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Abstract

Gender Classification from Facial Images

by

Cunjian Chen
Master of Science in Computer Science

West Virginia University

Arun Ross, Ph.D., Chair

Gender classification based on facial images has received increased attention in the com-
puter vision community. In this work, a comprehensive evaluation of state-of-the-art gender
classification methods is carried out on publicly available databases and extended to real-
life face images, where face detection and face normalization are essential for the success
of the system. Next, the possibility of predicting gender from face images acquired in the
near-infrared spectrum (NIR) is explored. In this regard, the following two questions are ad-
dressed: (a) Can gender be predicted from NIR face images; and (b) Can a gender predictor
learned using visible (VIS) images operate successfully on NIR images and vice-versa? The
experimental results suggest that NIR face images do have some discriminatory information
pertaining to gender, although the degree of discrimination is noticeably lower than that
of VIS images. Further, the use of an illumination normalization routine may be essen-
tial for facilitating cross-spectral gender prediction. By formulating the problem of gender
classification in the framework of both visible and near-infrared images, the guidelines for
performing gender classification in a real-world scenario is provided, along with the strengths
and weaknesses of each methodology. Finally, the general problem of attribute classification
is addressed, where features such as expression, age and ethnicity are derived from a face
image.
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Notation

We use the following notation and symbols throughout this thesis.

xi : Vector representation of an image i

x̂ : Mean vector representation

(·)T : Matrix transpose∑
g : Covariance Matrix

〈·〉 : Dot product of two vectors

sign(·) : Sign function

‖ · ‖ : Euclidian norm

<{·} : Real part of the argument

={·} : Imaginary part of the argument

N : Gaussian Distribution

Bold upper case letters denote matrices and bold lower case letters denote vectors.
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Chapter 1

Introduction

1.1 Background

Gender classification plays an important role in Human-Computer Interaction (HCI),

upon which more complex visual systems are built [10]. Recognizing a person’s gender will

enhance the HCI’s ability to respond in a user-friendly and socially acceptable manner.

In the realm of biometrics, gender is viewed as a soft biometric trait that can be used

to index databases or enhance the recognition accuracy of primary traits such as face [11].

Moreover, gender classification is also an essential part in automatically labeling images with

demographic attributes such as ethnicity, gender, and others. Apart from the research work

done in computer vision, psychologists are particularly interested in how humans perceive

the gender from face images [12].

Gender classification is a fundamental task for human beings, as many social activities

depend on the precise identification of gender. In this work, gender identification is con-

sidered as a binary classification problem: male or female. Often times, the way humans

perceive gender does not only rely upon the perception of the face region, but also on the

surrounding context, such as hair, dress and skin tone [13]. The problem of predicting the

gender from face images is the scope of our study. It is possible that the hair information

might also be included in the face region, but the majority of the information presented are

the facial features, such as eyes, nose, mouth and cheeks. A recent work in [14] discusses an

interesting topic of changing genders, but preserving the biometric identity of the individu-
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als. Such gender conversion suggests that the perception of gender is a mixture of factors

related to the skin, hairstyle, facial components and facial hair.

1.2 Relevant Work

The study of automatic gender classification from face images dates back to the early

1990s and is one of the recent hot topics in studying facial attributes. Most techniques for

gender classification approach the problem from the perspective of machine learning, as it is

essentially a two-class classification problem.

Golomb et al. [15] trained a back-propagation neural network (BPNN) to identify gender

from human face images at a resolution of 30 × 30 pixels. An average classification rate of

91.9% on 90 exemplars was obtained compared to a human performance of 88.4%.

Gutta et al. [16] used hybrid classifiers consisting of an ensemble of radial basis function

(RBF) networks and decision trees. The experiments were conducted on a collection of 3006

face images corresponding to 1009 subjects from the FERET database. The cross-validation

results yielded an average accuracy of 96% on the gender classification task.

Later on, Moghaddam et al. [17] utilized a support vector machine (SVM) for gender

classification, based on low-resolution thumbnail face images of resolution 21 × 12. The

average rate for five-fold cross-validation on 1755 FERET face images was 96.62% with

the use of the Gaussian RBF kernel. They also compared their technique against other

classifiers such as RBF neutral network, Fisher Linear Discriminant (FLD) and Bayesian

classifier. Among all the methods, the SVM classifier gave the best performance. Their

work also pointed out that the SVM classification of low-resolution face images was very

effective, compared to other methods.

Baluja et al. [18] presented the use of Adaboost classifier to identify the gender of a

person from a low-resolution face image. The proposed system was extremely fast and yet

comparable to the SVM-based classifier. They reported an accuracy over 93% on a dataset

of 2409 FERET faces images with resolution 20× 20 pixels.

Although the use of low-resolution face images in [15, 17, 18] results in very good perfor-

mance for facial gender classification, it is a simple feature representation that may not be
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robust enough in some complex scenarios involving pose and illumination changes. Therefore,

other types of feature extraction methods have also been proposed.

BenAbdelkader et al. [19] presented an appearance-based method for gender classification

based on features extracted from local regions. The matching was performed on local regions

with the commercial FaceIt software. 94.2% was the best performance achieved on a database

of approximately 13,000 near-frontal images using the SVM classification methods.

Recently, with the popularity of Local Binary Patterns (LBP) for face recognition [20],

Yang et al [21] used the LBP histogram features for gender feature representation, and the

real adaboost algorithm to learn the best local features for classification. Experiments were

performed to predict the age, gender and ethnicity information from face images. A similar

work was presented in [22], where LBP features and Adaboost classifier were combined to

achieve better performance.

Local based descriptors have also been adopted in the work of gender classification. For

example, Guo et al. [23] evaluated gender classification results based on LBP, histograms

of oriented gradients (HOG), and Biologically-Inspired Features (BIF) with SVM as the

classifier. It was demonstrated that gender prediction was affected by age variations on

a large database. Wang et al [24] proposed a novel gender recognition method in terms

of the Scale Invariant Feature Transform (SIFT) descriptor and shape contexts. Again,

Adaboost was used to select features from face images to form the strong classifier. Other

approaches utilized gender-specific information, such as hair, to enhance gender prediction

[13], or genetic algorithms to select features that encoded gender information [25].

All the aforementioned work mainly focus on datasets that were collected under well-

constrained environments. Recently, gender classification on unconstrained real-world face

images has been attempted. Chen et al. [26] built a gender classification system on real-world

face images where the decision is based on the surrounding regions from face detection and the

associated context-regions. Shan [27] proposed to use the boosted LBP features to represent

face images and applied SVM to determine the gender on the Labeled Faces in the Wild

(LFW) dataset. They obtained a performance of 94.44% on a dataset of 7,443 face images.

Gallagher et.al [1] used social context information in real-world group images to accomplish

gender classificaiton. They argued that the struture information within the group provides
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meaningful context for individuals. For example, men were more likely to stand at the corner

of an image than women. Gao et.al [28] targeted face gender classification on consumer

images in a multiethnic enviroment. To overcome the non-uniformity of pose, expression,

and illumination changes, they proposed a robust Active Shape Model (ASM) to normalize

the face texture. The consideration of ethnic factors can help improve gender classification

accuracy in a multiethnic enviroment. Recently, Toews [29] extended gender classificaiton

to arbitrary viewpoints and under occlusions. A viewpoint-invariant appearance model was

learned for the object class and a bayesian classifier was trained to identify the model features

that indicate gender. In the work of [30], images with unconstrained pose, expression and

light conditions were considered for gender classification based on additive logistic models.

In principle, a gender classification method can be divided into two components: (a) a

feature extractor that extracts features from the face and (b) a feature classifier that assigns

the extracted features into one of two classes - male or female. Feature extraction methods

include the use of low resolution face images [17, 18], Principle Component Analysis (PCA)

[31], Linear Discriminant Analysis (LDA) [32], Independent Component Analysis (ICA)

[33] and LBP [21, 27, 22]. Some feature selection algorithms [34] have also been used to

select gender specific features. Most gender classifiers are based on Neural Network [15, 34],

Adaboost [18, 21, 22, 27], Gaussian Process (GP) classifier [35] and SVM [17, 19, 23]. A

systematic overview of methods for gender classification from face images in the visible

spectrum can be found in [10].

The overview of gender classification methods and their accuracies are summarized in

Table 1.1. It gives a brief summary of different algorithms used in the past. Only those

algorithms that predicted the genders from facial images are selected, and not those based

on body [36, 37] or gait [38]. Furthermore, gender prediction from speech [39] has also not

been included for comparison. The list of datasets used varies from one work to the other.

The authors may have presented numerous results on multiple datasets in a single paper,

but only one of them is listed. Based on the information presented, it is easy to trace the

trend of gender features and classifiers used in the literature.
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Table 1.1: Overview of recent studies on gender classification.

Study Features Classifier Name, Size Perf.

1990 [15] Raw pixels Neural Network Private, 90 91.9%

1998 [16] Raw pixels Hybrid Classifier FERET, 3006 96%

2002 [17] Raw pixels SVM FERET, 1755 96.62%

2004 [33] ICA LDA FERET, 500 99.3%

2005 [19] Local features SVM Identix, 13,000 94.2%

2005 [34] PCA Neural Network Private, 400 88.7%

2006 [22] LBP Adaboost FERET, 2000 95.75%

2006 [35] Raw pixels GPC AR, 515 97%

2007 [18] Raw pixels Adaboost FERET, 2409 93%

2007 [21] LBP Adaboost Private, 3540 96.32%

2008 [40] LBP,Gabor SVM CAS-PEAL, 10,784 93.74%

2009 [28] ASM Adaboost Private, 1300 92.89%

2009 [29] SIFT Bayesian FERET, 994 83.7%

2010 [27] LBP Adaboost LFW, 7,443 94.44%

2010 [23] LBP,HOG, BIF SVM YGA, 8,000 89.28%

2010 [24] SIFT,Context Adaboost FERET, 2409 95%

2011 [32] PCA LDA FERET, 994 93.33%
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1.3 Thesis Outline

Before we delve into gender classification, some preprocessing steps such as face detection

and face normalization are necessary. These are important components of a gender classifica-

tion system deployed in practical applications. Without reliable output from face detection,

results from gender prediction would become meaningless. For more detailed discussions

concerning face detection, the reader is encouraged to refer to [41].

In Chapter 2, the key concepts in gender classification are reviewed, including face de-

tection, face normalization, feature extraction and classification. The gender feature repre-

sentation methods mainly considered in this work include PCA, LDA, GaborFace and LBP.

PCA is a very useful dimension reduction tool, which can be applied to generate a compact

feature descriptor. Such a dimensionality reduction technique retains only the essential in-

formation that is useful for gender recognition while reducing the computation cost. Due

to less discrimination power of PCA used for classification, LDA is introduced to overcome

the limitations of PCA. Then, Gabor and LBP descriptors are introduced to represent the

gender features. LBP was previously investigated in the work of [21, 27, 22], where LBP his-

togram (LBPH) features derived from local regions of face images were concatenated to form

the holistic feature vector. Among the variants of LBP-based descriptors, Multi-block based

LBP (MBLBP) is chosen to extract the gender features. It has been shown that such a LBP

descriptor gives very good performance in discriminating gender information. Therefore, it

is particularly interesting to determine how to use the LBP features in order to improve gen-

der classification performance. Apart from LBP, Gabor descriptor is another local feature

descriptor used in our work. Therefore, both global descriptors (PCA and LDA) and local

descriptors (LBP and Gabor) are tested in the framework of gender feature extraction.

Recalling the gender classification work from [17], it has been shown that the SVM-based

gender classifier can achieve very good results. Therefore, we adopt SVM classifier in most of

our tasks, with the emphasis on the selection of kernel and parameters for optimization. We

also introduce other type of classifiers such as Adaboost and FLD to perform comparison.

The strength and weakness of each methodology is evaluated through numerous experiments

on various databases. Such a comparison is necessary to understand the performance of
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gender classification under different scenarios thereby providing guidelines for future work.

In Chapter 3, we extend the gender classification work from visible (VIS) images to near-

infrared (NIR) and thermal (THM) images. It is demonstrated that gender classification

can be successful in NIR and THM spectra. Furthermore, we study the possibility of cross-

spectrum gender classification, where the trained classifier is in one domain (e.g., VIS) and

the test samples are from another (e.g., NIR). Due to the fact that appearance informa-

tion presented in multiple spectra are contrastingly different, an illumination normalization

approach is adopted to reduce the difference between those two spectra. Similar to gender

classification in the visible domain, we prefer the SVM classifier [17] to predict gender from

NIR spectrum or THM spectrum images. The performance is evaluated on public databases

and the experiments demonstrate promising results.

As has been mentioned, gender feature is one of several visual traits that can be observed

from face images. Other attributes such as ethnicity, age and expression can also be per-

ceived from the human face to a certain degree. The current work is extended from gender

classification to attributes-based classification in Chapter 4.

Finally in Chapter 5, the main contributions of the thesis are reviewed, as we conclude

this thesis work. Future work for potential improvement of system’s performance is also

discussed.
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Chapter 2

Gender Classification

Gender classification is a fundamental task for human beings, as many social activities

depend on the successful perception of gender information. In demographic data collection

applications, information such as gender requires accurate gender identification. Automatic

gender classification is also a useful preprocessing step for face recognition since it is pos-

sible to reduce the number of potential face candidates. Many studies have been proposed

to address the gender identification problem. But it is still unclear what kind of gender

features are useful for discrimination. Besides, there are few benchmark datasets that have

been used to compare different approaches. In this chapter, we systematically compare var-

ious gender feature extraction methods after using different classifiers on numerous publicly

available datasets. The structure of the whole chapter can be viewed in the system flowchart

(Figure 2.1). In our research we have investigated several different feature extraction meth-

ods and discriminant classifiers. Developed framework consists of two parts: automatic face

detection on images or video and applying of a gender classification algorithm to detected

faces.

In this chapter, automatic gender classification is divided into different parts in order

Figure 2.1: Overview of the system flowchart.
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to provide detail analysis for each component. In Section 2.1 different approaches for face

detection and facial feature localization are studied. After briefly discussing the face detector,

the importance of face normalization based on the detected feature points is emphasized.

