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Abstract

Increasing demand for bandwidth intensive activities on high-penetration wireless hand-held

personal devices, combined with their processing power and advanced radio features, has

necessitated a new look at the problems of resource provisioning and distributed manage-

ment of coexistence in wireless networks. Information theory, as the science of studying

the ultimate limits of communication efficiency, plays an important role in outlining guiding

principles in the design and analysis of such communication schemes. Network informa-

tion theory, the branch of information theory that investigates problems of multiuser and

distributed nature in information transmission is ideally poised to answer questions about

the design and analysis of multiuser communication systems. In the past few years, there

have been major advances in network information theory, in particular in the generalized

degrees of freedom framework for asymptotic analysis and interference alignment which have

led to constant gap to capacity results for Gaussian interference channels. Unfortunately,

practical adoption of these results has been slowed by their reliance on unrealistic assump-

tions like perfect channel state information at the transmitter and intricate constructions

based on alignment over transcendental dimensions of real numbers. It is therefore neces-

sary to devise transmission methods and coexistence schemes that fall under the umbrella of

existing interference management and cognitive radio toolbox and deliver close to optimal

performance.

In this thesis we work on the theme of designing and characterizing the performance of

conceptually simple transmission schemes that are robust and achieve performance that is

close to optimal. In particular, our work is broadly divided into two parts. In the first part,

looking at cognitive radio networks, we seek to relax the assumption of non-causal knowledge

of primary user’s message at the secondary user’s transmitter. We study a cognitive channel
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model based on Gaussian interference channel that does not assume anything about users

other than primary user’s priority over secondary user in reaching its desired quality of

service. We characterize this quality of service requirement as a minimum rate that the

primary user should be able to achieve. Studying the achievable performance of simple

encoding and decoding schemes in this scenario, we propose a few different simple encoding

schemes and explore different decoder designs. We show that surprisingly, all these schemes

achieve the same rate region. Next, we study the problem of rate maximization faced by

the secondary user subject to primary’s QoS constraint. We show that this problem is not

convex or smooth in general. We then use the symmetry properties of the problem to reduce

its solution to a feasibly implementable line search. We also provide numerical results to

demonstrate the performance of the scheme.

Continuing on the theme of simple yet well-performing schemes for wireless networks, in

the second part of the thesis, we direct our attention from two-user cognitive networks to

the problem of smart interference management in large wireless networks. Here, we study

the problem of interference-aware wireless link scheduling. Link scheduling is the problem of

allocating a set of transmission requests into as small a set of time slots as possible such that

all transmissions satisfy some condition of feasibility. The feasibility criterion has tradition-

ally been lack of pair of links that interfere too much. This makes the problem amenable to

solution using graph theoretical tools. Inspired by the recent results that the simple approach

of treating interference as noise achieves maximal Generalized Degrees of Freedom (which is

a measure that roughly captures how many equivalent single-user channels are contained in

a given multi-user channel) and the generalization that it can attain rates within a constant

gap of the capacity for a large class of Gaussian interference networks, we study the problem

of scheduling links under a set Signal to Interference plus Noise Ratio (SINR) constraint.

We show that for nodes distributed in a metric space and obeying path loss channel model, a

refined framework based on combining geometric and graph theoretic results can be devised

to analyze the problem of finding the feasible sets of transmissions for a given level of desired

SINR. We use this general framework to give a link scheduling algorithm that is provably

within a logarithmic factor of the best possible schedule. Numerical simulations confirm

that this approach outperforms other recently proposed SINR-based approaches. Finally, we
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conclude by identifying open problems and possible directions for extending these results.
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Chapter 1

Introduction

Cognitive radio, as first proposed by Mitola [1] is an important research direction in en-

gineering next generation wireless systems [2, 3]. The premise of cognitive radio is based

on the observations by regulatory authorities in many countries that despite the heavy in-

crease in demand for wireless spectrum, most traditional band licensees are not using their

allocated spectrum efficiently at all. In particular, there exists a hierarchy of legacy radio

users who often use decades old technology and vintage band licenses and whose efficiency of

spectrum use is far from optimal, and another class of highly agile and capable radios that

can potentially tap into the unused portion of these users’ spectrum at the same time as

being cognizant of the very strict quality of service requirements that these incumbent users

demand. In effect, a cognitive radio is any radio system that is simultaneously configurable

in its parameters and aware of the wireless environment it is operating in. Using this knowl-

edge, the cognitive radio tries to opportunistically adapt its transmission parameters in such

a way as to maximize its resource usage efficiency and minimize undesirable interference on

the user that has the primary priority to the spectrum it is using.

Also, despite the fact that having a network of extremely capable and context-aware

but non-cooperating cognitive radios is a huge improvement over the current architecture,

there are potential performance gains to be made by making these intelligent nodes able to
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Chapter 1. Introduction

cooperate with one another. Research into the gains from cooperation is mostly inspired

by the very promising theoretical results on the gains to diversity and multiplexing possi-

ble through the use of multiple-antenna systems and generalized beam-forming, and their

successful implementation in such standards as IEEE 802.11n WiFi [4].

