55,608 passport-style frontal face images along with

age, gender and ethnicity information. Moreover, there are 40,330 images have height and

weight information. Considering the uneven distribution of the ethnicity in the database,

only images from Black and White are used for this work. There are 29,033 images

kept. Details about the selected data are described in Table. The same individual does

not exist in both the training and test set. Most images from the same individual have

different BMI values. The BMI values of Morph II mainly distribute in the range of 15 to

35. Among these, 893 are underweight, 16,582 are normal, 8,237 are overweight and 3,321

are obese. Table 1 shows the details about the training and test sets. We train the BMI

estimation network on the training set and report the results on each gender-ethnicity

group.



Min Jiang Chapter 6. Label Assignment Matching based Network for BMI Estimation 113

10 20 30 40 50 60 70 80
BMI

0

500

1000

1500

2000

N
u

m
b

er
 o

f 
Im

ag
es

Figure 6.4: Distribution of BMI values on FIW-BMI.

6.4.3 FIW-BMI

We expand FIW-BMI [66] by adding 1685 images from 577 individuals to it. The

updated dataset contains 9615 images from 5458 individuals with the annotation of

gender, weight and height. Each individual contributes 1 to 4 images. We use the same

image alignment and normalization protocols as used for FIW-BMI. The BMI values

of the dataset distribute from 14 to 64, as shown in Fig. 6.4. Because FIW-BMI has a

much wider BMI range than Morph II, it is more challenging to estimate BMI on this

dataset. The dataset is split to the training set (7726 images) and the test set (1889

images). Among the test set, there are 1225 images from the male, and 664 images from

the female. We train the BMI estimation network on the training set and report the

results on two gender groups separately.

6.5 Experiments

Experimentally, we evaluate the performance of the proposed BMI estimation network

on two datasets. First, the performance metrics and experiment settings are briefly

described. Then the experimental results and analysis are presented.

6.5.1 Evaluation Metrics

Mean absolute error (MAE) is utilized to measure the performance on BMI estimation.

It is defined as the average of the absolute error between the estimated BMI values and

the ground truth BMI values, which is computed by:

MAE =
1

N

N∑
k=1

|p̂k − pk| , (6.12)
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here pk is the ground truth BMI value for image k, p̂k is the corresponding estimated

BMI value, N is the number of test images. This measure is motivated by its use in age

estimation [103].

6.5.2 Experiment Setting

As mentioned in [66], image alignment is a preprocessing step for all BMI estimation

methods. The alignment is based on the five detected face landmarks (two eyes, nose and

two corners of the mouth). It performs translation, rotation and scaling of the faces so as

to align all face images into the common coordinates. The output is a cropped 256× 256

image. The MTCNN toolkit [110] is employed for detecting the required face landmarks.

Considering the number of images for the BMI estimation method is limited, we

apply data augmentation to the training set to avoid overfitting. The training images are

random cropped and rotated.

All experiments are implemented using the Tensorflow framework on an NVIDIA

GP102 GPU. First, we train VGG13 network with softmax loss for face recognition

on the WebFace dataset. With the pre-trained VGG-face network, we remove the last

fully connected layer and resize the dimension of the second fully connected layer. The

dimension of the second fully connected layer should be the same as the dimension of

BMIs range vector. In this work, the BMIs range vector is defined as: [15 : 0.5 : 80]

(Matlab notation). Then the label assignment matching module is added to the end of

the network. Finally, we fine-tune this modified network on BMI datasets.

When training the VGG13 network, we use mini-batch stochastic gradient descent

(SDG) with momentum settings. The mini-batch size is set to 32 and momentum is set

to 0.9. We initialize the learning rate to 0.01. The learning rate decreases in exponential

decay with 0.1. The training procedure stops after 30 epochs. When fine-tuning BMI

estimation network, we use mini-batch SDG without momentum. The mini-batch size

is set to 64. We initialize the learning rate to 0.0001. The learning rate decreases in

exponential decay with 0.1. The fine-tuning procedure stops after 60 epochs. In this

work, the better performance is achieved by setting the two hyperparameters λ1 and λ2

to 0.5 and 0.1, respectively.