This essentially reduce the intra-class variations between samples and potentially improve

the classification accuracy. In Section 2.2, the feature extraction and classification methods

are introduced. During the feature extraction procedure, a compact feature descriptor is

derived from the normalized face image and then fed into the classifier to predict the gender.

Finally a summary of the chapter will be given in section 2.5.

2.1 Face Detection

Face detection has a wide range of applications such as automatic face recognition, face

tracking, and surveillance. It is also a very critical pre-step for automatic gender classifica-

tion. Most of the current face detection algorithms treat this task as a two-class (face/non-

face) classification problem and employ neural-network based methods [42], support vector

machines [43], and adaboost [44]. The final accuracy of gender classification depends heavily

on the output from the face detector. This means that we need to locate all the faces in the

images while reducing false positives.

However, face detection is still a challenging problem due to the large variations in the

face images. The variations associated with face are due to pose, expression and lighting

changes. Among these factors, pose and lighting account for most of the failures in detec-

tion. Another issue is partial occlusion, caused either by another face or by other objects

presented in the image. The image conditions can also vary. Some images are taken in an

indoor environment (Figure 2.2), while others might be captured in an outdoor environment

(Figure 2.4). The quality and resolution of the images all contribute to the complexity of

face detection (Figure 2.3). The searching of potentially large candidate regions makes the

algorithm time consuming and unsuitable for real-time application.

Thanks to the cascaded face detector proposed by Viola and Jones [44], face detection can

be done accurately in real-time. Cascaded face detector searches for faces using a sub-window

approach and each sub-image is passed to the layers of classifiers to determine whether the
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Figure 2.2: An example of face detection using the Adaboost method from OpenCV; all of
the faces are correctly detected. Image is from a dataset collected by [1].

Figure 2.3: Face detection using Adaboost: one false positive and one false negative. Image
is from a dataset collected by [1].

region contains a face or not. If the sub-image is successfully classified as a face by all the

classifiers then the face detector will claim that this sub-image contains the face [10]. The

survey of face detection methods can be found in [45]. The Adaboost classifier based on

Haar-like features generally gives very good performance and is adopted in the automatic



Cunjian Chen Chapter 2. Gender Classification Evaluation 11

Figure 2.4: Face detection in a complex environment. Image is from a dataset collected by
[1].

gender classification system.

2.1.1 Feature Localization

The output of face detector only gives the coarse location of the face image. It does

not specify the feature locations of eyes, mouth and nose. To locate the features present

in the face region, a simple way is to train individual classifiers for locating the eye, mouth

and nose region inside the detected face. But this still has the same limitation as the face

detector. Other approaches utilize the relationship or structure between facial features to

build a generative model [46]. The probability distribution of the joint feature positions is

modeled as a mixture of Gaussians. The appearance of each facial feature is assumed to be

independent of the other and a discriminant classifier is trained to determine each feature

position using Haar-like features.

Another recent approach is to use Active Appearance Model (AAM) [47, 48] or Ac-

tive Shape Models (ASM) [3] to localize the facial features. The shape of a face image is

represented by v vertices that define a mesh,

s = [(x1, y1), (x2, y2), . . . , (xv, yv)]
T . (2.1)

AAM imposes linear constrains on shape variation, and so an input shape can be represented
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as the linear combination of N base shapes,

s = s0 +
N∑
i=1

pisi. (2.2)

Here, s0 is the mean shape, si is the ith base shape, and pi is the corresponding weight vector

for this shape. The texture is defined as the pixel intensities that are within the shape

boundary. It can be defined as a vector of intensities A(x):

A(x) = A0(x) +
M∑
i=1

λiAi(x), (2.3)

where A0(x) is the mean texture and Ai(x) is the ith texture vector. Unlike AAM, ASM seeks

to only match the positions of the feature points, although some models may incorporate

the texture information. Such a model is usually referred to as constrained AAM. The AAM

fitting problem is usually defined by a cost function, which tries to minimize the following:

r(p) = (Ai(x)− Am(x))T (Ai(x)− Am(x)). (2.4)

This classical optimization problem can be solved in an iterative way. Matthews and Bakers

[48] proposed a popular AAM fitting method within the framework of the Lucas-Kanade

algorithm. But it cannot generalize well to unseen subjects for locating feature points.

Sometimes, the notations of AAM and ASM are exchangeable as they might be used in

different scenarios. An example of ASM fitting for localization of facial landmarks is shown

in Figure 2.5. We use the Stasm library [3] for the ASM fitting. Usually, the face detector

is invoked first to provide the coarse location for the initialization of AAM, then the model

would fit onto the face images until convergence condition is satisfied. Currently, the search

for feature points using AAM is not accurate for face images with large pose changes. As our

study is mainly constrained to near-frontal face images, the AAM can localize the features

with very accurate results.

2.1.2 Face Normalization

Once the localization of face region and facial features are completed, it is necessary to

normalize the face images based on both geometry and appearance. In case of face images
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Figure 2.5: ASM used to locate various features in face images. Images are from lifespan
database [2]. The output is based on the algorithms described in [3].

with certain pose and illumination changes, such a preprocessing step has been proved to

be effective for the succeeding tasks [10], viz., face recognition and gender classification.

The geometry of the face images are normalized by registering the images according to the

detected features such as eye coordinates. Some researchers also use other features such as

mouth. The appearance normalization can be achieved by applying histogram equalization

or other illumination normalization approaches.

We follow the normalization approach proposed by Bolme [4]:

• Geometric normalization: the image is scaled so as to make the distance between the

eyes constant or fixed. The standard FERET normalization approach crops the image

to the size of 150x130 pixels with 70 pixels between the centers of the two eyes.

• Masking: a mask is applied in order to zero out pixels not in an oval that contains

the typical face region. Thus, hair, shirt collars, etc. are usually removed. It can be

implemented through ellipse fitting.
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• Histogram equalization: equalization is used to smooth the distribution of grey scale

values for the non-masked pixels. That can help alleviate the impact of illumination

changes.

• Pixel Normalization: the image is normalized so that the non-masked pixels have mean

zero and standard deviation one.

As shown, the normalized samples (Figure 2.6(b)) possess far less variations across the

database than the original unprocessed samples (Figure 2.6(a)). The application of mask on

the face images eliminates some unnecessary background information. But in some cases,

part of the hair information is still retained.

(a) (b)

Figure 2.6: (a). Original samples from FERET dataset; (b). Corresponding normalized
images from FERET dataset. The output is based on the algorithms described in [4].

Another much simpler face alignment method is to normalize the face images based on

the eye coordinates, such that the two eye centers of all the face images are at fixed positions

after translation, rotation and scaling operations. This normalization approach is described

in [10] and briefly introduced below:
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• Locate the center positions of two eyes, either manually or automatically.

• Rotate the image so that the eyes are vertically aligned. The angle of rotation is

calculated according to the eye positions.

• Calculate the Euclidean distance d0 between the eyes in the rotated image.

• Calculate the ratio r = d0/dt, where dt is the distance of the eyes in the resized image.

• Compute the width w0 and height h0 around the areas of eyes as w0 = r ∗ wt and

h0 = r ∗ ht, where wt and ht are the width and height of the resized image.

• Compute the coordinates for the corners of the face area in the rotated image.

The resized image is fixed to a specific dimension such as 128 × 128 or 64 × 64. After

the alignment of images based on eye coordinates, all the resultant samples will have the

same image size. The distance between the eye coordinates are fixed and placed in the same

position. Such a geometric-based normalization does not account for illumination changes

and may include some background information. The choice of normalization depends on the

specific application and the feature extraction method and classifier used. For instance, in the

task of age estimation, where the texture information is affected by histogram equalization,

a simple alignment approach is preferred.

One limitation about the two aforementioned methods is that they do not account for

pose changes. In other words, the pose correction procedure is not included. The AAM

method 1 described in section 2.1.1 can be used to normalize the pose, apart from feature

localization [49]. We can perform Delaunay triangulation and piece-wise affine warping

to bring the arbitrary pose to a neutral pose. An example is shown in Figure 2.7. This

normalization is particularly useful when the input face images have large pose variations.

2.2 Proposed Methods

The previous sections mainly focus on the detection and normalization of face images. In

this section, different feature extraction and classification methods are discussed for gender

1AAM-API: http://www2.imm.dtu.dk/ aam/aamapi/
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Figure 2.7: Pose normalization by AAM. Image is from IMM face database [5].

Figure 2.8: Different possible combinations of gender classification methods.

recognition on normalized images. The well-known Eigenface, Fisherface, and Gaborface

methods for gender feature representation are introduced, in addition to Local Binary Pattern

(LBP) descriptor. The classifiers that are used include Adaboost and SVM. That could

provides us with many different combinations (Figure 2.8). Some other classifiers would also

be introduced in the later chapter. Since we approach gender classification from a machine

learning perspective, the appearance-based methods are expected to be suitable for this

task. The learning procedure aims to automatically learn discriminative features for gender

representation based on a pool of features, and seeks to compute the decision boundary

which can separate the male and female class.

2.2.1 Principle Component Analysis

Previous work on gender classification in the visible domain utilized features extracted

via PCA [17, 50, 25] or Haar-like features [18]. In this work, we use the PCA features since

it has been successfully used in previous literature. Consider a labeled set of N training

samples {(xi, yi)}Ni=1, where xi is the facial image and yi is the associated class label. Here,
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yi ∈ {−1, 1}, where a -1 (+1) indicates a female (male). The PCA is performed on the

covariance matrix of vectorized images.

Σg =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T (2.5)

where xi is the sample image after vectorization and x̄ is the mean vector of the training set.

The eigenvectors, known as eigen faces, can be obtained through the decomposition,

ΣgΦg = ΦgΛg (2.6)

where Φg are the eigenvectors and Λg are the corresponding eigenvalues. The gender features

can be extracted by projecting the sample image onto the subspace expanded by eigenvectors:

si = ΦT
g (xi − x̄) (2.7)

where si is the feature vector to represent the gender information of sample xi. The feature

vectors corresponding to the training set and their label information {si, yi} are stored in

the database. In the testing stage, when an unknown facial image is presented, the same

feature extractor is invoked to obtain the feature set, which is fed into a classifier G to predict

the gender. Examples of eigen faces are shown in Figure 2.9. One of the most important

parameters in the PCA analysis is the number of eigvectors. Generally, we select the top K

eigenvectors to construct the subspace that includes both male and female information based

on the ordering of eigenvalues (Figure 2.10). The value K can be set to 60, for instance.

2.2.2 Fisherface and Gaborface

Fisherface takes advantage of the fact that the within class variation lies in a linear

subspace that is convex and separable [51]. It models the between-class scatter matrix as,

SB =
c∑
i=1

Ni(µi − µ)(µi − µ)T (2.8)

and the within-class scatter matrix as,

SW =
c∑
i=1

∑
xk∈Xi

(xk − µi)(xk − µi)T (2.9)
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Figure 2.9: Eigenface computed from a training set from the FERET database.

Figure 2.10: Distribution of EigenValues, from largest to smallest.

where µi = 1
Ni

∑Ni
i=1 xi is the mean sample of class Xi and Ni is the number of samples in

class Xi. The summation of N =
∑c

i=1Ni is the total number of samples for the dataset.

The objective function is to maximize the between-class scatter matrix SB while minimizing

the within-class scatter matrix SW , i.e.,

Wsub = arg max
W

|W TSBW |
|W TSWW |

, (2.10)
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where the resulting subspace Wsub is obtained by solving the generalized eigenvectors prob-

lem,

SBwi = λiSWwi (2.11)

Therefore, Wsub = {wi|i = 1, 2, · · · ,m} and m is the number of eigenvalues. An upper bound

on m is c−1, where c is the number of classes. For the binary classification problem (c = 2),

the number of nonzero eigenvalues is 1. However, for the Eigenface methods, there is no

such restriction on the selection of available eigenvectors. It is very common to have fewer

sample vectors than features (pixels). Therefore, the within-class scatter matrix SW can be

singular and the LDA projection matrix Wsub cannot be computed directly. Instead, PCA is

often applied first to retain eigenvectors with nonzero eigenvalues and then LDA is applied

to the reduced transformation space. Such a combination of PCA and LDA is often termed

as Fisherface. The merits of each method and their potential applications can be found in

[51].

Apart from the work on Eigenface and Fisherface, Gaborface [52] provides another way

for encoding facial features via texture information. Gabor wavelets 2 have been extensively

investigated in face recognition [52] and expression recognition [53] due to its optimal local-

ization properties in both spatial and frequency domain, similar to the 2D receptive field

profiles of the mammalian cortical simple cells [52]. The basic idea is to decompose image

into multiple scales and orientations to capture texture information. The gabor wavelets are

defined as follows [52],

ϕµ,υ(z) =
||kµ,υ||
σ2

e
− ||kµ,υ ||

2

||z||2 eikµ,υz−e
−σ

2

2 (2.12)

where µ and υ denote the orientation and scale of the Gabor kernels. The wave vector kµ,υ

is given by,

kµ,υ = kυe
iφµ (2.13)

where kυ = kmax/f
υ and φµ = πµ/8. Here, kmax is the maximum frequency and f is the

spacing factor between kernels in the frequency domain. In real applications, the parameters

2Gabor wavelet: http://www2.it.lut.fi/project/simplegabor/
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of µ and υ are chosen as 8 orientations and 5 scales, resulting in total of 40 images of Gabor

response. To encompass all the features produced by Gabor kernels, one can choose to

apply feature extraction methods to augment the Gabor feature vector. Common feature

extraction methods like Eigenface and Fisherface can be applied. The output of the Gabor

response is complex. Usually, the magnitude representation of the Gabor response is selected

(Figure 2.11).

Figure 2.11: Gabor magnitude representation of a face image. Image is from AR face
database [6].