The so called cooperative cognitive radio schemes have attracted interest for the design

of next generation wireless systems. These systems try to replicate the gains obtained from

multiple antenna transmit and receive strategies using a heterogeneous and distributed net-

work of (possibly single-antenna) transmitters and receivers. This is done through forming a

distributed virtual antenna array across multiple nodes. It is obvious that when no central-

ized coordination is involved, some overhead and therefore loss of efficiency is to be expected

but the hope is that in cases of interest, this loss of efficiency is more than compensated by

the gains achieved through these distributed beam-forming schemes.

These developments, against the backdrop of the huge increase in the number of wireless-

capable personal mobile devices over the past few years, have rekindled research interest into

the use of ever-more complex and adaptive transmit and receive strategies that exploit the

specific properties of these types of decentralized heterogeneous networks at the same time as

being aware of the very real limitations in channel quality, delay tolerance, transmit power

and channel estimation accuracy that these platforms inherently suffer from. Communi-

cation over wireless radio channels has to contend with many problems that are not of a

serious concern for guided media like wire-line and fibre optics. The most challenging among

these problems is the fact that the free space is a shared resource and that radio channels,

by virtue of the flexibility of their setup, often present much less favourable conditions for

transmitting data than their wire-line counterparts and suffer from the effects of multi-path

fading and time-dependent shadowing. Also, the interactive nature of some of the commu-

nication services offered by these devices often means that delay constraints are very strict,

whereas for some other usage scenarios, long delays can be tolerated. Until very recently,

information-theoretic results had almost no bearing on engineering approaches to the design
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of these systems in the real world [5, 6, 7]. As a result of this, there was often a lack of deep

knowledge of the effects of these non-idealities and limitations and perhaps opportunities

and advantages offered by them and as such, there was an unfulfilled demand for a much

deeper understanding of the fundamental trade-offs underlying communication in the pres-

ence of a wide range of interferers and uncertainty in the specification of the transmission

medium. This has spurred interest in new research directions and design paradigms that

try to incorporate the specific properties and challenges that are faced by the designer of

a decentralized wireless ad-hoc network and in particular to propose new classes of system

designs that are specifically tailored to such limitations [8, 9].

This requires gaining a broad insight into the applicability of any proposed scheme along

these ideas, and a thorough understanding of the theoretical possibilities and limitations of

communication over radio networks. This type of analysis, of what is fundamentally achiev-

able and what is not, becomes especially important when trying to decide on a benchmark

or figure of merit against which to evaluate the performance of different classes of real-world

systems. This is because such ultimate performance limits can never be achieved by any real

world system but can typically be approached very closely by highly optimized and clever

designs. Therefore, they serve as a single point of reference against which different systems

with different underlying architectures can be compared without any bias toward any partic-

ular approach to the problem. This is where the role of network information theory becomes

apparent. Since the seminal work of Shannon [10], the probabilistic framework offered by

information theory has shown to be an invaluable tool in analyzing the ultimate limits on the

transmission of information under various adverse scenarios and in evaluating the improve-

ment headroom available to any real-world communication system. Network information

theory is a natural extension of this point-to-point formalism that tries to quantify and

study the effects of competition, cooperation and distributed operation on the fundamental

possibilities in transfer of information and hence is naturally suited as a firm theoretical

ground for analyzing and gaining deep insights into the broad design problems facing the
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Chapter 1. Introduction

next generation’s network engineers.

Therefore, it seems important to propose and analyze idealized models of communication

scenarios that might arise in the context of such channel-aware, heterogeneously capable and

multi-tiered communication systems as proposed under the banner of cognitive, cooperative

and device-to-device communications and to use the tools of multi-user information theory

to study and analyze these problems.

In the first part of this thesis, we propose one such model of a cognitive channel in

a two-user setting. The main characteristic of our problem setup is that the users are

not symmetric in their priority of access to the channel and in their capability to adapt

themselves to its particular realization. Specifically, we have a primary or legacy user, who

is not expected to accommodate the bandwidth needs of the other user, nor is it expected

to use advanced detection and interference management techniques in decoding its desired

signal. The secondary user on the other hand, should guarantee that its presence in the band

does not cause the attainable rate of the first user to fall below a certain threshold. It has a

range of adaptive tools and strategies at its disposal to asses and minimize its effect on the

primary user’s quality of service and to squeeze the maximum possible performance out of

the available spectral resources for transferring its own data. We characterize an achievable

rate region for primary and secondary user of the channel. We then show that a number

of alternate encoder and decoder architectures give rise to the same rate region as achieved

by our first encoding scheme. We also derive a weak converse result, showing that our rate

region cannot be improved by adding multilayer random coding to the cognitive transmitter’s

codeword. Because our problem setup involves a rate-optimizing cognitive secondary user,

we next state and analyze the optimization problem that this secondary user has to solve in

order to attain maximum transmission rate. We use the properties of the rate-expressions

involved and the symmetries of the problem to reduce this rate-optimization problem to a

number of simpler constituent problems. We also analyze and derive sufficient conditions

on the channel coefficients under which some of these subproblems will dominate the others.
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Next, to gain insights into the performance of the proposed transmission schemes and our

decomposition of the rate-optimization problem, we provide illustrative numerical examples

and simulations and interpret the plotted results.