6.5.3 BMI Estimation Results

We evaluate the performance of the proposed method on each ethnicity and gender

group of the test set. First, the proposed method is compared with regression based and
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Table 6.2: The number of images in t1 and t2 sets used for LD-CCA method.

t1 t1

Morph male 8023 9393

Morph female 1836 1992

FIW-BMI 3327 4423

labels distribution based methods. Then we validate the efficiency of the label matching

solution by ablation study. Finally, we explore the sensitivity of hyperparameters λ1 and

λ2.

Comparisons with the State-of-the-art

We compare the proposed network with several regression based and label distribution

based methods for BMI estimation on Morph II and FIW-BMI. Theses methods include

support vector regression (SVR) [48], principal component analysis (PCA) + SVR [66],

Gaussian processing regression [73], LDL-IIS and LDL-CPNN [119], LD-CCA and DLDL

[130]. For SVR, SVR+PCA, GPR, LDL-IIS and LDL-CPNN methods, all the features

are extracted by the VGG-Face network which is pre-trained on the Web-face dataset

(described in Section 6.5.2). Then the BMI estimators are learned with the training

set. Note that when we implement the PCA+SVR method, the PCA projection is only

learned with the training set. LD-CCA, DLDL and the proposed methods all use the

same pre-trained VGG-Face network as the backbone. Because LD-CCA is a two-stage

learning method, the training set is divided into two parts (t1 and t2), t1 is used for

BMI-feature learning and t2 is used for LD-CCA estimator learning. The details about

t1 and t2 are given in Table 6.2. DLDL and our method both use the training set to

fine-tune the BMI estimation network.

Table 6.3 shows the comparisons of the BMI estimation MAEs by the proposed method

and regression based methods on Morph II and FIW-BMI datasets. The experimental

results are reported based on each of the gender and ethnicity groups. It is shown

that the proposed method outperforms the three regression based methods with a clear

margin on most sets, except on the female test set of FIW-BMI. As described in Section

6.4.3, the percentage of females is about 35% in the training set of FIW-BMI. The poor

performance on this female set may be caused by the fewer training data of females. Our

method achieves the lowest MAE of 2.25, 3.37, 2.27, 2.69, 3.20 and 3.85 on the six gender

and ethnicity groups, respectively. This result demonstrates the advantages of the label
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Table 6.3: Comparisons of the BMI estimation (MAEs) by the proposed method and

regression based methods on Morph II and FIW-BMI dataset.

Method
Morph II FIW-BMI

Black male Black female White male White female Male Female

SVR [48] 2.55 3.65 2.43 3.01 3.46 3.85

PCA+SVR [66] 2.51 3.60 2.42 2.96 3.40 3.87

GPR [73] 2.60 3.67 2.45 3.10 3.45 3.97

Ours 2.14 3.37 2.27 2.61 3.20 3.85

Table 6.4: Comparisons of the BMI estimation (MAEs) by the proposed method and

other label distribution based methods on Morph II and FIW-BMI dataset.

Method
Morph II FIW-BMI

Black male Black female White male White female Male Female

LDL-IIS [119] 2.99 4.49 3.45 4.03 3.64 4.34

LDL-CPNN [119] 7.66 8.34 5.43 6.37 5.51 8.87

LD-CCA 2.41 3.50 2.38 2.86 3.30 3.73

DLDL [130] 2.36 3.55 2.30 2.80 3.43 3.93

Ours 2.14 3.37 2.21 2.61 3.20 3.85

assignment matching based network.

Table 6.4 shows the comparisons of the BMI estimation MAEs by the proposed

method and four label distribution based methods on Morph II and FIW-BMI datasets.