2.2.3 Local Binary Pattern

Another promising feature extraction method is the Local Binary Pattern 3 texture de-

scriptor which shows good discrimination power for many face-related applications. LBP

[54] are features calculated from the pixel intensities within a pixel neighborhood. Ahonen

et al. [55] first extended the research work to face recognition and demonstrated that this

local feature descriptor was very efficient in face representation. After that, numerous al-

gorithms based on LBP have been proposed. Shan [56] adopted LBP to solve the facial

expression recognition problem. Furthermore, it has also been demonstrated that illumina-

3LBP implementation: http://www.cse.oulu.fi/MVG/Downloads/LBPMatlab
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tion invariant feature face representation can be obtained by integrating the techniques of

LBP in [57, 58]. In addition, LBP in [59] is applied to estimate the head pose. Due to the

fact that multi-resolution technique is a very useful tool to analyze images at different scales

and orientations, the face image is modeled as a concatenation of the histograms of all the

local regions derived from local Gabor magnitude [60].

The LBP operator was first introduced as a texture descriptor that computes patterns

in an image by thresholding 3× 3 neighborhoods based on the value of the center pixel, and

then converting the resulting binary pattern into a decimal value. Later, it was extended to

include neighborhoods of different sizes to account for textures at different scales.

The local neighborhood is defined as a set of sampling points evenly spaced on a circle.

The LBP operator is described as LBP u2

P,R, where P refers to the number of sampling points

placed on a circle with radius R. The symbol u2 represents the uniform pattern which, in our

case, refers to those binary patterns that have at most two bitwise transitions from 0 to 1 or

1 to 0. For instance, 10011111 is a uniform binary pattern while 10100111 is not. Uniformity

is an important concept as it characterizes micro-features (structural information) such as

lines, edges and corners in the image. Although only 58 out of the 256 8-bit patterns are

uniform, nearly 90% of all observed image neighbourhoods are uniform [61]. We chose to use

LBP u2

8,1 in all our experiments based on empirical evidence. The binary pattern for pixels

lying in a circle (fp, p = 0, 1, . . . , P − 1) with the center pixel fc, is computed as follows:

S(fp − fc) =

{
1 if fp − fc ≥ 0;

0 if fp − fc < 0.
(2.14)

Then a binomial weight 2P is assigned to each sign S(fp − fc) to compute the LBP code,

LBPP,R =
P−1∑
p=0

S(fp − fc)2P . (2.15)

Our approach using LBP is described as in Figure 2.12. The original image is first divided into

non-overlapping small blocks, and then the LBP histogram is computed for each block. After

deriving the histogram sequence for each block, the final global representation is obtained by

concatenating the individual sequences. This is not the only way to extract the histogram

features from image. It is possible to change the assumption of non-overlapping blocks to

dense sampling of blocks and applying Adaboost method to select LBPH features [21].
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Figure 2.12: Multiblock-based LBP representation for a face image. Image is from FERET
database [7].

2.2.4 Support Vector Machine

A Support Vector Machine (SVM) 4 is a machine learning technique used for pattern

classification and regression analysis. It is based on the concept of searching linear boundary

between two classes of patterns as follows,

y(x) = wTφ(x) + b (2.16)

where φ(x) denotes the transformation of the original feature-space and b is the bias. The

training set comprises of a set of N training samples {x1, · · · , xN}, with corresponding label

values {t1, · · · , tN} where ti ∈ {−1, 1}. The incoming new data point x is classified based on

the sign of y(x). Currently, we assume that the training dataset is linearly separable in the

transformed feature space, which indicates that there would be a linear boundary defined by

parameters of {w, b} that satisfies the conditions:

y(xi) =

{
1 if ti = +1;

0 if ti = −1.
(2.17)

The final criteria is to make sure that ti · y(xi) > 0 for all the training data points. There

are many possible ways to search for the linear boundary, such as using a perceptron [62]

or employing Fisher Linear Discriminant [63]. The SVM addresses this problem from the

perspective of maximizing the margin, which is defined to be the smallest distance between

4LIBSVM: http://www.csie.ntu.edu.tw/ cjlin/libsvm/



Cunjian Chen Chapter 2. Gender Classification Evaluation 23

the decision boundary and any of the samples among the patterns. The subset of points that

lie on the boundary are called support vectors. The maximum margin solution for SVM is

obtained by solving

arg max
w,b

1

‖w‖
min
i

[ti(w
Tφ(xi) + b)] (2.18)

An equivalent solution can be obtained by minimizing the following function which is much

easier to solve:

arg min
w,b

1

2
‖w‖2 (2.19)

subject to the constraint,

ti(w
Tφ(xi) + b) ≥ 1, i = 1, · · · , N. (2.20)

This solution is to minimize the constrained quadratic function. To classify the new data

points using the trained model, SVM uses the sign of the output to determine the member-

ship.

f(s) =
M∑
i=1

yiαi · k(s, si) + b, (2.21)

where k(s, si) represents the kernel function and the sign of f(s) determines the class label of

s (gender). The linear kernel is the simplest function, and it is computed by the dot product

〈s, si〉 plus an optional constant c. Any vector si that refers to a non-zero αi is called a

support vector (SV) of the optimal hyperplane that separates the two classes. The common

kernels used are the radial basis function (RBF) kernel and the linear kernel. However, in

some cases where the features are derived from histogram representation, such as LBP and

HOG, the histogram intersection kernel might be more effective.

k(x, y) =
n∑
i=1

min(xi, yi) (2.22)

where xi and yi are the ith histogram bin for the feature vectors of x and y. If we know the

dataset is linearly separable, it is preferable to use a linear kernel, which often gives much

faster solutions.
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However, the training patterns may not always be linearly separable due to variation in

data samples or noise. Thus the goal of SVM is to maximize the margin and penalize the

outliers simultaneously [64]. Hence,

min
w,b,ε

1

2
wTw + C

l∑
i=1

εi (2.23)

subject to the constrain,

yi(w
Tφ(xi) + b) ≥ 1− εi, εi ≥ 0. (2.24)

The variable ε is used to measure the degree of misclassification. The RBF kernel function

φ is used to map the data into high dimension so that the dataset may become linearly

separable in the high dimension space. It is defined as K(xi, xj) = exp(−r||xi−xj||2), r > 0.

There are two parameters for the RBF kernel: the cost C (penalty) and the gamma r. The

goal is to identify a good pair of parameters (C, r) so that the classifier can accurately predict

unknown data. A common strategy is to split the training set into v subsets of equal size.

Only one subset is used for testing based on the trained classifier on the other datasets. Such

v-fold cross validation can prevent the overfitting problem. Usually, a grid search approach is

used to find the parameters C and r. The idea is to try various pairs of (C, r) and select the

one with the best performance accuracy. Due to the large searching space for the pair (C, r),

an easy way to reduce the searching cost is to constrain the parameter space to exponentially

distributed patterns, such as C = 2−5, 2−3, · · · , 215 and r = 2−15, 2−13, · · · , 23.

2.2.5 Adaboost Classifier

In the Adaboost algorithm 5, specific features are selected among a large pool of features

based on their discrimination capability. It has been proved to be effective in [22, 21, 27] to

select LBP features. It is an algorithm for constructing a strong classifier as the cascaded

linear combination of simple weak classifiers. In the cascaded arrangement, the subsequent

classifiers are built in the sense that they are tweaked in favor of those training patterns

5AdaBoost: http://cmp.felk.cvut.cz/cmp/software/stprtool/
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misclassified by previous classifiers.

f(x) =
T∑
t=1

αtht(x) (2.25)

where ht(x) refers to the weak classifier operating on the input feature set x. The sign(f(x))

is the final strong classifier. αt is the corresponding weight for each weak classifier. For

example, in the Viola Jones method for face detection [44], rectangular Haar-like features

are used as weak classifiers. For gender classification with boosted LBP, the histogram bin

features are considered to be the weak classifiers. One criteria for constructing the weak

classifiers is that they should be able to separate the positive/negative classes with certain

accuracy. Besides, they should also be very easy and fast to compute. Adaboost calls a weak

classifier ht(x) repeatedly in a series of rounds t = 1, · · · , T . For each round, a distribution

of weights Dt is updated accordingly based on the importance of examples in the training

dataset for classification. Initially, all the samples are assumed to have equal weights. Then,

the weights of misclassified samples are increased so that the classifiers can focus more on

those misclassified samples. The algorithm can be described as follows [65]:

Consider a labeled two-class dataset: (x1, y1), · · · , (xm, ym), where xi ∈ X, yi ∈ Y =

{−1, 1}. Here, m denotes the total number of samples in the dataset, X refers to the set of

training samples and Y is the label information.

Initialize D1(i) = 1
m
, i = {1, · · · ,m}.

For t = 1, · · · , T :

• Find the classifier ht : X → {−1,+1} that minimizes the error with respect to the

distribution Dt

• If εt ≥ 0.5, where εt =
∑m

i=1Dt(i)(yi 6= ht(xi)) then stop

• Choose αt ∈ R, usually αt = 1
2
ln1−εt

εt

• Update

Dt+1(i) = Dt(i)exp(−αtyiht(xi))
Zt

where Zt is a normalization factor such that Dt+1 is a

distribution.
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Output the final classifier:

H(x) = sign(
T∑
t=1

αtht(x)) (2.26)

One of the main ideas of the algorithm is to maintain a distribution of weights over the

training set. The weights on each training example i at round t is denoted as Dt(i). Initially,

all the weights are equal. After each round, the weights of misclassified samples are updated

so that the weak learners can focus on those hard samples. There are many variants of

Adaboost, such as Discrete Adaboost, Real Adaboost and Gentle Adaboost [66]. We choose

the Real Adaboost method because it is more resilient to noise and outliers. It uses a slightly

different rule to update the weights.

2.2.6 Other Gender Classifiers

LDA: In the work of [32], the authors argued that the use of linear classification tech-

niques is preferred in the context of limited computational resources. LDA classifier tries to

maximize the separation of male and female class based on the Fisher’s criterion:

J(w) =
wTSBw

wTSWw
, (2.27)

where SB is the between class scatter matrix and SW is the within-class scatter matrix.

J(w) is the objective function that we are trying to maximized with respect to w. And

the maximum value (projection matrix) is obtained by solving the generalized eigenvalue

problem of S−1W SB.

Random Forest: Random Forest (RF) [36] is an ensemble classifier that consists of

many decision trees. Each decision tree is trained independently and successively based on

a boot-strapped sampling of the training dataset [36]. The individual learners are combined

through bootstrap aggregation. Given an input feature vector, it successively moves through

the individual trees in the forest. The final classification is based on a majority voting over

all the trees. Recent work [67] on the task of gender classification from infants to seniors has

also shown the superiority of using Random Forest for feature selection.
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GMM: In the GMM classifier, the probability density function for each class (i.e., male

and female) is modeled as a multivariate Gaussian distribution:

p(x) =
1

(2π)D/2
1

|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)}. (2.28)

Here, D is the dimension of the feature vector that encodes gender information and µ is

the D-dimensional mean vector. Σ is the D × D covariance matrix and its determinant is

denoted by |Σ|. The classification is done by maximizing the posterior function: p(Ci|xt) =

p(xt|Ci · p(Ci)), i ∈ {1, 2}.

MLP: A MLP neutral network is composed of an input layer, a hidden layer and an

output layer. It utilizes a supervised learning technique (backpropagation) to train the

network. The number of input nodes is equal to the dimension of the feature vector. We

select 20 hidden nodes and the number of training cycles is set to be 40. The output value is

based on the classification threshold, for instance, 0.5. An output value above the threshold

is classified as male and a value below is classified as female.

2.3 Experiments

In this section, we evaluate the performance and compare the above mentioned ap-

proaches with different datasets. We used three image datasets in this experiment: FERET

database [7], AR face database [6] and an image dataset collected from world wide web

(WWW) [1]. The FERET dataset has been well studied in the work of [66]. The authors

use this benchmark dataset for the evaluation of various gender classification methods. Due

to the limited size of the FERET dataset, we use the AR face database to confirm our

results. The WWW dataset is used to measure the gender classification performance in

unconstrained environments. Apart from single database being tested, the trained classifier

from FERET is evaluated on the real-world dataset to show the generalization capability of

the proposed methods. The characteristic of each database is summarized as follows,

• FERET: A benchmark dataset, used to compare different gender classification algo-

rithms.



Cunjian Chen Chapter 2. Gender Classification Evaluation 28

• AR Face: A dataset with occlusions, used to test the resilience of gender classification

algorithms to occlusion.

• WWW: A real-world dataset, used to characterize difficult scenario where gender

classification needs to improve.

2.3.1 FERET Database

The FERET database [7] contains good quality gray scale face images. A small subset of

the FERET is provided by Makinen [66]. It is publicly available on the author’s website 6.

One of the benefits of using such a dataset is to compare the results with the work of other

researchers and also make the results reproducible. The dataset contains 304 training images

and 106 testing images. The number of male and female subjects are equal in the training

dataset. There are 59 males and 47 females in the testing set. Samples of the images are

shown in Figure 2.13. Here all of the images are aligned and cropped according to the eye

coordinates based on the method introduced in Section 2.1.2. The size of each image after

alignment is 128× 128. No illumination normalization is applied here.

Figure 2.13: Sample images from the FERET dataset.

6http://www.cs.uta.fi/hci/mmig/vision/datasets/
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All the experimental results (Figure 2.14) were obtained by using the same training set

and testing set described above. One sample per subject is used and there is no overlapping

of subjects between training and test set. In order to make the work comparable to [10], we

do not apply cross-validation or random splitting methods. The reason for using the same

number of males and females for training is to make the dataset well-balanced. The number

of males and females in the test set has no such restriction.

The PCA with Nearest Neighbor classifier (PCA+KNN) is used as a baseline to compare

against. The length of feature vector after dimension reduction is 60 if not specified. In

other words, only the top 60 eigenvectors are kept. The SVM implementation has employed

both linear and RBF kernels. The local LBP descriptor of face image is also included here to

compare against holistic-based PCA presentation. Three discriminant classifiers, viz., Fisher

Linear Discriminant (FLD), Quadratic (Quad) and Adaboost (Boost) classifiers were also

included. Overall, we have three types of face representations and five classifiers resulting in

15 different approaches. Here, we only select eight representative methods to illustrate the

results for gender classification.