The second part of the thesis concerns the problem of link scheduling in larger wireless

networks. Link scheduling in a broadcast propagation medium is the problem of partition-

ing a set of network transfer requests across the smallest possible set of timeslots. There

is a trade-off between utilization of the common medium and quality of individual links in

broadcast networks and too many simultaneously transferring links leads to transmission

failures. As such, some metric of link quality should be maintained while trying to satisfy

different requests simultaneously. Traditionally, in designing algorithms for dynamic link

scheduling, interference is looked at as an all or nothing phenomenon. In this view, each

pair of links either conflict or not. This has the advantage of making the problem simpler

to conceptualize and gives rise to notions such as radius of interference and guard intervals

around transmitting nodes that preclude other transmissions. Although it leads to straight-

forward scheduling methods, the pairwise conflict model of transmission feasibility can be

very far from a realistic representation with respect to the underlying physical layer. The

failure or success of network links at clearing transmission demands directly depends on

their rate which itself depends on the signal to interference and noise ratio (SINR) seen at

the receivers. As will be discussed next, signal to interference and noise ratio has also been

shown to be fundamental to characterizing channel capacity for large networks.

The connection between SINR and channel capacity is established using degrees of free-

dom analysis [11]. The framework of Degrees-of-Freedom (DoF) has emerged over the past

decade as a powerful tool in analyzing and understanding the asymptotic behaviour of wire-

less channel capacity in the limit of high SNR. Degrees-of-Freedom (DoF) of a multiple-input

multiple-output channel is the multiple of the capacity of a single-input single-output channel

it is capable of transferring at high SNR values. A channel with degree of freedom N behaves

like N parallel SISO channels at high SNR values. Each of these equivalent SISO channels is
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Chapter 1. Introduction

known as one degree of freedom of the larger channel. The adoption of DoF framework has

also paved the way for the introduction of interference alignment. It was through the use

of interference alignment that the N/2 degrees of freedom of an N -user interference channel

was established. This showed that in many cases, judicious design of signals at the transmit

side and simple treating of interference as noise at the receive-side can achieve rates within a

constant gap to the capacity. Unfortunately, interference alignment results are not thought

to be robust enough to be applicable in many real-world scenarios [12, 13], but they point

towards the power of simple schemes in interference management. More recently, it has been

shown that simply treating interference as noise, even without alignment at the transmitters,

can achieve the same performance for large classes of interference channel1.

This opens up the potential for scheduling algorithms that directly target Signal to In-

terference and Noise Ratio (SINR) constraints, as it is a metric that captures the achievable

rate under these conditions. This is the problem we tackle in the second part of this thesis.

Specifically, we look at an ad-hoc network of wireless nodes and adopt a path loss model of

channel coefficients. We show that unlike the previous approaches that mostly looked at the

problem of link scheduling in terms of pairwise conflicts between different links, which are

straightforwardly modeled by a conflict graph, additional subtleties are involved when the

problem is studied under signal plus interference and noise ratio constraints. In particular,

because of the accumulative nature of interference on the noise floor, it seems hard to pick

up feasible subsets of links without incurring the costs of a combinatorial search. We show

that under quite general assumptions on the distribution of nodes, a pairwise relaxation

of the notion of SINR-feasibility can be obtained. This approach allows us to still use the

graph-based model for link scheduling, while remaining faithful to the SINR model of radio

operation. In particular, we use this refined graph-based analysis of the scheduling conflict

to derive an algorithm for SINR-feasible link scheduling that has provable approximation

1The next chapter, after going over the required background, gives a comprehensive review of Degrees-of-
Freedom framework and its generalization in Generalized Degrees-of-Freedom analysis for multi-user channels
and how they have paved the way for most of the recent advances in network information theory
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guarantees. Moreover, we use simulations to show that this algorithm compares favourably

with state of the art scheduling algorithms that have been proposed for scenarios similar to

ours.

The rest of this document is organized as follows: Chapter 2 gives a background of a

few of the canonical problems in network information theory, presenting a brief review of

information-theoretic work done on analyzing cognitive radio and cooperative communica-

tions. We then review the problem of link scheduling in wireless networks and discuss the

prior work that mostly concerns pairwise notions of scheduling conflict. Finally, we go into

depth on the formal definition of interference channel upon which our models are based and

a selection of results on capacity, achievable rates and outer bounds are reviewed. This

includes a look at the generalized degrees of freedom work and results on the optimality of

treating interference as noise. Chapter 3 contains the first part of the thesis. In this part

we analyze a model of cognitive Gaussian interference channels that does not presume non-

causal knowledge of primary user’s message by the secondary user. After formally defining

the model, we analyze several transmission strategies and derive their achievable regions.

We also show that our achievable rates cannot be improved upon by random multi-layer

coding of the type used in the vast majority of achievability results in network information

theory. Having characterized an achievable region for this channel, we formulate the rate

optimization problem for our setup and use the structure of this optimization problem to

simplify and categorize its different working regimes. This results in a breakdown of the

problem into a family of one-dimensional optimization problems with solutions correspond-

ing to these different regimes. Next, we give a number of demonstrative numerical examples

to gain insight into the available performance.

