53 research outputs found

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Distributed spectrum leasing via cooperation

    Get PDF
    “Cognitive radio” networks enable the coexistence of primary (licensed) and secondary (unlicensed) terminals. Conventional frameworks, namely commons and property-rights models, while being promising in certain aspects, appear to have significant drawbacks for implementation of large-scale distributed cognitive radio networks, due to the technological and theoretical limits on the ability of secondary activity to perform effective spectrum sensing and on the stringent constraints on protocols and architectures. To address the problems highlighted above, the framework of distributed spectrum leasing via cross-layer cooperation (DiSC) has been recently proposed as a basic mechanism to guide the design of decentralized cognitive radio networks. According to this framework, each primary terminal can ”lease” a transmission opportunity to a local secondary terminal in exchange for cooperation (relaying) as long as secondary quality-of-service (QoS) requirements are satisfied. The dissertation starts by investigating the performance bounds from an information-theoretical standpoint by focusing on the scenario of a single primary user and multiple secondary users with private messages. Achievable rate regions are derived for discrete memoryless and Gaussian models by considering Decode-and-Forward (DF), with both standard and parity-forwarding techniques, and Compress-and-Forward (CF), along with superposition coding at the secondary nodes. Then a framework is proposed that extends the analysis to multiple primary users and multiple secondary users by leveraging the concept of Generalized Nash Equilibrium. Accordingly, multiple primary users, each owning its own spectral resource, compete for the cooperation of the available secondary users under a shared constraint on all spectrum leasing decisions set by the secondary QoS requirements. A general formulation of the problem is given and solutions are proposed with different signaling requirements among the primary users. The novel idea of interference forwarding as a mechanism to enable DiSC is proposed, whereby primary users lease part of their spectrum to the secondary users if the latter assist by forwarding information about the interference to enable interference mitigation at the primary receivers. Finally, an application of DiSC in multi-tier wireless networks such as femtocells overlaid by macrocells whereby the femtocell base station acts as a relay for the macrocell users is presented. The performance advantages of the proposed application are evaluated by studying the transmission reliability of macro and femto users for a quasi-static fading channel in terms of outage probability and diversity-multiplexing trade-off for uplink and, more briefly, for downlink

    Practical interference management strategies in Gaussian networks

    Get PDF
    Increasing demand for bandwidth intensive activities on high-penetration wireless hand-held personal devices, combined with their processing power and advanced radio features, has necessitated a new look at the problems of resource provisioning and distributed management of coexistence in wireless networks. Information theory, as the science of studying the ultimate limits of communication e ciency, plays an important role in outlining guiding principles in the design and analysis of such communication schemes. Network information theory, the branch of information theory that investigates problems of multiuser and distributed nature in information transmission is ideally poised to answer questions about the design and analysis of multiuser communication systems. In the past few years, there have been major advances in network information theory, in particular in the generalized degrees of freedom framework for asymptotic analysis and interference alignment which have led to constant gap to capacity results for Gaussian interference channels. Unfortunately, practical adoption of these results has been slowed by their reliance on unrealistic assumptions like perfect channel state information at the transmitter and intricate constructions based on alignment over transcendental dimensions of real numbers. It is therefore necessary to devise transmission methods and coexistence schemes that fall under the umbrella of existing interference management and cognitive radio toolbox and deliver close to optimal performance. In this thesis we work on the theme of designing and characterizing the performance of conceptually simple transmission schemes that are robust and achieve performance that is close to optimal. In particular, our work is broadly divided into two parts. In the rst part, looking at cognitive radio networks, we seek to relax the assumption of non-causal knowledge of primary user's message at the secondary user's transmitter. We study a cognitive channel model based on Gaussian interference channel that does not assume anything about users other than primary user's priority over secondary user in reaching its desired quality of service. We characterize this quality of service requirement as a minimum rate that the primary user should be able to achieve. Studying the achievable performance of simple encoding and decoding schemes in this scenario, we propose a few di erent simple encoding schemes and explore di erent decoder designs. We show that surprisingly, all these schemes achieve the same rate region. Next, we study the problem of rate maximization faced by the secondary user subject to primary's QoS constraint. We show that this problem is not convex or smooth in general. We then use the symmetry properties of the problem to reduce its solution to a feasibly implementable line search. We also provide numerical results to demonstrate the performance of the scheme. Continuing on the theme of simple yet well-performing schemes for wireless networks, in the second part of the thesis, we direct our attention from two-user cognitive networks to the problem of smart interference management in large wireless networks. Here, we study the problem of interference-aware wireless link scheduling. Link scheduling is the problem of allocating a set of transmission requests into as small a set of time slots as possible such that all transmissions satisfy some condition of feasibility. The feasibility criterion has traditionally been lack of pair of links that interfere too much. This makes the problem amenable to solution using graph theoretical tools. Inspired by the recent results that the simple approach of treating interference as noise achieves maximal Generalized Degrees of Freedom (which is a measure that roughly captures how many equivalent single-user channels are contained in a given multi-user channel) and the generalization that it can attain rates within a constant gap of the capacity for a large class of Gaussian interference networks, we study the problem of scheduling links under a set Signal to Interference plus Noise Ratio (SINR) constraint. We show that for nodes distributed in a metric space and obeying path loss channel model, a re ned framework based on combining geometric and graph theoretic results can be devised to analyze the problem of nding the feasible sets of transmissions for a given level of desired SINR. We use this general framework to give a link scheduling algorithm that is provably within a logarithmic factor of the best possible schedule. Numerical simulations con rm that this approach outperforms other recently proposed SINR-based approaches. Finally, we conclude by identifying open problems and possible directions for extending these results