With the same linear SVM classifier, the LBP representation (LBP+SVM) is less ef-

fective than PCA (PCA+SVM). The PCA captures the global information while the LBP

descriptor characterizes the local information. This does not necessarily imply that global-

based approaches are better than local approaches for gender classification. The current

evaluation is conducted on a single dataset and cannot be used to infer the results on other

datasets. One of the main objectives in gender classification is to seek discriminant gender

features. Those gender features are derived from appearance information, either locally or

globally. An interesting phenomena is that the raw pixels of images also provide sufficient in-

formation to discriminate between the genders (Raw+SVM). This has already been verified

in the work of [17], which shows that gender classification of thumbnail images can achieve

very high classification rate. Experimental evaluation has established that SVM provides

superior performance among all classifiers. The linear FLD classifier [68] also achieves very

good performance with PCA features at 86.79%. However, the Quadratic classifier [68] does

not generalize well to unseen images due to the over-fitting problem. It produces the largest

classification error. The pixel-wise Adaboost classifier is a bit sensitive to the noise in this
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case and the resulting performance is not as good as the SVM classifier. Another explanation

is that the Adaboost classifier is not well-suited to the small size of the training dataset. The

best performance achieved on this dataset is 91.51% with the method of PCA+SVM. The

RBF kernel is used for the SVM and the gamma paramter is set to be 2. The kernel-based

PCA with SVM (KPCA+SVM) [69] has the next best performance at 90.57%.

The image has been resized to a resolution of 22×16 for all methods, except the LBP and

Adaboost approaches. The LBP method uses an image size of 64× 64, while the Adaboost

approach uses an image size of 16 × 16. Here, the number of eigenvector is kept as 150 for

PCA-based methods. The individual classification results for male and female, along with

some other parameters are shown in Table 2.1. The male classification result is computed by

counting the correctly classified samples within the male group. The same scenario applies

to the female classification result. As shown, the role of gender affect the final output of

prediction. Even humans perceive males and females differently.

Figure 2.14: Comparison of gender classification methods on FERET dataset.
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Table 2.1: Gender classification accuracies on FERET dataset.

Algorithms Rank-1 Rate Male Female

RawPixels+SVM(RBF) 0.9057 0.8983 0.9149

PCA+SVM(RBF) 0.9151 0.8983 0.9362

KPCA+SVM(Linear) 0.9057 0.8983 0.9149

PCA+FLD 0.8679 0.8475 0.8936

PCA+Quadratic 0.8113 0.7797 0.8511

LBP+SVM(Linear) 0.8396 0.8475 0.8298

RawPixels+Adaboost 0.8774 0.8814 0.8723

PCA+KNN(L1) 0.7050 0.8136 0.5745

2.3.2 AR Face Database

The AR face dataset [6] contains 50 male subjects and 50 female subjects. Images feature

frontal view faces with different facial expressions, illumination conditions, and occlusions

(sun glasses and scarf). Each person participated in two sessions, separated by two weeks

(14 days) time. The same subject was taken in both sessions (Figure 2.15). 25 males and 25

females were included in the training set, which consists of 1300 samples. The remaining 25

males and 25 females are used for testing, resulting in a total of 1300 samples. Notice that

the subjects are not overlapping in the training and test set. But we use multiple samples

per subject. The size of each image is 165× 120.

The reason that gender classification is performed on this database is to show how the

classifier behaves in the presence of occlusion and changes in illumination. The human

perception of gender can encounter difficulties when subjects wear scarfs or glasses, leading

to the loss of important facial features (Figure 2.15). The experimental design and algorithms

used in this experiment are the same as in Section 2.3.1. Compared to the FERET dataset,

AR face database is well aligned and the quality of images are also much better, except that

some samples are captured under occlusion conditions. The relatively high performance of

gender classification on this dataset (Figure 2.16) shows that the occlusions will not affect

the final results significantly as long as enough gender discriminant information is retained.
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Figure 2.15: Samples of images from AR face dataset.

Similar to the work of [70] where the authors deliberately expand the training data with

misaligned examples of face images so that the gender classifier can be more robust to face

misalignments, the same idea is applied to include occluded samples in the training set to

make the classifier resilient to occlusion. This assumption has been verified with experiments

on this dataset.

Another important observation is the high performance obtained from the LBP descrip-

tor, which is better than the PCA representation and the raw pixels-based methods on this

dataset. The classification accuracy reaches 90.62% on a test dataset of 1300 images. The

next best performance is the combination of KPCA and SVM classifier (90.31%). As in this

dataets, samples are captured under various illumination conditions. The LBP representa-

tion of face images can account for such changes, whereas the raw pixels might be sensitive

to illuminations. Among all the classifiers used, the SVM still gives the best performance

(averaging 90.02% for all the four methods), while the performance of quadratic classifier

degrades significantly to 50%. The over-fitting problem for Quadratic clasisifer is more evi-

dent in this large database. It simply fails as it classifies all the test examples as male. The

Adaboost-based classifier performed well on this dataset with the raw pixels representation
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presenting an accuracy of 89.46%. All of the parameters are kept the same as in section

2.3.1. More results are shown in Table 2.2. The male and female classification performances

are almost the same for this dataset. The image size is chosen as 42× 36. For LBP method,

the image size remains to be 64× 64. To account for the illumination changes, we apply the

histogram equalization methods.

Figure 2.16: Comparison of gender classification methods on AR face database.

Table 2.2: Gender classification accuracies on AR dataset.

Algorithms Rank-1 Rate Male Female

RawPixels+SVM(RBF) 0.8923 0.8892 0.8954

PCA+SVM(RBF) 0.8992 0.8969 0.9015

KPCA+SVM(Linear) 0.9031 0.9000 0.9062

PCA+FLD 0.8685 0.8785 0.8585

PCA+Quadratic 0.5000 N/A N/A

LBP+SVM(Linear) 0.9062 0.9015 0.9108

RawPixels+Adaboost 0.8946 0.9077 0.8815

PCA+KNN(L2) 0.8623 0.8600 0.8646
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2.3.3 Real-World Dataset

The previous experiments were restricted to images from controlled datasets, i.e., FERET

and AR. Further, all the training and test images come from the same dataset. But it is

important to train and test the algorithms on two different datasets. Therefore, experiments

were conducted where the gender classifier (PCA+SVM) was trained using the FERET

database and tested on real-world images. It aims to show how well the gender classifier

generalizes to unseen images. The output of the face detector is fed into the classifier to

predict gender. The face images are normalized according to the detected eye landmarks.

All the test images were selected from the group image database [1].

Figure 2.17: Gender prediction: the image has two persons-one male and one female.

From the results in Figure 2.17, the gender classifier successfully predicts the gender

label for every face in the image. Surprisingly, it can also be used to predict gender from

children faces (Figure 2.18). The previous trained dataset did not include any images from

children. The results from Figure 2.19 is another good example to show the effectiveness of

the trained gender classifier. As stated before, one of the limitations in the automatic gender

classification system is that the final prediction results depend on the successful detection

of human faces. In the example of Figure 2.20, the complex background causes the failure

of the face detector. Some non-face regions are also mis-classified as faces. Therefore, the
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Figure 2.18: Gender prediction: the image has four persons-two males and two females.

Figure 2.19: Gender prediction: the image has four persons-three females and one male.

corresponding output from the gender classifier is not reliable. There are many possible ways

to improve the gender classification accuracy. One is to make the face detector more reliable.

Another is to improve the design of the classifier with more options, for example, a rejection

scheme. The gender classifier should be able to reject the input regions if the possibility of

faces in that region is low. Since the gender classification involves inference with uncertainty,
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Figure 2.20: Gender prediction: the image has six persons-three males and three females.

it is possible to incorporate the Bayesian framework into the classification framework [8].

Such a classifier could potentially make the prediction more reliable. Although the decision

value from SVM contains the probability about whether the output is male or female, its

objective is to maximize the margin between male and female classes, which is different from

the Bayesian approach. Some examples of the prediction results are shown in Figure 2.21

and Figure 2.22. The low probability indicates that the decisions are made without enough

confidence.

The above cross-database tests on group face images show the generalization capability

of the proposed gender classifier, but the results are only based on a few sample images

selected from database. The remaining task is to perform a single database test on real-

world face images. Here, the images are collected from the Internet [1]. There are 500

male and 500 female subjects, respectively. 200 male and 200 female subjects are randomly

selected to train the classifier and the rest are reserved for testing. The size of each image is

61×49. These images possess all kinds of variations such as occlusion, age, pose, expression,

and illumination. The quality of these images are also not ideal. The mixture of these

impacting factors simulates the real-world problem and poses a big challenge for current

gender classification methods. Some samples from the database are shown in Figure 2.23.
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Figure 2.21: Gender prediction with probability estimation. The output is based on the
implementation from [8].

Figure 2.22: Gender prediction with probability estimation. The output is based on the
implementation from [8].

The gender classification results are listed in Table 2.3. The feature extraction method of

PCA (computed via SVD) is selected, resulting in a total of 30 dimensions. Here we restrict

the choice of feature extraction and test the performance of various discriminant classifiers.

The discrepancy of gender classification accuracies between males and females is very

evident in this case. The result of male classification is much better than female classification.
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The best performance (80%) obtained on male classification is with the LDA classifier. The

corresponding female classification accuracy is 71%. The SVM classifier obtains 79.50%

accuracy on males and 65.50% accuracy on females. The KNN classifier gives the worst

overall performance at 61.67%. Currently, the average performance of all the classifiers on

the male group is 75.50% and on the female group is 63.52%. It is possible to use other type

of features, rather than PCA, to improve the performance. Besides, the database used here

is much more difficult than other real-world images with good quality used in the literature.

Some previously reported results assumed that faces can be accurately localized (no mis-

alignment) [27] or that pose normalization was reliable [49]. Such conditions unavoidably

add some bias to the test results. The main objective here is to provide the comparison

results for different type of classifiers 7.

(a) (b)

Figure 2.23: Samples from WWW dataset: (a) male subjects; (b) female subjects.

7Some Classifiers are from: http://www.informedia.cs.cmu.edu/yanrong/MATLABArsenal/
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Table 2.3: Gender classification accuracies on Real-world dataset.

Algorithms Male Female Overall

KNN 0.7350 0.5900 0.6167

SVM 0.7950 0.6550 0.6617

GMM 0.7850 0.5950 0.6233

LDA 0.8000 0.7100 0.7200

Neural Network 0.6650 0.6550 0.6900

Naive Bayes 0.7850 0.5950 0.6217

Adaboost 0.7200 0.6467 0.6833

2.4 Discussion

The above experiments demonstrate the gender classification performance on three public

datasets: FERET, AR and WWW. The trained classifier from FERET is also tested on real-

world images, which shows very promising results in Section 2.3.3. This simulates the case

where a trained classifier is often obtained from a well-constrained dataset and tested on

unseen images from different scenarios. However, there are still many issues with respect to

the design of gender classification experiments that are not clearly resolved. Mainly, they

are related to the choice of different face normalization approaches and datasets to perform

the experiments.

2.4.1 Impact of Face Normalization

Recall that in section 2.1.2, we have enumerated three type of face normalization ap-

proaches:

1. Geometry alignment: face image is aligned and cropped based on eye coordinates.

2. Photometry processing: the cropped image is processed with histogram equalization

and mask fitting operation after geometry alignment.

3. Pose correction: the image is further processed to bring the pose to frontal.
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In real-world applications, the first two steps are usually sufficient for the preprocessing of

face images. The third step can be applied when there is a large pose change. But this

step often requires the construction of a 3D model or AAM. Generally, it is expected that

pose correction will improve the final classification accuracy. Some pose correction results

can be observed in Section 4.1. Here, we make extensive comparisons between the first two

normalization methods on the same FERET dataset and show the merits of each method.

Most of the tested methods have been used in the literature before. ‘FERET NORM’ refers

to the database that goes through both geometry and photometry processing. Meanwhile,

‘FERET’ only goes through geometry alignment.

First, the impact of different face normalization approaches on gender classification ac-

curacy is tested. The difference between those two approaches is to determine whether it

is necessary to eliminate the background information and apply the histogram equalization

to reduce the illumination variation. Previous research work in [10] suggested that the hair

information might be useful for gender classification. However, other researchers preferred

facial images without much hair information [17, 18].

In order to test the performance on the impact of those factors, the same FERET dataset

with 410 samples is used.

We define the protocols for this experiment as follows [71]:

• Both image sets are resized so that the largest side is 32.

• The training-test random split is based on the 40%-60% rule.

• The experiments are repeated 10 times to reduce the bias.

• The final classification accuracy is the average over all the trials.

As can be seen in Figure 2.24, except for the PCA and ICA [33] methods, face normalization

with both photometric and geometric transformations results in better accuracy than face

normalization with geometric normalization only. In other words, face images going through

both step 1 (geometry) and step 2 (photometry) are better than step 1. The main classifier

used here is SVM. For the methods of PCA and ICA [72]8, the Nearest Neighbor classifier

8http://mplab.ucsd.edu/ marni/code.html
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is adopted. The best performance 89% is achieved with the low-resolution face images

(RawPixels+SVM). PCA representation of face image (PCA+SVM) or the Gabor-based

SVM (Gabor+SVM, GaborFisher+SVM) resulted on performances of 84.5% and 88.6%,

respectively. However, the Gaborface representation with SVM does not perform better

than the enhanced GaborFisher Face representation for this particular task. Based on the

experiments, PCA, LBP and Gabor features are good choices to represent gender features.

All of the methods, except the GaborFisher based approach, have been tested before in the

gender classification task. The original use of GaborFisher method was for face recognition

[73]. We adapted this approach for the task of gender classification.

In general, the normalization approach that can exclude as much background information

as possible is preferred. In case of dataset with illumination changes, histogram equaliza-

tion would also be necessary. Since the performance only degrades slightly when geometry

normalization is used, it can also be utilized in many applications. For example, when the

LBP and SVM methods are used, an accuracy of 87.8% is achieved on geometry normalized

data as opposed to 86.5% on photometric normalized data. The LBP method is robust to

uniform illumination changes in itself, and therefore photometric normalization might not

be necessary.