Chapter 4 contains the second part of the thesis where we define the scheduling problem

that we are trying to solve and argue its importance. We then formally establish our model

and assumptions. We show that this problem can be exactly solved by formulating as a

mixed integer program, but exact solution is not tractable for larger networks. Then, after
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defining relevant notation and terminology, we show that the SINR-feasibility criterion can

be cast into the language of graph-theoretic independent set scheduling. We do this through

a pairwise relaxation of the notion of SINR-feasibility that allows for a graph-theoretical

analysis facilitating the use of existing graph-theoretic tools to bear on the problem, but

is still refined enough to be related to the optimal solution with a provable approximation

ratio. We then state the algorithm and its approximation ratio. Numerical results about its

performance are also provided. Finally, the last chapter discusses some possible directions

for extending the model and some related problems for future work.
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Chapter 2

Background and preliminaries

In this chapter, we start by giving a background of some of the canonical problems of

network information theory and the state of their resolution in various special cases and their

variations and generalizations. We then briefly review the literature on information-theoretic

approaches to cognitive radio networks and in particular review a few works whose model is

similar to our model of the cognitive channel. We then review the problem of link scheduling

in large wireless networks and review the existing work in this area. This will serve as a brief

overview on the state of progress, both in the broader field of information theory and in the

special case of information-theoretic investigations of cognitive communication problems and

network link scheduling. Next, we will have a whirlwind tour of the interference channel,

arguably the most important channel model in multi-user information theory, as this is the

model that underlies the work of this thesis. We then review both classic and very recent

results on the capacity of interference channels. This includes a review of the celebrated

work on interference alignment for interference channels with N users where N > 2, and

the more recent results on the optimality of treating interference as noise for large classes of

interference channels.
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Chapter 2. Background and preliminaries

2.1 Network information theory

Network information theory owes its starting to the work of Shannon on two-way channels

[14]. This was the first time that Shannon’s own approach to the mathematical theory

of information transmission [10] from a decade earlier was extended to a communication

scenario in which more than a one transmitter-receiver pair are involved and there is a

trade-off between the users’ utilization of the channel. Perhaps not coincidentally, this is

also the first time that a skeleton of a model that would later become the interference

channel was discussed in the literature. Shannon only succeeded in proving a capacity result

for the special Gaussian case of the two-way Channel. In all other cases, problem has proven

difficult to solve. This demonstrates that there are subtleties involved in solving the problem

of reliable communications when more than one user and terminal is involved and that these

difficulties are substantially different from those faced in single-user information theory.

Figure 2.1: Two-user multiple-access channel

During the couple of decades after this paper a multitude of different multi-user com-

munication channels were introduced. Here, we will briefly go over a few of the canonical

channel models in network information theory.

10



2.1. Network information theory

The two-user Multiple Access Channel (MAC) shown in figure 2.1, was introduced and

solved simultaneously by Ahlswede [15] and Liao [16, 17]. It is intended to model the case

where a single receiver tries to decode two messages sent simultaneously and independently

by two separate transmitters, as for example might be faced by the BTS1 in the up-link of a

cellular network. Among others, this model can be trivially extended to the N -user case and

also the case where synchronization between the transmitters and the receiver is not perfect.

This problem is to date, the only one of the canonical problems in information theory to

solved satisfactorily in the general case.

Figure 2.2: Two-user broadcast channel

The two-user Broadcast Channel, introduced by Cover [18] and shown in figure 2.2, at-

tempts to model an operational dual to the Multiple-access channel by modeling the scenario

in which a single transmitter is trying to send two separate messages to two independent

receivers, as for example would be the case in the down-link of a cellular network. Some of

the ways in which this model can be generalized are by extending to N receivers and to the

case in which there is a common message as well as each receiver’s private message in which

all receivers are interested. In the special case of degraded broadcast channel, in which one

1Base transceiver station.

11



Chapter 2. Background and preliminaries

of the receivers has a degraded version of the signal from the other receiver, namely that

its signal is independent of the transmitted signal given what the superior receiver has re-

ceived, Cover conjectured in [18] and Bergmans obtained in [19], using what was termed

superposition coding, an achievable rate region. Proof of the converse coding theorem for

this region was given by Gallager and Bergmans [20, 21]. Fortunately, in the Gaussian case

of the two-user broadcast channel this condition always holds, that is the receiver with the

lower SNR receives a stochastically degraded version of the signal from the receiver with the

higher SNR. Otherwise, for most other scenarios, the calculation of the capacity region2 of

the broadcast channel remains an open problem. More recently, using ideas from dirty-paper

coding [22] and Gel’fand-Pinsker problem[23], the capacity region of the MIMO3 Gaussian

version of the broadcast channel was derived by Shamai and Caire [24] and almost concur-

rently by a few other groups [25, 26, 27]. Other than these classes and some other special

cases the problem of characterization of the capacity region of the broadcast channel remains

open.

Relay

Figure 2.3: Relay channel

2The capacity region of a channel, which will be formally defined in the sequel, denotes the set of transfer
rates (or rate tuples for multi-user channels) which can be supported with asymptotically vanishing error
probability on that channel.