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Advanced interference management techniques for future wireless networks

    Get PDF
    In this thesis, we design advanced interference management techniques for future wireless networks under the availability of perfect and imperfect channel state information (CSI). We do so by considering a generalized imperfect CSI model where the variance of the channel estimation error depends on the signal-to-noise ratio (SNR). First, we analyze the performance of standard linear precoders, namely channel inversion (CI) and regularized CI (RCI), in downlink of cellular networks by deriving the received signal-to-interference-plus-noise ratio (SINR) of each user subject to both perfect and imperfect CSI. In this case, novel bounds on the asymptotic performance of linear precoders are derived, which determine howmuch accurate CSI should be to achieve a certain quality of service (QoS). By relying on the knowledge of error variance in advance, we propose an adaptive RCI technique to further improve the performance of standard RCI subject to CSI mismatch. We further consider transmit-power efficient design of wireless cellular networks. We propose two novel linear precoding techniques which can notably decrease the deployed power at transmit side in order to secure the same average output SINR at each user compared to standard linear precoders like CI and RCI. We also address a more sophisticated interference scenario, i.e., wireless interference networks, wherein each of the K transmitters communicates with its corresponding receiver while causing interference to the others. The most representative interference management technique in this case is interference alignment (IA). Unlike standard techniques like time division multiple access (TDMA) and frequency division multiple access (FDMA) where the achievable degrees of freedom (DoF) is one, with IA, the achievable DoF scales up with the number of users. Therefore, in this thesis, we quantify the asymptotic performance of IA under a generalized CSI mismatch model by deriving novel bounds on asymptotic mean loss in sum rate and the achievable DoF. We also propose novel least squares (LS) and minimum mean square error (MMSE) based IA techniques which are able to outperform standard IA schemes under perfect and imperfect CSI. Furthermore, we consider the implementation of IA in coordinated networks which enable us to decrease the number of deployed antennas in order to secure the same achievable DoF compared to standard IA techniques

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Sichere Kommunikation ĂŒber AbhörkanĂ€le mit mehreren EmpfĂ€ngern und aktiven Störsendern

    Get PDF
    We derive a state of the art strong secrecy coding scheme for the multi-receiver wiretap channel under the joint and individual secrecy constraints. we show that individual secrecy can utilize the concept of mutual trust to achieve a larger capacity region compared to the joint one. Further, we derive a full characterization for the list secrecy capacity of arbitrarily varying wiretap channels and establish some interesting results for the continuity and additivity behaviour of the capacity.FĂŒr den Abhörkanal mit mehreren EmpfĂ€ngern wird ein Kodierungsschema hergeleitet unter dem gemeinsamen als auch individuellem Sicherheitskriterium. Das individuelle Kriterium basiert auf dem Konzept des gegenseitigen Vertrauens, um eine grĂ¶ĂŸere KapazitĂ€tsregion zu erreichen. Weiterhin wird eine vollstĂ€ndige Charakterisierung der SicherheitskapazitĂ€t fĂŒr den beliebig variierenden Kanals aufgestellt, sowie Eigenschaften bezĂŒglich der KontinuitĂ€t und des AdditivitĂ€tsverhalten bewiesen

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • 

    corecore