2.4.2 Impact of Datasets

Another factor that is often neglected by researchers is the choice of datasets to perform

the experiments. From the previous work in Section 1.2, there are many different datasets

used for the evaluation of gender classifiers. Some datasets are subsets of larger datasets,

leading to variations across trials [17]. Some are not currently publicly available for other

researchers to compare [27]. Therefore, gender classification results across different liter-

ature are sometimes not comparable. This also leads us to the dilemma of choosing the

most suitable algorithms for gender classification. Due to differences across datasets, good

performance achieved in one dataset may not be duplicable in another dataset. In order to

make the experimental results reproducible, publicly available datasets are chosen so that

other researchers could easily compare the results against our implementation.
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Figure 2.24: Impact of normalization on gender prediction.

A comprehensive performance evaluation on different gender datasets 9 is provided. The

criteria of choosing these datasets is that they are publicly accessible to the researchers and

the gender annotation information is also available.

• MUCT [74]: The database was created to provide more diversity of lighting, age, and

ethnicity of 2D landmarked databases. We use the 276 subjects from category-a, with

131 males and 145 females. The first encountered sample of each subject is selected.

• The FERET [10] : The database contains gray scale face images with varying facial

expression, lighting and pose changes. 410 subjects are selected: 211 males and 199

females.

9The Medical dataset is available at: http://scien.stanford.edu/pages/labsite/2001/ee368/
projects2001/dropbox/project16/med students.tar.gz
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Table 2.4: Overview of datasets used for gender classification.

Datasets Males Females Normalization AVG. Rate

MUCT 131 145 Complex 81.5250%

F.NORM 211 199 Complex 83.9875%

FERET 211 199 Aligned 83.6875%

MEDICAL 200 200 NONE 88.5625%

Combination 342 344 Complex 81.1875%

• MEDICAL: The medical dataset is a collection of students from Standford school.

There are 200 males and 200 females. The face occupies most of the image.

• The combination of FERET and MUCT dataset: The database consists of 686 subjects,

with 342 males and 344 females.

Notice that not all face images from the entire database are used since we want to

separate the identity and gender information by selecting only one sample per subject. The

total number of available samples in our test depends on the number of subjects in the

database. That is why the size of each database may not be large. But such separation

of identity and gender could reduce the bias of gender classification. The majority of face

images are near-frontal. But they also exhibit a certain degree of change in pose. The profile

face images are not used here. The detailed description of the datasets, along with their

individual performances are presented in Table 2.4.

From Figure 2.25, various gender classification methods on five publicly available databases

are presented. The experiments are carried out by training the gender classifier on 40% of

the database and testing on the remaining 60%. Because the number of male subjects and fe-

male subjects in the whole database are almost the same, this train-test split can still ensure

that the training dataset is well-balanced. The three databases (MUCT, FERET NORM,

Combination) are normalized based on the approaches in 2.1.2. “Combination” refers to

the merging of both MUCT and FERET. The FERET database is normalized based on

geometry only. The Medical database is not processed with any normalization method. The

reason for using three types of datasets is as follows:
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Figure 2.25: Gender classification on five different datasets.

• To test the performance difference between normalized database and unnormalized

database

• To show the average performance on each dataset

Currently, the MUCT dataset has the lowest average performance. The MEDICAL face

dataset provides the best classification performance as high as 88.56%. Among all the

methods, the PCA with the KNN classifier performs the worst in every dataset. That is

why the average performance on each dataset is low. Details of each experiment are also

available in Table 2.5. Compared to the methods used in Section 2.4.1, we replace the ICA

method [72] with ICA+SVM and also add another algorithm (LDA+SVM).
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Table 2.5: Overview of each algorithm used in different datasets.

Algorithm MUCT FERET MED. COMBO F.NORM AVG

LBP+SVM 81.8 87.8 91.7 86.6 86.5 86.88

PCA 60.6 69.4 74.2 69.6 64.5 67.66

LDA+SVM 84.8 88.2 91.7 85.9 85.7 87.26

Gabor+SVM 81.2 82.9 92.5 86.6 84.5 85.54

ICA+SVM 86.1 86.1 89.6 86.1 85.7 86.72

GaborFisher 84.2 87.8 92.5 63.0 88.6 83.22

Raw+SVM 86.1 86.5 90.0 86.1 89.0 87.54

PCA+SVM 86.7 84.1 88.8 87.1 88.6 87.06

2.5 Chapter Summary

In this chapter, the complete process of automatic gender classification was discussed.

The system consists of face detection, face normalization, feature extraction and gender

classification. Face detection and face normalization are vital to the success of gender clas-

sification system when applied to real-world images. Without accurate face detection, the

output of gender prediction would be meaningless. For experiments conducted on controlled

dataset, face normalization is also a necessary step in alleviating within-class variations.

The choice of gender feature extraction methods varies across different datasets and

applications. We introduce commonly used gender feature representation methods, such as

Eigenface, Fisherface, Gaborface and LBP. These are the feature extraction methods that

have been used previously by the researchers and have demonstrated good performance.

Realizing the design of gender classifier is also critical: two types of classifiers are brought

into our framework, SVM and Adaboost.

The experiments are divided into single database test and cross-database test. The

single database test include experiments on the public FERET, AR and WWW datasets.

The FERET dataset can be considered as a benchmark gender classification testbed. The

AR face database is used to test gender classification algorithms against occlusion, which

commonly occurs in face acquisition. To address the occlusion challenges, we can deliberately
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include samples with occlusions in the training stage. The WWW dataset is used to test

gender classification in real-world datasets. The cross-database test is to illustrate the idea of

generalization property with gender classifier. Interestingly, we found that gender classifier

can generalize well to young faces even the trained system has not encountered them before.

Such challenging cross-database experiments show the promising results of gender classifiers,

especially on real-world group images.

Next, we tackle some related issues regarding to the design of gender classifier: the choice

of face normalization and datasets. These two factors can affect the output of the gender

classifier significantly.

The goal of this chapter is to bring currently popular used gender classification methods

into a unified framework. All the aspects related to gender classification have been studied

systematically. The results are verified on public available datasets and can be easily re-

produced. While a much more detailed discussion of the system is possible, this is not the

intension of this thesis.
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Chapter 3

Cross-Spectrum Gender Prediction

Though gender classification has received much attention from the research community,

previous work has focused on face images obtained in the visible spectrum (VIS) (Chapter

2). The aim of this chapter is to explore gender classification in the near-infrared spectrum

(NIR) using learning-based algorithms. The use of NIR images for face recognition has

become necessary especially in the context of a night-time environment where VIS face

images cannot be easily discerned [9]. Further, NIR images are less susceptible to changes

in ambient illumination. Thus, cross-spectral matching has become an important topic of

research [75, 76, 77]. To the best of our knowledge, this is the first work that explores gender

recognition in NIR face images. In this regard, we address the following questions:

• Q1. Can gender be predicted from NIR face images?

• Q2. Can a gender predictor learned using VIS images operate successfully on NIR

images, and vice-versa?

To answer Q1, we use an existing gender prediction mechanism based on SVM [17]. In

order to address Q2, we hypothesize that an illumination normalization scheme may be

necessary prior to invoking the gender classifier.

In this chapter, we describe the design of the gender classifier from NIR spectrum in

Section 3.1, with special emphasis on illumination normalization approaches in Section 3.2

for cross-spectral gender prediction. Then, we report experimental results that demonstrate

the possibility of assessing gender from NIR face images in Section 3.3. Finally, we discuss
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the difficulties in cross-spectral gender classification and indicate future directions in Section

3.4.

3.1 System Design

In order to address the questions raised above, we utilize a gender prediction scheme

based on SVMs. Such a scheme has been shown to be efficient in the VIS domain [17, 50].

The SVM-based classification scheme is described below. Given a facial image xi, in either

the VIS or NIR domains, the feature extractor is applied to obtain a discriminant feature

set si. The gender classifier, G, is then invoked to predict the gender. In case of images that

are coming from different spectrum, we utilize the illumination normalization approaches to

reduce the spectral difference. Our whole system is depicted in Figure 3.1. The design of

Figure 3.1: Cross-spectral gender classifier.

the system is based on the following observations:

• A gender classifier should be robust to unseen scenarios in the applications.

• The system should be fast and accurate enough to provide useful information regarding

to the gender visual attributes.

Before delving into this chapter, we have investigated different feature extraction methods,

either globally and locally. Various classification methods have also been studied. Therefore,

this chapter will focus on one specific method to explain the cross-spectrum gender prediction

problem. Among all the tested algorithms, such as Raw pixels with SVM or Adaboost, PCA

with FLD classifier and LBP with SVM, the PCA method with SVM gives the best accuracy.
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Therefore, we choose PCA for gender feature representation and SVM for classification in

the later sections.

Gender classification using SVM is shown in Figure 3.2. Here, the dimension of the ex-

tracted feature vector is reduced to two by PCA in order to visualize the feature distribution.

The images are trained on the VIS spectrum and tested on the NIR spectrum. The samples

are not linearly separable in this two-dimension space. The SVM maps the feature samples

into high dimension and search for the linear boundary by maximizing the width between

support vectors.

Figure 3.2: Illustration of a SVM-based gender classifier with linear kernel on the HFB
database.

3.2 Illumination Normalization

As stated earlier, we hypothesize that the use of an illumination normalization scheme 1

may be necessary to accommodate cross-spectral gender prediction where the training and

test sets have images pertaining to different spectral bands.

1The INFace toolbox: http://luks.fe.uni-lj.si/en/staff/vitomir/index.html. Only the SQI, Retinex and
DCT methods are coming from this toolbox.
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Self Quotient Image (SQI): According to the Lambertian model, the image formation

process is described as follows:

I(x, y) = ρw(x, y)n(x, y)s, (3.1)

where ρw(x, y) is the albedo of the facial surface, n is the surface normal and s is the lighting

reflection. To reduce the impact of illumination, we need to separate out the extrinsic factor

s from ρ and n. The self-quotient image, Q, of I is defined as [78],

Q =
I(x, y)

ˆI(x, y)
=

ρw(x, y)n(x, y)s

G ∗ [ρw(x, y)n(x, y)s]
, (3.2)

where Î is the smoothed version of I and G is the smoothing kernel.

Retinex Model: The retinex approach is based on the reflectance illumination model

instead of the Lambertian model. It is an image enhancement algorithm [79] proposed to

account for the lightness and color constancy of the dynamic range compression properties

of the human vision system. It tries to compute the invariant property of reflectance ratio

under varying illumination conditions [80, 78]. The retinex model is described as follows:

I(x, y) = R(x, y)L(x, y), (3.3)

where I(x, y) is the image, R(x, y) is the reflectance of the scene and L(x, y) is the lighting.

The lighting is considered to be the low-frequency component of the image I(x, y), and is

thus approximated as,

L(x, y) = G(x, y) ∗ I(x, y), (3.4)

where G(x, y) is a Gaussian filter and ∗ denotes the convolution operator. The output of the

retinex approach is the image R(x, y) that is computed as,

R(x, y) =
I(x, y)

L(x, y)
=

I(x, y)

G(x, y) ∗ I(x, y)
. (3.5)

Discrete Cosine Transform (DCT) Model: Since illumination variations typically

manifest in the low-frequency domain, it is reasonable to normalize the illumination by re-

moving the low-frequency components of an image. DCT can be first applied to transform an

image from the spatial domain to the frequency domain, and then estimate the illumination
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of the image via low-frequency DCT coefficients which appear in the upper-left corner of the

DCT [80]. By setting the low-frequency components to zero and reconstructing the image,

variations due to illumination can be reduced. The 2D M ×N DCT can be computed as,

C(u, v) = α(u)α(v)
M−1∑
x=0

N−1∑
y=0

I(x, y)× cos
[
π(2x+ 1)u

2M

]
cos

[
π(2y + 1)v

2N

]
, (3.6)

where α(u) and α(v) are the normalization factors.

CLAHE Normalization: The CLAHE (Contrast Limited Adaptive Histogram Equal-

ization) [81] method applies contrast normalization to local blocks in the image such that

the histogram of pixel intensities in each block approximately matches a pre-specified his-

togram distribution. This scheme is applied to blocks of size 16 × 16. CLAHE is effective at

improving local contrast without inducing much noise. It utilizes the normalized cumulative

distribution of each gray level, x, in the block [77]:

f(x) =
N − 1

M
×

x∑
k=0

h(k). (3.7)

Here, M is the total number of pixels in the block, N is the number of gray levels in the block,

and h is the histogram of the block. To improve the contrast, the CLAHE technique trans-

forms the histogram of the block such that the histogram height falls below a pre-specified

threshold. Gray level counts beyond the threshold are uniformly redistributed among the

gray levels below the threshold. The blocks are then blended across their boundaries using

bilinear interpolation.

Difference-of-Gaussian (DoG) Filtering: Another type of normalization is proposed

in [61], where the local image structures are enhanced. One of the key components in [61] is

the Difference-of-Gaussian (DoG) filtering, which can be computed as,

D(x, y|σ0, σ1) = [G(x, y, σ0)−G(x, y, σ1)] ∗ I(x, y). (3.8)

The symbol * is the convolution operator, and the gaussian kernel function based on σ is,

G(x, y, σ) =
1√

2πσ2
e−(x

2+y2)/2σ2

. (3.9)

This simple filtering scheme has the effect of subtracting two Gaussian filters.
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The output of the various illumination normalization schemes are presented in Figure 3.3.

The goal of illumination normalization is to facilitate cross-spectral gender classification by

mitigating the effect of spectral specific features.

(a)

(b)

Figure 3.3: (a) A VIS image and its corresponding normalized images; (b) A NIR image and
its corresponding normalized images. Images are from HFB database [9].

3.3 Experiments

In the previous Section 3.2, we have introduced different illumination normalization ap-

proaches in the hope of finding an effective way to reduce the spectrum difference between

VIS and NIR. To validate the effectiveness of each method, we perform the gender classifi-

caiton experiments on the HFB database [9].

3.3.1 HFB Database

The HFB face database 2 consists of 100 subjects, including 57 males and 43 females.