3Multiple-input Multiple Output.
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2.1. Network information theory

In the Relay Channel, first proposed by van der Muelen [28, 29, 30] and shown in figure

2.3, a transmitter-receiver pair are trying to communicate a message with the help of a

third node, a so called relay, that perhaps has a better line of sight to the transmitter. The

relay can listen to what is transmitted by the transmitter (represented by Y1) and uses these

observations causally to help the receiver in decoding the codeword by sending the input X1

over the network. Variations of this problem exist in which there is more than one relay node,

connected either serially in a multi-hop topology or in a single-hop parallel topology (the

so called diamond relay network). Cover and El-Gamal [31] proposed two different coding

schemes for the classical relay channel, namely decode-forward and compress-forward. They

also derived the cut-set outer bound on relay channel capacity. Using these inner and outer

bounds they proved the capacity for the two special cases of degraded and reversely degraded

relay channels. In both these cases, the cut-set bound coincided with the achievable rate but

otherwise no converse proof for the capacity of general relay channels is known.

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Figure 2.4: Interference channel when used n times with encoders and decoders

The Interference Channel (IC) (figure 2.4) was introduced by Shannon [14] and expounded

on by Ahlswede [32]. In this channel two sender transmitter pairs are trying to exchange

messages through some shared information transfer medium. One important point about
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the interference channel is that its definition subsumes multiple-access and broadcast chan-

nels as special cases (by setting the outputs or inputs to be probabilistically equivalent).

The determination of the exact capacity region of the interference channel has remained an

open problem for nearly four decades and is probably the most challenging of the canoni-

cal problems of network information theory. The original inspiration for this model was to

analyze the effect of crosstalk on the performance of communication systems using adjacent

twisted copper wire pairs. With the advent of ubiquitous wireless terminals and the inherent

broadcast nature of wireless networks, namely that every receiver in the range can hear every

transmission whether intended for it or not, this problem has gained new-found importance

as a model central to the characterization of wireless network performance limits. Since

the model of interference channel is central to our work its formal definition and a thorough

review of relevant results on its capacity and achievable rate regions under different scenarios

will be given in the sequel.

2.1.1 An information-theoretic view of cognitive radio and coop-

erative communications

As we saw previously, cognitive radio and cooperative communication are believed by many

to be an important research direction in the field of wireless communications and as such they

are subject to heavy research activity focused on proposing, analyzing and implementing

practical and theoretical systems and protocols in order to identify the most promising

approaches and the possible gains from using these technologies.

An important facet of this research effort is building measures for quantifying the perfor-

mance of any given scheme. The performance offered by an idealized version of the problem

we are trying to solve in which computational and delay constraints are done away with,

is a good benchmark to compare practical approaches against, since it is a fundamental

limit of the problem unaffected by and not favouring any specific implementation choice,

and it cannot be surpassed by any realizable system. It is here that network information
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theory has proven to be the tool of choice when theoretical analysis of the performance lim-

its of a network of interconnected nodes is concerned. Even though many of the canonical

problems of network information theory have not yet been solved in their full generality,

an information-theoretic analysis of a communication problem can often shed light on the

fundamental trade-offs that are involved and the nature and magnitude of improvements one

can expect.

Most information theoretical treatments of cognitive radio and cooperative communica-

tions, hereafter shortened to cognitive radio for brevity, have divided their setup into three

broad families: overlay, underlay and interweave [33]. The difference between these classes of

cognitive models relates to how the primary user and secondary users interact and is briefly

reviewed here.

In the overlay setup, the cognitive users in the network have access to not only the

channel parameters that they have estimated from the RF environment, but also to the

codebooks and messages of the primary users as well and as such can actively aid the primary

users by using a portion of their power to relaying their signal. They can also help their

own intended receivers by treating the known message of the primary as a channel state

parameter and using techniques like dirty paper coding to mitigate the effect of interference

from the primary on their intended receiver. Using this knowledge, they can basically use

the channel in a completely unobtrusive manner by compensating for any signal to noise

ratio degradation they have caused on the primary’s link with an equal amount of signal

to noise ratio improvement through proper division of their power between relaying for the

primary user and sending to the secondary receiver. The idealized assumption of access to

the messages and codebooks of the primary user is justified in practical terms based on the

fact that many higher-level network protocols use relatively static-in-time codebooks and

modulation schemes in their physical layer and that the built-in automatic repeat request4

mechanism for retransmission and acknowledgment of messages means that if the cognitive

