5 research outputs found

    Automatic age and gender classification using supervised appearance model

    Get PDF
    YesAge and gender classification are two important problems that recently gained popularity in the research community, due to their wide range of applications. Research has shown that both age and gender information are encoded in the face shape and texture, hence the active appearance model (AAM), a statistical model that captures shape and texture variations, has been one of the most widely used feature extraction techniques for the aforementioned problems. However, AAM suffers from some drawbacks, especially when used for classification. This is primarily because principal component analysis (PCA), which is at the core of the model, works in an unsupervised manner, i.e., PCA dimensionality reduction does not take into account how the predictor variables relate to the response (class labels). Rather, it explores only the underlying structure of the predictor variables, thus, it is no surprise if PCA discards valuable parts of the data that represent discriminatory features. Toward this end, we propose a supervised appearance model (sAM) that improves on AAM by replacing PCA with partial least-squares regression. This feature extraction technique is then used for the problems of age and gender classification. Our experiments show that sAM has better predictive power than the conventional AAM

    Gender Classification from Facial Images

    Get PDF
    Gender classification based on facial images has received increased attention in the computer vision community. In this work, a comprehensive evaluation of state-of-the-art gender classification methods is carried out on publicly available databases and extended to reallife face images, where face detection and face normalization are essential for the success of the system. Next, the possibility of predicting gender from face images acquired in the near-infrared spectrum (NIR) is explored. In this regard, the following two questions are addressed: (a) Can gender be predicted from NIR face images; and (b) Can a gender predictor learned using visible (VIS) images operate successfully on NIR images and vice-versa? The experimental results suggest that NIR face images do have some discriminatory information pertaining to gender, although the degree of discrimination is noticeably lower than that of VIS images. Further, the use of an illumination normalization routine may be essential for facilitating cross-spectral gender prediction. By formulating the problem of gender classification in the framework of both visible and near-infrared images, the guidelines for performing gender classification in a real-world scenario is provided, along with the strengths and weaknesses of each methodology. Finally, the general problem of attribute classification is addressed, where features such as expression, age and ethnicity are derived from a face image

    Gender and Ethnicity Classification Using Partial Face in Biometric Applications

    Get PDF
    As the number of biometric applications increases, the use of non-ideal information such as images which are not strictly controlled, images taken covertly, or images where the main interest is partially occluded, also increases. Face images are a specific example of this. In these non-ideal instances, other information, such as gender and ethnicity, can be determined to narrow the search space and/or improve the recognition results. Some research exists for gender classification using partial-face images, but there is little research involving ethnic classifications on such images. Few datasets have had the ethnic diversity needed and sufficient subjects for each ethnicity to perform this evaluation. Research is also lacking on how gender and ethnicity classifications on partial face are impacted by age. If the extracted gender and ethnicity information is to be integrated into a larger system, some measure of the reliability of the extracted information is needed. This study will provide an analysis of gender and ethnicity classification on large datasets captured by non-researchers under day-to-day operations using texture, color, and shape features extracted from partial-face regions. This analysis will allow for a greater understanding of the limitations of various facial regions for gender and ethnicity classifications. These limitations will guide the integration of automatically extracted partial-face gender and ethnicity information with a biometric face application in order to improve recognition under non-ideal circumstances. Overall, the results from this work showed that reliable gender and ethnic classification can be achieved from partial face images. Different regions of the face hold varying amount of gender and ethnicity information. For machine classification, the upper face regions hold more ethnicity information while the lower face regions hold more gender information. All regions were impacted by age, but the eyes were impacted the most in texture and color. The shape of the nose changed more with respect to age than any of the other regions

    Gender classification from infants to seniors

    No full text
    corecore