There are 4 VIS and 4 NIR face images per subject. One of the subjects from the database

is displayed in Figure 3.4. The HFB database has also provided the eye coordinates for

each sample. We apply the same methodology to crop and align all the images in the

database. The cropped version of one subject is shown in Figure 3.5. The variations between

corresponding VIS and NIR samples are evident, as they are not captured simultaneously.

2HFB database: http://www.cbsr.ia.ac.cn/english/HFB 20Databases.asp
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Figure 3.4: Top Row: Samples from VIS spectrum; Bottom Row: Samples from NIR spec-
trum. Images are from HFB database [9].

Figure 3.5: Top Row: Cropped Samples from VIS spectrum; Bottom Row: Cropped Samples
from NIR spectrum.

3.3.2 Evaluation

The following experiments were conducted on this database: (a) Training and testing

using VIS images (VIS-VIS); (b) Training and testing using NIR images (NIR-NIR); (c)

Training using VIS images and testing using NIR images (VIS-NIR); (d) Training using NIR

images and testing using VIS images (NIR-VIS). In all cases, the subjects used in the training

and test sets were mutually exclusive. 20 male and 20 female subjects were randomly selected

for training, with 4 samples for each subject. The remaining subjects were reserved for

testing. This random partitioning to generate the training and test sets was repeated 10 times
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for each experiment in order to understand the variance in classification accuracy. The image

size used in our work was 128×128 of the cropped version. For the VIS-VIS experiments, the

Table 3.1: Gender classification results on the HFB database when illumination normaliza-
tion is not used for cross-spectral prediction.

Scenario Classification Rate Best Worst

VIS-VIS 0.9067± 0.0397 0.9708 0.8458

NIR-NIR 0.8442± 0.0264 0.9000 0.8042

VIS-NIR 0.5625± 0.1289 0.7083 0.3833

NIR-VIS 0.6021± 0.0769 0.6667 0.3875

Table 3.2: Results for cross-spectral gender classification after applying different normaliza-
tion schemes.

VIS-NIR(N) NIR-VIS(N)

CLAHE 0.6617± 0.0724 0.6642± 0.0806

DoG 0.6446± 0.0331 0.6100± 0.0354

SQI 0.4512± 0.0693 0.4692± 0.0611

Retinex 0.5525± 0.0537 0.5921± 0.0674

DCT 0.5967± 0.0840 0.6392± 0.0666

average classification rate was 90.67%, with the best performance being 97.08% (Table 3.1).

The performance is comparable to the results reported in previous literature on other datasets

[17, 18]. This suggests that gender classification can be performed with high accuracy in the

VIS domain. For the NIR-NIR experiment, the average performance declined by around 6%

compared to VIS-VIS classification resulting in an average accuracy rate of 84.42%. For the

VIS-NIR and NIR-VIS experiments, the average classification rates were 56.25% and 60.21%,

respectively, suggesting the difficulty in performing cross-spectral gender classification.

However, upon applying certain illumination normalization schemes (to both the training

and test images), we observed an improvement in classification accuracy (Table 3.2). Two

of the most effective normalization schemes were CLAHE and DoG. In our experiment, the

CLAHE gave slightly better performance than DoG. Specifically, the CLAHE normalization

scheme improved cross-spectral gender classification for the VIS-NIR(N) and NIR-VIS(N)
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experiments to 66.17% and 66.42%, respectively - this represents an improvement of 18%

and 10%, respectively. The SQI scheme decreased the performance after normalization,

while the retinex model did not impact the accuracy. The DCT algorithm gave slightly

better performance, but not as significant as that of CLAHE and DoG.

3.4 Experimental Analysis

Our experimental results indicate the possibility of performing gender classification using

NIR face images although the performance is slightly inferior to that of VIS images. This

suggests that the gender information observed in the NIR domain may not be as discrimi-

native as in the VIS domain. Cross-spectral gender prediction was observed to be difficult

- this suggests that the gender related information available in the NIR and VIS face im-

ages are significantly different as assessed by the classifier. The key, therefore, is to reduce

the variability between these two type of images by applying an illumination normalization

routine. Experiments suggest that certain normalization schemes are better than the others.

In particular, the CLAHE scheme proved superior than the other models considered in this

work.

Next, we consider the reasons for the inferior performance of the other normalization

models. The Lambertain model usually assumes that the term ρw(x, y) is constant across

different lighting sources. However, since the lighting conditions under NIR and VIS spectra

are not homogeneous, estimating an illumination invariant albedo ρw(x, y) under the Lam-

bertian model for those two type of images is not possible [76]. Therefore, approaches based

on the Lambertian model, such as self-quotient image and its variants, are not useful in our

application. Since the reflectance is not a stable characteristic of facial features for images

captured under the NIR and VIS spectra, the retinex model also does not result in good

performance. The DCT method fails since the illumination in NIR images cannot be simply

estimated by the low-frequency coefficients of the image. Only those normalization methods

based on local appearance-based features (i.e., CLAHE and DoG) result in better accuracy.

This could partly be due to the use of PCA-based features in our experiments. The use of

other sophisticated features (such as LBP) for gender classification may be useful when the
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SQI and retinex models are used for normalization.

When the images (128×128) are downsampled by a factor of 4, the average accuracy of

VIS-NIR improved from 66.17% to 71.79% (Table 3.3). Similarly, the average accuracy of

NIR-VIS improved from 66.42% to 69.17%. Another observation has to do with the difference

in gender classification of males and females. We ran the VIS-NIR experiments on the HFB

database 100 times and observed that the female classification rate was 68% while the male

classification rate was 77%.

Table 3.3: Impact of image size on gender classification for the VIS-NIR and NIR-VIS
scenarios when the CLAHE normalization method is used.

Image Size VIS-NIR NIR-VIS

128× 128 0.6617± 0.0724 0.6642± 0.0806

64× 64 0.6958± 0.0241 0.6596± 0.0856

32× 32 0.7179± 0.0208 0.6917± 0.0292

16× 16 0.6638± 0.0362 0.6617± 0.0668

Next, we take a look at the histogram distributions of pixel intensities for a VIS image

and a NIR image (Figure 3.6). The VIS image has a dense histogram, while the NIR

image has a more sparse histogram distribution. This suggests that the VIS image has

more intensity values captured than its counterpart. Such a difference indicates the loss

in information when forming NIR images. The hypothesis is that histogram normalization

can mitigate some of these differences thereby improving cross-spectral gender prediction.

We find that by applying the CLAHE normalization approach, it is possible to reduce the

difference between the two histograms (Figure 3.6).

3.4.1 Automatic Gender Prediction

One of the motivations in our work is to demonstrate the possibility of using trained VIS

classifier to predict genders from NIR face images in real-world applications. In scenarios

where the system has already been trained on VIS images, it would be costly to retrain

the system with new domain of knowledge, for example NIR images. Therefore, it is a

requirement for the designed system to be robust and adaptive to different conditions.
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(a) (b)

(c) (d)

Figure 3.6: (a) VIS image before normalization; (b) NIR image before normalization; (c)
VIS image after normalization; (d) NIR image after normalization. Images are from HFB
database [9].

Based on the same experiment design and principle in previous sections, we show some

real-time gender classification performance (Figure 3.7) to demonstrate the effectiveness of

the proposed cross-spectrum gender classifier. Noted that the trained classifier is completely

based on visible face images and is generalized to test on unseen NIR face images. The

subjects presented in the training dataset and test set are not overlapped. The cross-modality

gender prediction is thought to be harder than single-modality test. In the Figure 3.7,

top shows the single-modality prediction and the bottowm row shows the cross-modality

prediction.

Due to large spectra difference caused by VIS and NIR, the trained classifier are also

expected to fail in many cases, demonstrated in Figure 3.8. Sometimes, this is unavoidable

if the trained classifier is solely depending on VIS images and the test images are captured

from NIR spectrum. It is possible to cope with such spectra difference by introducing NIR

images in the training stage. For example, an image classification system is employed to

determine whether the test image is from VIS spectrum or NIR spectrum. After that, the

corresponding trained VIS classifier or NIR classifier is invoked to predict gender from the

test image. Another way is to build a common subspace, instead of individual subspace to

address those challenges.
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(a) (b)

(c) (d)

Figure 3.7: Automatic prediction of gender from both VIS and NIR images. Images are from
HFB database [9].

(a) (b) (c) (d)

Figure 3.8: Failure cases of gender prediction from both VIS and NIR images. Images are
from HFB database [9].

3.4.2 Fusion of VIS and NIR

Since there exists difference between individually trained VIS and NIR classifier, it is

possible to utilize the information from both spectra to enhance the final classification. For
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Table 3.4: Comparison of different classifiers and the fused results.

Classifier Rate Male Female

Visible 0.9042 0.9324 0.8587

Near-infrared 0.7875 0.8041 0.7609

Fused(OR) 0.8542 0.9730 0.6630

Fused(AND) 0.8375 0.7635 0.9565

instance, some misclassified images in VIS domain would be corrected identified in NIR

domain for the same set of subjects, and vice versa. This phenomena is verified from the

statistical analysis of the following experiments,

• Both NIR-NIR and VIS-VIS are correct: 0.7375

• VIS-VIS is correct and NIR-NIR is incorrect: 0.1333

• VIS-VIS is incorrect and NIR-NIR is correct: 0.0708

• Both NIR-NIR and VIS-VIS are incorrect: 0.0583

For the same set of subjects, the gender of 73.75% of the samples are correctly identified by

both VIS and NIR classifiers. This demonstrates the similarities between those two type of

classifiers. On the other hand, 13.33% of the samples are misclassified by NIR classifier while

the corresponding VIS classifier can successfully predict the gender. Such difference is also

observed for the case where NIR classifier is accurate, but VIS classifier is not. Naturally,

we want to fuse the results based on decision-level to enhance the performance. And the

following performance is observed 3.4, The result is opposite to what we expect: the fused

classifier is not better than the best individual classifier. One of the possible reasons is the

use of the feature extraction method or SVM classifier. It is possible to see the improvement

with other classifiers on different datasets. But this experiment provides us the instinct as

how the individual classifier performs in VIS and NIR spectra, what they have in common

and what is the difference.
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3.4.3 Gender Prediction on NIR Dataset

In this section, gender classification methods in the NIR spectrum are further evaluated.

There is limited work conducted on gender classification exclusively in the NIR dataset.

Although gender prediction from NIR spectrum have been tested in HFB database, the

size of that dataset is relatively small. With the extension of the performance evaluation

on a larger and more challenging dataset, we can better understand gender classification

algorithms in terms of spectrum difference.

The CBSR NIR Face Dataset 3 contains 3,940 NIR face images of 197 persons. The

image size is 480× 640 pixels. Each subject has 20 samples. We manually label the gender

information and exclude those subjects that are not easily recognizable. In the end, 135

male subjects and 55 female subjects are identified. Samples of one subject are shown in

Figure 3.9(a) and the corresponding normalized versions are shown in Figure 3.9(b). The

normalization approach is based on manually located eye coordinates and is described in the

work of Bolme et al. [4].

(a) (b)

Figure 3.9: (a). Original NIR face samples of one subject from CBSR dataset. (b). Normal-
ized NIR face samples.

To test gender classification algorithms in the NIR dataset, 15 male subjects and 15 female

3CBSR: http://www.cse.ohio-state.edu/otcbvs-bench/
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subjects are used for training. The total number of samples is 15× 20 + 15× 20 = 600. The

remaining 120 male and 40 female subjects are used for testing, resulting in a total of 3200

images. The subjects in the training and test sets are mutually exclusive in this experiment

also.

Figure 3.10: Comparison of different gender classification algorithms on CBSR dataset.

From the results shown in Figure 3.10, the LBPH descriptor of facial features gives best

classification accuracy with LBP+SVM (HI) resulting in 93.59%, LBP+SVM (LI) result-

ing in 91.91% and LBP+SVM (RBF, C = 32, γ = 0.001) resulting in 91.97%. The results

indicate that the HI kernel is superior to both the LI and RBF kernels in this case. The com-

bination of LBP and Adaboost resulted in a classification rate of 84.58% for males and 88.5%

for females. For the Random Forest classifier with LBP features (LBP+RandomForest), an

overall accuracy of 91% is obtained. The individual accuracy of this method for male and

female classes were 92.08% and 87.75%, respectively.

We also tested other type of facial features such as PCA and low-resolution image pixels
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Algorithm Overall Male Female

LBP+SVM (HI) 0.9359 0.9417 0.9187

LBP+SVM (LI) 0.9191 0.9208 0.9137

LBP+SVM (RBF) 0.9197 0.9375 0.8662

LBP+Adaboost 0.8556 0.8458 0.8850

LBP+RandomForest 0.9100 0.9208 0.8775

PCA+KNN 0.6634 0.6358 0.7462

PCA+SVM (LI) 0.8531 0.8721 0.7963

PCA+GMM 0.7659 0.8013 0.6600

PCA+LDA 0.8516 0.8533 0.8462

RawPixels+SVM [17] 0.8897 0.9083 0.8337

RawPixels+Adaboost [18] 0.8819 0.9033 0.8175

Table 3.5: Gender classification accuracies on near-infrared images using different feature
extractors and classifiers.

(See Figure 3.10). For the PCA method, SVD is used to reduce the feature dimensionality

to 60. The image was also resized to 32×32 pixels. Among all the PCA-based methods, the

SVM (PCA+SVM(LI)) and LDA (PCA+LDA) classifiers result in the best performance,

although this is still lower than the LBP-based methods. The remaining classifiers, such as

GMM classifier (PCA+GMM) and KNN do not result in good performance.

The low-resolution feature representation has been observed to perform well in the visible

spectrum [17, 18]. We apply the same methods used in the work of [17] and [18] on the NIR

dataset. Each image was resized to 20 × 20. The number of weak classifiers used by the

Adaboost classifier was 625 (Table 3.5). The SVM classifier used a Gaussian RBF kernel with

γ = 0.001 and C = 1, based on a grid-search of the parameter space. Individual classification

rates of 88.97% and 88.19% were obtained for SVM and Adaboost, respectively.