4ARQ
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transmitter happens to be strategically located in a way that it gets better reception of

primary’s signals than the primary receiver, it will have access to primary’s message just

in time to help it relay the message to the secondary at the same time as using part of

the band for its own message transmission. The authors in [34] investigate a model where

this kind of non-causal message information from the primary transmitter is available to the

secondary transmitter. They derive an achievable region for this channel based on time-

sharing between selfish dirty paper coding of secondary user and relaying the first user’s

message with part of the secondary transmitter power. They also try to relax the non-causal

message knowledge condition and consider the case where the secondary has to wait a fraction

of the codeword length of the primary before it gains access to the message and then begin

cooperating with primary. In [35], a similar model is studied whereby the extra so called

coexistence conditions which prohibit the secondary from changing the effective signal-to-

noise ratio of the primary receiver and the receiver not tailoring its coding and decoding

scheme to the presence of the secondary are added. With these additional constraints, the

authors derive the capacity region of their model and prove that a combination of relaying

the primary’s message and compensating for its known interference at the secondary receiver

is optimal. Their assumptions limit their result to case where interference is weak, that is the

channel coefficient between each transmitter and its corresponding receiver is higher than the

channel coefficient between that transmitter and the other receiver. The same observations

were made in [36] for weak interference that considered this problem as a special case of the

problem of interference channels with degraded message sets. The problem of interference

channel with degraded message sets was studied in [37, 38] in the case of strong interference.

In the underlay setup, the secondary has information about the channel coefficients of its

own and primary’s channel, but not its message or codebook, yet it wants to multiplex its own

signal into the same band without causing any undue loss of quality of service for the primary.

In this situation, what the secondary can do is to tailor its transmit power and direction in

a way that it achieves the maximum possible performance for its own transmission at the
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same time as keeping the primary’s link within the acceptable quality of service envelope.

This model has the advantage that it does not rely on the strong assumption of prior non-

causal knowledge of primary’s message. It is typically much easier to use electromagnetic

reciprocity to estimate channel coefficients from one’s own transmitter to other network

terminals and as for channel coefficients between other pairs of users, carefully listening to

the primary users’ communications when they are first setting up a transmission session and

doing power adjustment and channel learning, it is possible to get a good estimate of their

channel coefficients. Also, if the primary users are in geographically fixed locations, as is the

case for many legacy users such as television repeaters, a location-aware secondary user can

conceivably model the channel quality between other pairs of users.

The interweave setup, which is perhaps more true to the original conception of cognitive

radio networks, is where the secondary transmitter opportunistically tries to find holes in the

spectral usage of the primary user and fill these holes with its own data. The main challenge

in this arrangement is robust and efficient detection of the presence of absence of primary user

activity at any given time, frequency and place. This poses a signal processing challenge for

the secondary user since its non-obtrusive use of the channel directly depends on how likely

it’s whitespace-detection procedure is to make false positive and false negative detections of

the primary user activity. This is where an information-theoretic analysis may come into

play that tries to characterize the limitations of any estimation procedure subject to random

disturbances and how, if at all, can cooperation between geographically separate nodes help

in resolving false positives and false negatives when detecting primary user activity.

The first problem that we consider has elements of both underlay and interweave setups,

since it both opportunistically senses white-spaces in primary user’s band usage and at the

same time, to achieve higher rates, underlays part of its signal into the same band as the

primary user without unduly affecting its utilization of its bandwidth under use and tries

to opportunistically either cancel or treat as noise the interference coming from the primary

user without relying on any cooperation from it. A number of works in the literature have
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studied similar models which are reviewed here.

The authors in [39] consider a fading interference channel shared between a non-CSI5

aware primary user and a cognitive secondary user. The primary user is using a constant-

power and constant-rate coding approach and the quality of service metric being imposed on

the secondary user is on primary user’s outage probability6 for its chosen transmission rate

not going above some ε. They derive the optimum power allocation strategy for the cases

where the secondary user has either a peak or an average power constraint and is trying to

maximize either its own ergodic capacity 7 or its outage capacity8 for some ε′. The difference

with our model is in the fading channel setup and the quality of service metric used.

In the paper [40], a model is considered in which a number of users are trying to share

a number of sub-bands in a multi-carrier communication system. They propose an iterative

setup where the users try to update their power allocation over the spectrum by adopting, at

each stage, the power allocation strategy that maximizes their rate given the interference that

they see at that stage. The receivers act opportunistically and try to use multi-user detection

whenever possible to maximize their achievable rates. They propose coding schemes based

on joint and separate coding over sub-carriers and solve the maximization problem of each

user at each iterative step for these coding schemes. The model in this work is quite similar

to our setup except that it is solving a distributed spectrum sharing problem in which all the

users are trying to cooperatively converge to a stationary point of their stepwise objective

functions and no user is given any quality of service guarantee. In our work there is a

hierarchy of priority in access to the channel and the primary user is guaranteed a minimum

transmission rate without having to cooperate with the secondary.

In [41], the authors study a fading network of one primary and many secondary cognitive

users that are aware of the number of other secondary users. In this work, the quality of

5Channel State Information.
6The probability over all fading states that the instantaneous maximum achievable rate on the link falls

below the user’s chosen transmission rate.
7the expectation of maximum achievable instantaneous rate under the fading distribution.
8The maximum rate that can be achieved in with probability greater than 1− ε over all fading states.
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service metric for the primary user is the attainability of a certain fraction ν of the outage

capacity of its interference-free link for some outage probability ε even in the presence of

secondary users. The secondary users have the option of canceling interference from the

primary user or treating it as noise but treat interference from their peers as noise. A

number of approaches are considered in this work. These include the secondary users having

a so-called activity factor which denotes the probability of them turning on their transmitters

in each time slot and of which they try to maximize the expected value, also the strategy

of users continuously modulating their transmit power up and down so as to maximize their

expected transmission rate is used. They also offer a combination of these methods and

compare the performance of all three approaches numerically. The difference with our model

again is in the fading model and the quality of service metric adopted.