Among the four compared methods, LD-CCA is a two-stage learning method and DLDL

is an end-to-end CNN method. Though all five methods in Table 6.4 are based on

a similar label distribution scheme, we can see that our method still outperforms the

other four methods on most test sets, except on the female test set of FIW-BMI. This

demonstrates that the proposed label matching scheme (triple-loss function) is more

capable of optimizing the BMI estimation network.

Fig. 6.5 shows some examples of BMI estimation along with estimated label distribu-

tions by our approach on Morph II and FIW-BMI datasets. The upper panel shows some

good cases, and the lower panel shows some failure cases. The red curves are ground-truth

probabilities distributions, and the blue curves are estimated probabilities distributions.

We can see that most of estimated distributions follow Gaussian distribution. In good

cases, most parts of the estimated distributions overlap with the ground-truth distribu-

tions. While in failure cases, the estimated distributions have larger variances, and are
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Figure 6.5: Examples of BMI estimation by the proposed method. The upper panel

shows good cases, and the lower panel shows failure cases. The red curve is ground-truth

probabilities distribution, and the blue curve is estimated probabilities distribution.

separated from the ground-truth. Some failure cases are observed due to the large pose,

occlusion of the face, etc.

Ablation Study

To further evaluate the contribution of each loss function, we design this ablation

study by comparing the performance of different combinations of loss functions. The

experiments are conducted on Morph II dataset and Table 6.5 shows the experimental

results. λ1 and λ2 denote the coefficients applied to the loss function. They are set to 0.5

and 0.1, respectively. First, we evaluate the performance of three single-loss functions:

kld (calculated by Eqn. (6.4)) and mae (calculated by Eqn. (6.6)) and var (Eqn. (6.8)).

It is shown that both kld and mae perform well on optimizing the network which leads to

much lower MAEs than var. Among them, kld loss is relatively more efficient than mae
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Table 6.5: Performance (MAEs) of the BMI estimation network optimized by different

combinations of loss functions. λ1 and λ2 are set to 0.5 and 0.1, respectively.

Loss function
Morph II

Black male Black female White male White female

kld 2.36 3.55 2.30 2.80

mae 2.50 3.68 2.49 2.98

var 12.11 15.47 15.64 16.55

kld+ λ1mae 2.27 3.46 2.22 2.74

kld+ λ1var 2.32 3.56 2.30 2.84

mae+ λ1var 2.42 3.58 2.43 2.83

kld+ λ1mae+ λ2var 2.14 3.37 2.21 2.61

loss, while var performs worst. Because var is a loss function that is used to penalize

the decentralized distributed labels, we think it can be used as an auxiliary loss function

rather than the main loss function.

Next, we evaluate the performance of three combinations: kld+ λ1mae, kld+ λ1var

and mae + λ1var. From Table 6.5, it is shown that these three combinations perform

better than the above three single-loss functions on the four test sets. kld + λ1mae

achieves a little lower MAE than mae+λ1var and kld+λ1var. Comparing with different

combinations of loss functions, we can see the triple-loss function is the most robust. We

can draw the conclusion that three loss functions all contribute to improving performance.

Among them, kld loss is relatively more efficient than the other two.

Hyperparameters Sensitivity Analysis

Hyperparameters λ1 and λ2 balance the contribution of three functions dur-

ing the training stage. We take the values of these two parameters by changing

0.1, 0.3, 0.5, 0.7, 0.9, 1, and conduct the experiments on Morph II dataset. The matching

MAEs of the proposed method are shown in Table 6.6. Note that the experiment is based

on separately training on each gender set, and the MAEs are computed from the whole

test set of Morph II. According to the experimental results, we can see that the best

performance is achieved by λ1 = 0.5 and λ2 = 0.1.
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Table 6.6: Performance (MAEs) of the BMI estimation network with different hyperpa-

rameters.