The above experiments show the effectiveness of employing LBP features for gender

classification in NIR spectrum, compared to PCA or low resolution (RawPixels) features

[17, 18].
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3.5 Gender Prediction on Thermal Dataset

The thermal database contains one thermal face image each of 1003 subjects. In addition,

this database contains two visible-light (VIS) images for each of these subjects. The image

size is 480 × 640 pixels. The size of each image after alignment and cropping is 130 × 150

pixels. For the LBP methods, the image is resized to 126 × 90. There are 229 female

subjects and 774 male subjects. The subjects have variations in age and ethnicity. Most of

the samples are captured in the near-frontal pose (Figure 3.11).

Figure 3.11: Samples images from the thermal database. Top row shows male subjects and
the bottom row shows female subjects.

To test gender classification algorithms on thermal images, the first 100 male and 100

female subjects are selected for training and the remaining is used for testing. This ensures

that there is no overlapping of subjects between the training and test sets. Thus, there are

674 male subjects and 129 female subjects in the test set. The male (female) classification

rate is defined as the percentage of males (females) that are correctly recognized within

the male (female) groups. This distinction is to determine if there is any bias of individual

groups towards overall classification performance due to imbalanced test data sets. The ratio

of males and females in the test set is close to 5:1.

As shown in Table 3.6, the use of histogram intersection (HI) kernel in SVM results in

better performance than the linear kernel (LI) in terms of the female classification rate. The

LBP+SVM (HI) method achieves 84.50% accuracy for female classification, compared to
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79.07% using the LBP+SVM (LI) method. The RBF kernel (C = 8, γ = 0.002) achieves

better results than both HI and LI kernels, except for the female classification. However, it

is much slower during the training stage as it searches a large parameter space to seek the

optimum values. The performance is further enhanced with the use of PCA to derive a more

compact feature descriptor, compared to LBP+SVM (LI). The reduced dimension feature

vector is 60 in this experiment based on sigular value decomposition (SVD). Among all

tested classifiers, SVM (LBP+PCA+SVM) results in the most balanced accuracy in terms

of overall male and female accuracies. Here the linear SVM kernel is preferred, since the

derived feature is no longer directly obtained from histogram bin features.

In order to show that LBPH descriptor is much more effective than PCA or low-resolution

features extracted from thermal images, we perform experiments on the same dataset with

the latter set of features (Figure 3.12). The best overall performance of 81.32% is achieved

using the PCA+LDA methods. The individual performances for male and female are 80.71%

and 84.50%, respectively.

Figure 3.12: Performance evaluation of different gender classifiers based on PCA and low
resolution features on the thermal dataset.

Since the thermal database includes visible-light images for each subject, gender classifica-
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Algorithm Overall Male Female

LBP+SVM (HI) 0.8792 0.8858 0.8450

LBP+SVM (LI) 0.8705 0.8858 0.7907

LBP+SVM (RBF) 0.9041 0.9184 0.8295

LBP+RandomForest 0.8655 0.8665 0.8605

LBP+PCA+SVM 0.9016 0.9110 0.8527

LBP+PCA+LDA 0.8667 0.8650 0.8760

LBP+PCA+MLP 0.8804 0.8828 0.8682

LBP+PCA+GMM 0.8742 0.8783 0.8527

Table 3.6: Gender classification accuracies on thermal images.

Algorithm Overall Male Female

LBP+SVM (HI) 0.8842 0.8739 0.9380

LBP+SVM (LI) 0.8493 0.8398 0.8992

LBP+SVM (RBF) 0.8941 0.8828 0.9535

LBP+RandomForest 0.8667 0.8546 0.9302

LBP+PCA+SVM 0.9066 0.9036 0.9225

LBP+PCA+LDA 0.8804 0.8724 0.9225

LBP+PCA+MLP 0.8643 0.8501 0.9380

LBP+PCA+GMM 0.8269 0.8205 0.8605

Table 3.7: Gender classification accuracies on visible images in the thermal database.
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tion is conducted on the visible spectra as well. It must be noted that the pairs of visible and

thermal images are not co-registered. From the results in Table 3.7, the LBP+PCA+SVM

method has the best overall performance at 90.66%. The RBF kernel (C = 2, γ = 0.002)

is slightly better than the HI kernel. Meanwhile, the HI kernel is much better than the

LI kernel. Compared to the LBP+SVM (LI) method, the enhanced feature reduction and

classification methods such as LBP+PCA+SVM, LBP+PCA+LDA and LBP+PCA+MLP

achieve better results. The average overall performance of all the seven algorithms on the

thermal dataset is 88.03%, compared to 87.16% on the visible dataset. This suggests the

feasibility of assessing gender from thermal images as well. This is the first work in the

literature that establishes this possibility.

The visual appearance of facial thermal image is remarkably different from that of visible-

light and near infrared face images. This poses a big challenge for humans to recognize

gender information from face images (cropped) if the entire upper-body image is not available

(See Figure 3.11). However, machine learning approaches treat a face image as a bunch of

pixels and automatically select the most relevant features from an image to perform gender

classification.

In order to compare the performance of the proposed approach against that of humans,

we asked four human subjects (observers) to perform gender prediction independently. Only

the cropped version of thermal images were provided to human subjects and they were asked

to assign one of two labels to each image: male or female. Human observers tend to classify

males or females based on presence or absence of mustache, beard and eyelids, which are

still observable in the thermal spectrum. Ambiguities arise when such distinctive features

are not available in the face images. As seen in Table 3.8, more females are misclassified

as males while fewer males are misclassified as females. This is expected since females

are usually much more difficult to classify than males when important facial features are

missing. Since this database was collected by law enforcement department, the presented

male subjects exposed features such as facial hair, mustache, and so on. On the other hand,

the machine learning approach automatically selects relevant facial features from thermal

images to make this distinction. This experiment demonstrates the advantage of using

machine learning approaches for gender classification in complex scenarios involving non-
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Observers Overall Male Female

Subject A 0.9142 0.9585 0.6822

Subject B 0.8968 0.9748 0.4884

Subject C 0.8918 0.9496 0.5891

Subject D 0.9080 0.9896 0.4806

Machine 0.9016 0.9110 0.8527

Table 3.8: Gender classification accuracies reported on thermal images based on human
perception. Subject A and B are male observers and subject C and D are female observers.
Note that the subjects were not very good at classifying female face images.

traditional spectrum. The machine algorithm performance reported in Table 3.8 is based on

the LBP+PCA+SVM method in Table 3.6.

3.6 Chapter Summary

This Chapter presents initial experimental results on gender classification using NIR

images. A classification accuracy of 84.42% was obtained in the NIR-NIR scenario. The

work reported in this chapter represents the first step toward cross-spectral gender recog-

nition where training images and test images originate from different spectral bands. The

preprocessing operation involving illumination normalization was observed to improve cross-

spectral classification accuracy by up to 18%. But this is still lower than the performance

obtained for intra-spectral classification (i.e., VIS-VIS and NIR-NIR scenarios). The trained

VIS classifier is extended to unseen NIR images to test the performance in real-time appli-

cations.

Currently, we are examining the use of fundamental image formation models to better

understand the gender-specific details present in NIR and VIS images. Further, we anticipate

that the use of other gender classification approaches (based on LBP and Haar features) may

be necessary to improve cross-spectral gender prediction.

In the end, we revisit the NIR-based gender classification on a large-scale database and

show that LBP representation with intersection kernel gives very good performance. It
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achieves 93.59% accuracy on the test size of 3200 NIR images. Gender classification results

with thermal images are also enumerated to show the effectiveness of LBP features.
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Chapter 4

Facial Attributes based Classification

4.1 Study of Facial Attributes

In the previous chapters, gender classification has been the main focus of our work,

which is one of many facial-based attributes. According to the definition of [82], an attribute

classifier is a binary classifier trained to recognize the presence or absence of describable

aspects of visual appearance (e.g., gender, ethnicity, and age). Some attributes such as

ethnicity and age can be divided into more than two classes. For example, an age classifier can

have meta-groups such as “kids”, “youth” and “seniors”. To mitigate the difference, attribute

classification can be posed as a binary classification or a multi-classification problem. In

the scenario of multi-class classification, the attribute classifier is used to categorize each

attribute to one of several groups.

The ability of current search engines to find face images are based on semantic annota-

tions. Thus, one has to manually label the relevant attributes in an image and build the

relationship between the actual content and the associated textual annotations [83]. Such a

procedure is time consuming and becomes challenging as the Internet grows rapidly with a

host of pictures and videos. Researchers have been working on content-based image retrieval

(CBIR) for a long time. Unlike text-based searching, the content-based approach analyzes

the contents of the images based on colors, shapes and textures cues.

Recently, there has been a focus on attributes-based searching and classification. For

example, users might ask questions as “Males with mustaches” or “Young blonde lady” [83].
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The search engine should be able to return results for such specific queries. Such queries

include attributes such as gender (Male, Lady), age (Young) and others (Mustache). The

gender classification methods discussed earlier can be directly incorporated into the system.

In this chapter, other attributes such as age, ethnicity, and expressions are investigated.

These attributes are very common and constitute search queries. Besides, the attributes can

be directly inferred from the visual appearance of facial regions.

There are few known works that combine all the main attributes together due to complex-

ity of each individual attribute-based classification. Lyons et al. [84] proposed a system that

was trained from face image exemplars to classify faces on the basis of high level attributes,

such as gender, “race”, and expression. The faces were represented by elastic graphs labelled

with 2D Gabor wavelet features. Wilhelm et al. [85] compared different feature extraction

approaches and classification methods for the task of gender, age, facial expression and iden-

tity classification. Gao et al. [28] used attributes of gender, ethnicity and age for photo

album management and visual surveillance monitoring. In Kumar et al. [82], the attribute

classifier was efficiently incorporated into a face verification system in order to improve the

performance. They also built an attributes-based search engine for large collections of images

with faces [83].

In the following work, we will describe expression, age and ethnicity based attribute

classifiers. The remaining of this chapter will introduce attributes-based classification, in-

cluding expression classification (Section 4.2), age estimation and classification (Section 4.3),

and ethnicity classification (Section 4.4). Each attribute classifier is briefly described and

illustrated with experiments.

4.2 Expression Classification

Facial expression recognition has found potential applications in many areas such as

human-computer interaction, image retrieval, animation and human motion analysis [86].

Most existing work on facial expression recognition utilize appearance information to classify

different expressions [87]. These facial feature extraction methods can be categorized into

two groups: Image-based and Model-based. Image-based methods encode facial expression
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features using Gabor wavelets [53], LBP [88], Facial Action Units [89] and so on. Model-

based method is an alternative to image-based feature extraction scheme. Typical approaches

include AAM [90, 91] and 3D deformable models [92]. The advantage of using image-based

method to extract expression features is that it does not require extensive knowledge about

the object of interests (e.g., face). Further, it is relatively fast and simple to compute. Hence,

we provide an image-model based analysis using appearance information from face images

to train and classify expressions. Here the attributes contain different facial expressions.

To test the algorithm of classifying expressions, the Taiwanese Facial Expression Image

Database (TFEID)1 is used. The TFEID consists of 7200 face images captured from 40

models, each with eight facial expressions: neutral, anger, contempt, disgust, fear, happiness,

sadness and surprise. A subset of images with frontal pose is selected. The total number

of images is 336, with an average of 42 samples per expression. The eight different facial

expressions are illustrated in Figure 4.1. From top to bottom, the expressions are anger,

contempt, disgust, fear, happy, neutral, sadness and surprise. All the image samples are

masked using an eclipse-fitting method to isolate the facial region [7]. The purpose is to

eliminate the noise information associated with the background and retain only essential

information about facial expression. The subjects presented within each expression category

are different.

The above mentioned facial expression classification is a multi-class classification problem

on the TFEID database. In some applications, a binary-class classification problem such as

discrimination between happy faces and neutral faces is sufficient. To illustrate this problem,

a database with only happy faces and neutral faces is used [2]. The face database contains

seven facial expressions. But we select only the happy and neutral expressions. Each facial

expression has subjects aged from 20 to 90 years old, with both males and females. In the

end, there are 209 subjects with both happy and neutral expressions. Each subject has the

pair of happy-neutral expressions. To ensure that the subjects are not overlapped between

the two classes, we randomly select 100 subjects with happy expression and the remaining 109

subjects with neutral expression. The examples of the images are shown in Figure 4.2. All

of the samples have been normalized and appropriately processed with background removal.

1http://bml.ym.edu.tw/ download/html/
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Figure 4.1: Eight different facial expressions from TFEID database. Each row represents
one facial expression. From top to bottom, the expressions are anger, contempt, disgust,
fear, happy, neutral, sadness and surprise.

The experiments are conducted by randomly selecting 40% samples of each class as

training set, and the remaining 60% as the test set. The methods adopted to evaluate

the facial expression classification consists of LBP+SVM, Gabor+SVM, LPP+SVM and

RawPixels+SVM. This includes descriptors of LBP, Gabor, LPP and Raw Pixels. LBP

and Gabor description of facial expressions have been well studied for expression recogni-

tion [53, 88]. The expression classification rates for the two databases are shown in Fig-
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Figure 4.2: Samples from Lifespan face database. Top Row: neutral expression; Bottom
Row: happy expression.

ure 4.3. DFH GRAY refers to the gray scale version of TFEID database. From the Fig-

Figure 4.3: Facial expression classification on the two databases.

ure 4.3, the RawPixels+SVM and LBP+SVM methods perform better than LPP+SVM 2

and Gabor+SVM methods. The RawPixels+SVM achieves 90.4% accuracy on the Lifespan

2LPP code: www.zjucadcg.cn/dengcai/Data/data.html
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database and 92.5% accuracy on the DFH GRAY dataset. In both datasets, the LBP+SVM

exceeds the performance of Gabor+SVM and produces comparable results with that of

RawPixels+SVM. Although the descriptor using RawPixels is better than LBP and Gabor

descriptors, it is not necessarily true that the Raw Pixel representation is much more supe-

rior. Since our datasets have already been normalized to exclude any pose and background

changes, it is expected that Raw Pixel descriptor would perform much better here.