2.2 Wireless link scheduling

In this section we give a background of relevant work on the problem wireless link scheduling,

which is the subject of the second part of thesis.

As described in the introduction, typically, wireless scheduling is approached through

declaring conflicts between pairs of links that are in some sense “too close” to transmit si-

multaneously. Concretely, this approach maps the problem to a graph-based one where links

form the vertices of the graph and there is an edge between every pair of vertices if the cor-

responding pair of links are not able to be active simultaneously. This is called the conflict

graph of the link-set. The problem of link scheduling in this setting reduces to a colouring

of this conflict graph. These algorithms are generally named independent-set scheduling

algorithms as each monochromatic set of vertices is an independent set of the conflict graph.

Wireless networks are dynamic entities where transmission demands are best represented by

stochastic arrival processes and tools like queuing theory can be used to characterize the

dynamic stability conditions of the network, namely conditions under which queue lengths
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remain finite at all nodes. In a ground breaking work, the authors in [42] showed that the

dynamics of a network under such a model can be stabilized by any scheduling algorithm

that selects an independent set9 that has the maximum aggregated queue length at each

time instant. They called these algorithms maximum weight independent set scheduling

algorithms. This work established the connection between the dynamic problem of network

stability (congestion-avoidance) and the static problem of finding maximal independent sets

in the conflict graph. Subsequent work ([43, 44, 45, 46]) has generalized this dynamic to

static framework by adopting more fine-grained criteria than stability such as total utility

maximization and delay minimization for both general and special (1-hop, 2-hop or disk

graph) conflict graphs and in particular, by establishing ([47]) the connection between mini-

mizing routing delay and graph colouring10 through relating achievable average delay to the

chromatic number11 of the conflict graph. Unfortunately, as noticed in these works, graph

colouring and maximum independent set finding are NP-complete problems in the general

case. The hope is that the straightforward mapping of the geometric arrangement of links to

connectivity properties of vertices in the graph can be used to ensure that the derived conflict

graph belongs to a family that is amenable to more efficient colouring and independent set

finding. Even setting aside the issue of algorithmic efficiency, since the actual radio interfer-

ence is not modeled well by any pairwise representable notion of conflict, namely because of

the accumulative property of interference, it is tricky to tune these algorithms to real-world

deployments without sacrificing either efficiency or reliability. Devising algorithms that di-

rectly tackle the broadcast nature of the medium therefore becomes necessary, which requires

looking at the wireless network as large interference channel and trying to adapt techniques

that have worked in achieving higher rates in that context to this problem. Getting a more

faithful model of the physical channel requires studying the problem of scheduling according

9An independent set of graph is a set of vertices no two of which are connected by an edge.
10A vertex colouring of a graph is an assignment of colours to its vertices such that each monochromatic

set is also an independent set.
11Chromatic number of a graph is the minimum number of colours for which a vertex colouring of the

graph exists.
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to observed SNR at the receiver, namely the received Signal to Interference and Noise Ratio

(SINR). In fact, in one of the first works considering scaling laws of large wireless networks

[48], the authors had studied a “physical” SINR model in addition to their main guard-disk

based “protocol model” and had shown that for large wireless networks throughput scales

like 1√
n

on average with increasing network size in a given fixed area. Later, The authors

in [49] considered solving the joint scheduling and power control under SINR constraints for

a given instance of the network and conjectured it to require exponential enumeration of

active subsets in the general case. They provided a simplex-like basis exchange algorithm

to solve this problem and discussed some relaxations. In [50], the authors conjectured the

same exponential complexity even under a geometric path loss model, where the network

nodes have the extra structure of being distributed in a metric space and having the channel

coefficients obeying a path loss formula. They also showed that any scheduling method that

only uses local information could be worse than optimum by an order of log ∆ where ∆ is

the largest to smallest link length ratio. They therefore focused on the case where links

don’t vary lengthwise by more than a constant factor. Later, the authors of [51] showed

that this problem is indeed NP-complete to solve optimally and obtained an approximation

algorithm when nodes are located in the Euclidean plane R2 that uses the 4-colourability of

planar graphs as an ingredient. Briefly, they partition the set of links into different classes

based on length such that the link length within any single class vary by at most a factor

of two. For any of these classes, they divide the Euclidean plane into square cells (with side

lengths related to link length scale of the class) and 4-colour the adjacency graph of this cell

decomposition. Their algorithm assigns different time-slots to different colour classes and

to links of differing lengths. Later results ([52, 53, 54, 55]) also looked at the complexity of

exact and approximate method for this algorithm and its variations for the related problem

of one-shot scheduling (selecting a maximal SINR-feasible set). In [56], a review of these

works has been given which along more recent work [57] come to the conclusion that large

constant factors might hinder the practicality of these family of methods.
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Our method is most similar to that used by these works, in particular in that we try to

adapt graph colouring to SINR-based scheduling. An important difference is that, following