λ2

λ1
0.1 0.3 0.5 0.7 0.9 1

0.1 2.44 2.33 2.27 2.30 2.34 2.39

0.3 2.46 2.41 2.32 2.35 2.41 2.45

0.5 2.46 2.44 2.42 2.42 2.47 2.44

0.7 2.47 2.44 2.42 2.44 2.54 2.58

0.9 2.58 2.56 2.49 2.49 2.56 2.62

1 2.62 2.60 2.55 2.59 2.64 2.65

6.6 Summary

To address the challenges caused by BMI data and ambiguity of labels, this chapter

proposes a label assignment matching based convolutional neural network for BMI

estimation from facial images. There are three advantages of this network. First, the

network can simultaneously learn the BMI related facial feature and BMI estimator.

Second, the label assignment scheme well defines the ambiguity of BMI labels. Third, the

triple-loss function takes the both advantages of relative entropy loss and distribution

shape matching. Extensive experiments are conducted on two datasets. Comparing

with three regression methods and four label distribution based methods, the proposed

method performs better in most cases. Additionally, to fully evaluate the proposed triple-

loss function, we compare the performance of different combinations of loss functions.

According to the experimental results, it is shown that the three loss functions all

contribute to the improvement of performance. Among them, kld loss is relatively more

efficient than mae loss. Both kld and mae have counted more with the improvement

than var.
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Chapter 7

Conclusion and Future Work

The final chapter summarizes the work and contributions made in the dissertation as

well as envisioning possible research problems that can be further explored.

7.1 Conclusion

BMI and Weight Analysis from Visual Body Data The studies in health

science [19–21] show evidence on the relation between anthropometric measures and

obesity. Recently, researchers utilized machine learning based methods to analyze weight

from various types of body data and have achieved a few success. However, there are

still some limitations that exist in these body weight analysis methods. Considering

that existing methods [32–34] use both color and depth images to estimate weight, we

investigate the feasibility of analyzing body weight from single 2D frontal view human

body images. We also study a computational approach that directly estimates body

weight and height from dressed people in 3D space. The conclusions for BMI and weight

analysis from visual body data can be summarized as follows:

• We propose an approach to analyze body weight just from 2D body images [64].

Neither depth images nor clear face images are required for this approach. To

the best of our knowledge, this is the first work to explore weight/BMI related

information from 2D body images only. A computational framework is developed

for body weight and BMI analysis from 2D human body images, which can process

either a single image or a pair of images. Five anthropometric features are proposed

for body weight analysis from 2D body images. Correlation is analyzed between the

extracted anthropometric features and BMI values, which validates the usability of
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the selected features. More specifically, body weight analysis is studied at three

different levels of difficulties: the weight change classification is first investigated

from a pair of body images of the same subjects; further investigation is conducted

to estimate how big the weight change between the pairwise images is; the last

is to predict the BMI value from a single body image. A new visual-body-to-

BMI image dataset has been collected and cleaned to facilitate this study. The

errors of the three estimation tasks evaluated by several measurements are within

acceptable ranges. Comparing with the facial images analysis approaches, the

proposed method performs better in most cases. Furthermore, our anthropometric

features significantly outperform the VGG-Net feature on BMI estimation. Based

on all experimental results, it is promising to analyze body weight or BMI from the

2D body images visually.

• An efficient weight estimation framework is developed to work on normally dressed

people in 3D space [65]. Two clothes models are proposed to reduce the negative

influence of loose clothes on body volume and weight estimation. Though the Kinect

3D fusions contain some noise, the proposed BMI estimation includes clustering and

fitting components to suppress such noise. A new RGB-D dataset is collected for this

study. Experimental results have shown the effectiveness of the proposed approach

to people with different styles of clothes, for both females and males. Comparing to

another 3D volume estimation method, our method achieves a significantly lower

error.

BMI Estimation from Facial Images In the past few years, several computational

methods are proposed for BMI estimation from facial images. A typical framework for BMI

estimation consists of four steps: face detection, image alignment, facial representation

extraction, and BMI estimator learning. The third and fourth steps both are important

which dominantly determines the performance of a BMI estimation method. In this

dissertation, we take a further step to delve deeper into the third step-characteristics and

performance of different facial representations, and investigate how we can improve the

performance of the fourth step by developing effective learning frameworks.