Another metric for the performance measurement of facial expression classification is

the confusion matrix. We rerun the experiment of applying RawPixels+SVM method on

DFH GRAY dataset to obtain the results (Table 4.2). Surprisingly, there are no misclassifi-

cations in the happy and neutral classes. That indicates happy and neutral expressions are

easily separable compared to other classes. Those two expressions are also the most common

ones encountered [87].

Table 4.1: Expression classification on DFH GRAY dataset based on confusion matrix.

Classification Anger Contempt Disgust Fear Happy Neutral Sad Surprise

Anger 18 0 0 0 0 1 1 0

Contempt 0 37 1 1 0 1 0 0

Disgust 0 1 22 0 0 0 1 0

Fear 0 0 1 21 0 1 1 0

Happy 0 0 0 0 24 0 0 0

Neutral 0 0 0 0 0 23 0 0

Sad 0 0 2 0 0 1 20 0

Surprise 2 0 0 0 0 0 0 19

4.3 Age Estimation and Classification

Human age is another important personal attribute or trait, which can be directly inferred

from facial appearance. Age estimation [93] is the determination of a person’s age based on

facial features, although other biometric traits can be used. By contrast, age classification

(coarse age classification) assigns a person into one of several categories such as kid, young,

middle aged and senior. The output from age estimation is a scalar value indicating predicted
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age from that person. On the contrary, the result from age classification is a label pointing

out which group that person belongs to. Usually, the task of age classification is much easier

than age estimation in terms of complexity.

Face aging is a slow, irreversible and complex procedure that is mixed with many uncer-

tainties [94]. During the early stage of growth and development of face, the greatest change is

craniofacial growth in the form of shape changes [95]. After that, the skin or texture change

is the dominant factor in adult aging. Such changes of patterns from childhood to adult

can be observed in Figure 4.4. Although we use normalized shapes to make all the samples

shape-free, the relative size or distance between important facial features are different.

The motivation to study age estimation or classification arises from many aspects. Aging

effect often decreases the performance of many biometrics systems, such as gender recogni-

tion [96], face recognition [97] and expression recognition [98]. Age-related difference in these

classification systems reflects the importance of studying age estimation or age classification

methods. Classification of age information in advance might improve the system perfor-

mance. Another reason is that the ability of determining age information from human faces

have many other real-world applications, ranging from security control, human-computer in-

teraction to forensic Art [95]. Common appearance-based approaches include Gabor features

with fuzzy LDA [99], ICA-based local facial features [100] and LBP [21].

The FGNET database has 82 subjects. Each subject has images collected across different

age groups. The minimum age is 0 and the maximum age is 69. The total size of the database

is 1002 samples. Samples of the database can be seen from Figure 4.4. All the face images

are processed with pose and shape normalization based on previous methods. Normalization

stabilizes the shape difference and makes the appearance information most prominent factor

in consideration. This is consistent with the previous approaches that we used to extract

facial appearance information. Besides, the spatial distribution of facial component is also

captured in global-based approaches. Age estimation is posed as a regression problem.

Consider a sequence of face images {xi, yi} : i = 1 · · ·n, where xi is the facial appearance

information and yi is a scalar value indicating the person’s age. The objective of regression
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(a)

(b)

Figure 4.4: One subject across different ages in FGNET database. The number indicates
the actual age of that sample. (a) Original samples from FGNET. (b) Samples after pose
normalization.
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analysis is to minimize the following error,

err =
n∑
i=1

(yi − f(xi))
2. (4.1)

The simple linear regression model assumes that the relationship between yi and xi is linear,

and can be modeled as y = mx+ b. Thus the equation becomes,

err(m, b) =
n∑
i=1

(yi −mxi − b)2. (4.2)

Taking the partial derivatives with respect to the parameters m and b will lead to the solution

of the regression problem. However, relationship between age (yi) and facial appearance

(xi) is not linear. Therefore, nonlinear regression model can more accurately characterize

the relationship between those two variables. The basic idea of Support Vector Regression

(SVR) [64] is to search for a function f(xi) that has at most ε deviation from the target

value yi for the training data xi, i = 1, · · · , n. At the same time, f(xi) should be as flat

as possible. Such requirements make SVR less sensitive to outliers than linear regression or

quadratic regression [101]. The linear SVR is described as,

f(x) = 〈w, x〉+ b (4.3)

The objective function is given by,

min
w,ξ

1

2
‖ w ‖2 +C

n∑
i=1

(ξ+i + ξ−i ) (4.4)

subject to

yi − 〈w, xi〉 − b ≤ ε+ ξ+i

〈w, xi〉+ b− yi ≤ ε+ ξ−i

ξ+i , ξ
−
i ≤ 0 (4.5)

where the constant and positive C determines the trade-off between the flatness of function

f and the data deviation ε. ξ+i and ξ−i are the imposed constrains on the optimization

problems. Such an optimization problem can be efficiently solved in the dual formation of

the former problem [102]. The linear SVR can be transformed into a non-linear SVR via the

kernel trick [64].
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To demonstrate age estimation using SVR, the FGNET database with 82 subjects is used.

Subjects with duplicated age samples are removed, resulting in a total of 988 samples. We

select the first 40 subjects for training. The remaining subjects are reserved for testing. First,

LBP is applied to extract facial features from each block that encodes gender information,

resulting in a feature dimension vector of 59. Then all the extracted features are concatenated

to form the holistic feature vector xi ∈ R2478 . Finally, the feature vector xi and its labeled age

information yi is modeled as a SVR regression problem. The performance of age estimation

is given by the mean absolute error (MAE),

MAE =
N∑
k=1

|ŝk − sk|/N (4.6)

where sk is the age ground truth and ŝk is the estimated age. The reported MAE is 7.66

on the 496 samples of FGNET database. That means the average error between predicted

age and actual age is around 8. This performance is comparable to the results obtained

by others [103, 104]. It is only within 3 years compared to recent work in [101] which

reports an MAE of 5.07. However, the correlation value (one of the outputs from SVM)

between the predicted labels and the ground truth is 0.57. It is possible that with the use of

more complex features, the performance could be improved further. Some of the prediction

results are shown in Figure 4.5. It appears that the ages of young children are more difficult

to determine than that of young adults.

Age classification is different in the sense that it is a classification rather than a regression

problem. In the Lifespan database, there are no subjects in the age group 0 to 15 (i.e.,“kid”).

The minimum age is 18 years old. Only faces with neutral expressions are selected. The

database is divided into age groups of 18-29 (223), 30-49 (76), 50-69 (123) and 70-94 (158).

The numbers in the parentheses are the number of subjects in each category. Each subject

has only one sample available. The reported experimental results are shown in Figure 4.6.

All the feature extraction methods use the SVM classifier. The best performance on this

database is achieved by LDA-based feature extraction methods with an accuracy of 71%. The

LBP descriptor does not perform well in this case. All remaining feature extraction methods

have comparable performance. The overall accuracy on this database for age classification

is relatively low, compared to other attribute classifiers. One explaination is that there are
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Figure 4.5: Age prediction results for one subject across different ages in FGNET database.
The left number is the predicted age and the right number is the actual age.

some overlaps between age groups of 18-29 and 30-49 or age groups of 30-49 and 50-69.

Another explanation is that the aging process varies from person to person. Only extracting

texture information from the facial appearance might not be disciminative enough to indicate

the presence of age information. Some subjects might look older than their actual age.

4.4 Ethnicity Classification

Ethnicity is another demographic attribute that can be deduced from human face images.

Lu et al. [105] formulated the study of image-based ethnicity as a machine learning problem.

The Linear Discriminant Analysis (LDA) was presented to separate two classes (Asian vs

non-Asian).

In the work of [106], it was shown that there exists Anthropometric statistic difference

among different racial groups (i.e., Caucasian, African-American, and Asians). For example,

the Asian group had the widest faces. Those results were obtained from the measurements

of 25 defined facial landmarks. The localization of facial landmarks can be accomplished

by applying Active Appearance Model (AAM) or Active Shape Model (ASM). However,

current feature localization methods cannot achieve robust results that are essential for the
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Figure 4.6: Age classification results across different age groups.

measurement of Anthropometric statistics from human face images. Instead we address the

problem of ethnicity identification based on gray-scale human face images. The appearance-

based scheme has demonstrated its power in gender and expression recognition. To simplify

the task, ethnicity recognition is formulated as a two-class classification problem (Asian or

Non-Asian). Here, “Asian” refers to people from South Korea, Japan and China. “Non-

Asian” refers to Caucasian, African-American and others. Samples of the database are

shown in Figure 4.7.

The ethnicity database is a combination of four different face databases, all of which are

available in public websites. The database is separated into two groups: Asian and Non-

Asian. The Asian group is composed of 188 subjects from CUHK student dataset [107] and

100 subjects from HFB dataset [9]. The non-Asian group is composed of 79 subjects from

FERET [7] and 209 subjects from Lifespan [2]. Each subject has only one sample. Therefore,

the size of Asian and Non-Asian dataset is the same, each having 288 images. Within the

same ethnicity group, the subjects have different expressions, ages and illumination factors.

The experiments are carried out by randomly splitting the training and test set as
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(a) (b)

Figure 4.7: Representative faces from the four selected database. (a) Asian; (b) Non-Asian.

40/60(%). The final classification accuracy is the average over 10 random trials (Figure 4.8).

As can be seen, the LBP and Gabor representations of ethnicity features produce the best

classification rates of 98.0% and 97.4%, respectively. All other descriptors such as PCA,

LDA and RawPixels only decline by a small margin. All the feature extraction algorithms

adopt the same SVM classification scheme. The average performance of all the algorithms

is 97.23%.

Two factors may contribute to the relatively high ethnicity classification performance:

one is the use of the SVM classifier and the other could be the use of a small database.

4.5 Chapter Summary

This chapter extends previous work on gender-based attribute classifier to expression, age

and ethnicity attributes. Such an extension only requires the adaption of feature extraction

methods from one domain to another. Similar to the gender attribute that is categorized

as male and female, the expression attribute is categorized as Happy and Neutral, while the

ethnicity attribute is classified as Asian and Non-Asian. The age attribute differs slightly

since it contains more categories. It would be a little trivial to classify age as young and old.

Instead, we divide age into kid, youth, adult and senior.

All the attribute classifiers are evaluated separately on different datasets to show the
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Figure 4.8: Ethnicity classification results with different feature extraction methods.

effectiveness of the proposed scheme. For expression classification, we achieve a 90.4% ac-

curacy on the Lifespan database and 92.5% accuracy on the DFH GRAY dataset. For age

estimation, the reported MAE is 7.66 on the 496 test samples of the FGNET database.

For age classification using 4 age groups, an accuracy of 71% was obtained on the LifeS-

pan Database. Ethnicity classification has the highest performance of 98% on a collected

database.
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Chapter 5

Conclusion

5.1 Summary

Gender classification has been shown in recent literature to be a useful attribute pro-

viding many potential applications in computer vision and biometrics. Different feature

extraction and classification methods with respect to gender classification were investigated

and revisited in order to provide readers with an understanding about ongoing research work

in this area (Chapter 1).

First, we introduced gender classification methods from the perspective of feature ex-

traction and classification, along side two pre-processing routines: face detection and nor-

malization. Then the methods were evaluated in various scenarios using public databases in

Chapter 2. Since gender classification has not been studied before for near-infrared (NIR)

and thermal (THM) images, we extended the research work to the NIR and THM domain

where the utilization of NIR and THM information can help cope with illumination changes.

To handle cross-spectrum gender classification, where the trained classifiers are based on

visible spectrum (VIS) images and the test images are from the NIR domain, we used illumi-

nation normalization to alleviate the difference between these two spectra. In addition, we

showed that the gender information extracted from NIR images can be as discriminative as

VIS images, though the performance degrades a little bit. This provides empirical evidence

of the possibility of applying existing gender classifiers to NIR images. Our experimental

results performed on different datasets verify the effectiveness of the proposed approaches
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(Chapter 3).

Finally, we explored other attribute-based classifiers. In particular, expression, age and

ethnicity were explored, as they too can be directly inferred from visual appearance of face

images. The objective is to build classifiers that can automatically predict gender, expression,

age and ethnicity from facial images. Such attribute classifiers can also be incorporated into

content-based retrieval systems to develop an attribute-based face search engine (Chapter 4).

5.2 Contributions

The contributions of this thesis are summarized as follows:

1. Gender recognition techniques were revisited and extensively evaluated using single

database as well as cross-database tests. This provides researchers with some guidelines

on the selection of effective feature extraction and classification methods. The reported

experimental results can also serve as benchmark tests.

2. We extended the problem of gender classification to near-infrared (NIR) and thermal

(THM) domains. Limited work has been done in the NIR and THM spectra to predict

gender from face images. Our experiments suggest that gender can be predicted from

NIR and THM images with reasonable accuracy.

3. We proposed the concept of cross-spectrum gender classification, where the trained

classifiers are derived using VIS images and tested on NIR images (and vice-versa).

To overcome spectrum difference between those two domains, we used illumination

normalization approaches. The effectiveness of these approaches were evaluated in the

experiments.

4. Gender classification was extended to include other attributes such as expression, age

and ethnicity which were estimated from facial images.

5. A gender classification toolbox was implemented.
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Appendix A

Toolboxes Used and Implemented

A.1 Sources

This work uses several existing software. The main toolboxes are listed below:

• Statistical Pattern Recognition Toolbox

• The Matlab Toolbox for Pattern Recognition

• MATLAB Classification toolbox

• Matlab Toolbox for Dimensionality Reduction

• The INface Toolbox for Illumination Invariant Face Recognition

Some of the codes were modified in order to adapt to specific tasks. Thanks to the authors

who shared their work for use by others in the research community. To search for these

toolboxes, please Google the keywords.

A.2 Gender Classification Toolbox

The gender classification toolbox developed in this thesis includes two parts: (a) single-

database test of different gender classification algorithms and (b) cross-database test of these

algorithms. Other algorithms can be easily integrated into the system.
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Figure A.1: Initial GUI of the system
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Figure A.2: Gender classification results displayed by the system
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