Conclusions for BMI estimation from facial images are summarized as follows:

• We study the visual BMI estimation problem systematically based on the facial

representations [66]. According to the inherent properties of representations, they

are grouped into two types: geometric based and deep learning based. In addition
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to the two existing approaches (VGG-Face and PIGF), five other facial approaches:

PF, PIGF+PF, LightCNN, Centerloss and Arcface are explored for the first time

for BMI analysis. The performance and characteristics of facial representations have

been comprehensively evaluated and analyzed from three perspectives: the overall

performance on visual BMI prediction, the redundancy in representations and the

sensitivity to head pose changes. The experiments are conducted on two databases:

FIW-BMI and Morph II. Our studies provide some deep insights into the facial

representations for visual BMI analysis: 1) The deep model based methods perform

better than geometry based methods. Among them, the VGG-Face and Arcface

show more robustness than others in most cases; 2) Removing the redundancy in

VGG-Face representation can increase the accuracy and efficiency in BMI estimation;

3) Large head poses lead to low performance for BMI estimation. Among the seven

representations, the Arcface, VGG-Face and PIGF are more robust than the others

to head pose variations.

• We study the problem of BMI estimation from facial images by a two-stage learning

framework [67]. First, the BMI related facial representation is learned by fine-tuning

the pre-trained deep face model. This step is expected to obtain sufficient visual

BMI characteristics and reinforce the learning process using the limited number of

BMI data. More importantly, the label distribution method models the single BMI

value as a discrete probability distribution over the whole ranges of BMIs. Given

the extracted facial features from the first stage, a label distribution based BMI

estimator is learned by an optimization procedure by projecting the features and

assigned labels to a new domain which maximizing the correlation between them.

Two different label assignment strategies are presented and compared in this work.

The results show that the two-stage framework reduces the estimated errors step

by step. The proposed label distribution based estimator shows more robustness

than regression based methods and methods without label distribution schemes.

We further evaluated the effectiveness of the estimator on two geometric features.

Additionally, our method outperforms the two label distribution based methods:

LDL-IIS and LDL-CPNN.

• A convolutional neural network (CNN) is developed for visual BMI estimation

which integrates feature learning and estimator learning in one network. A label

assignment scheme is embedded into the deep network work which models the scalar

BMI label as a probability distribution. A triple-loss function is proposed for label
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assignment matching which minimizes the discrepancy between estimated labels and

ground-truth labels. The experiments are conducted on three databases: CASIA-

WebFace, FIW-BMI and Morph II. The results demonstrate that the proposed

method outperforms state-of-the-art regression based methods and label distribution

based methods.

7.2 Future Work

In this section, several future research topics are summarized as follows.

Deep learning based BMI estimation from body images: In this dissertation, we

study BMI estimation from frontal view body images by anthropometric features in

Chapter 2. To achieve improvement, we would like to explore innovative lightweight deep

network to learn the latent feature representations for BMI estimation from body images.

Furthermore, we also would like to investigate how to use the profile view of body images

as auxiliary information to improve the estimation accuracy.

Generating facial images by varying BMI values: We have explored several facial

representations for BMI estimation by analyzing their characteristics and performances in

Chapter 4. One extension of this topic is generating different realistic versions of an input

facial image by varying the BMI values. This would lead to algorithms or applications

which allow users to modify the facial image using sliding knobs, like faders, to change

the appearance of a facial image. Currently, many encoder-decoder based [136,137] and

generative adversarial network (GAN) based [138–140] architectures have been developed

for the purpose of generating fake images. We would like to explore a feasible approach

based on these two architectures.

Cross-BMI face verification: We have evaluated the performance of several deep face

models on cross-BMI face verification. The experimental results demonstrate that large

BMI-differences lead to low performance for face verification. To fully address this topic,

we would like to investigate how to use the deep network to learn the mapping kernel that

can reduce the variance between intra-subjects. The network aims to map the images

with different BMIs to the common subspace, and to construct new feature representation

which is robust to BMI variations and discriminative to different subjects.
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