the observation of [50], we adopt a power control scheme based on link lengths which has

important theoretical advantages. Also, to make sure that the constant factors do not hinder

the practical applicability of our algorithm, we refrain from doing a cell-based decomposition

of the plane of nodes as performed in [51] and follow-up works. Instead, we go to great lengths

to devise an alternate graphic representation for the set of links that, despite representing

a binary vertex connectivity criterion, is close enough to the set-based SINR constraint of

transmission feasibility to be gainfully used in producing an efficient link schedule. We also

have to show that this graph, while not being a planar or disk graph, is still efficiently

colourable. Our approach also requires the use of an elaborate set of techniques to carefully

bound interference powers in each slot of the resulting schedule in order to show correctness

and asymptotically good approximation factors without sacrificing constant factors. As a

result, our method does not suffer from drawbacks pointed to by [57].

On the practical side, the next generation cellular network standards (5G) currently

under development call for inclusion of Device-to-Device (D2D) modes of operation ([58, 59]).

This is in addition to coordinated multi-point, already part of the standard, that enables

distributed processing of signals to and from users near the border of cell coverage areas

across network-operator controlled base-stations. The new recommendations, rather also

call for a two-tier mode of operation involving UE’s12 communicating directly without any

base station involvement. This will alter the design space of feasible signaling methods and

network management schemes as the performance of current approaches will be limited by the

validity of assumptions they implicitly make. In particular, assumptions about the existence

of a hierarchical structure in the network and relative homogeneity of nodes power and

performance characteristics for traditional cellular and ad-hoc networks respectively, might

prove to be inadequate in dealing with D2D networks. In addition, the advent of Internet of

12User Equipment is cellular technology parlance for mobile handsets.
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Things (IoT) enabled devices and networks of autonomous vehicles and drones, where direct

Machine-To-Machine (M2M) communication without any human involvement is envisioned

to be much more common, presents new challenges as it increases the number of nodes

deployed in a small local area from tens to hundreds and perhaps even thousands. This puts

a strain on the scalability properties of current scheduling algorithms and requires approaches

that are more attuned to the nature of the wireless medium and do not catastrophically fail

under larger density and number of nodes.

For tackling the scheduling challenges in these large networks, a group of scheduling al-

gorithms has been proposed in the literature that does not target schedule length optimality,

but rather try to perform SINR-based link scheduling in a way that achieves reasonably high

throughput with low time-complexity. In [60], the FlashLinQ algorithm has been proposed

through collaboration between an academic group and an industrial team within Qualcomm.

The authors use the multi-tone structure of 802.11 spectrum access and dedicate a certain

fraction of tones to control signaling and users contend by showing their interest in trans-

mission using these control tones and continue in rounds until all requisite SNR conditions

are met. In each round, links are assigned a priority order that changes pseudo-randomly

over different timeslots to respect fairness between the links. The algorithm has two global

parameters γtx and γrx. Each intended receiver sends pilot tones which allows its correspond-

ing transmitter to estimate the channel by electromagnetic reciprocity. During each round,

the highest priority link is set to be active and other links are investigated in the order of

priority. They are activated for this round only if they cause less than γtx Interference to

Signal Ratio (ISR) on receive less than γrx ISR from all, necessarily higher priority, links

that have earlier been declared active. Fairness is achieved by pseudo-randomly cycling link

priorities.

ITlinQ [61], is another algorithm that uses results from the work of the same authors

in [62]. That work shows that treating interference as noise achieves optimum Generalized

Degrees of Freedom (GDoF) under certain conditions on the coefficients of the channel. The
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main idea is splitting the set of links into subsets for which treating interference as noise is

optimal under their condition. Straightforward implementation of this set partitioning is a

hard combinatorial problem. A pairwise-testable simplified version of this TIN-optimality

condition is therefore used to have a tractable algorithm. Links are given a priority or-

dering similar to FlashLinQ above, and a link i is only added if INRij <
√
SNRi and

INRji <
√
SNRi hold for all links j previously activated. By a pseudo-random cycling

of link priorities, fairness can be guaranteed and all links eventually scheduled. Enforcing

this condition does not necessarily lead to a short schedule as the constraint of achieving

GDoF on active links at each timeslot is too stringent. Nevertheless, they show that if the

nodes are generated from a random process in such that a very specific scaling relationship

holds between the statistics of the distance from a transmitter to its designated receiver

and the statistics of the distance between unrelated receivers-transmitter pairs, their sched-

ules are only logarithmically longer than optimal. They also simulate their algorithm and

show it compares favourably with FlashLinQ. We will briefly mention ITLinQ again when

we have reviewed the basics of interference channel and GDoF analysis and put the paper

[62], on which it is based, into context. In Chapter 4, we show that our algorithm compares

favourably with both these algorithms in achieving high throughputs in large networks.

Since our models are based on the two-user and K-user Gaussian interference channel,

we next give a brief introduction to the interference channel, its formal definition and to

various results derived in the literature for its capacity in special cases, and for bounds on

its rate region in more generalized scenarios. We also briefly review the Generalized Degrees

of Freedom (GDoF) framework and Interference Alignment (IA) which have aided in the

understanding of the limits to interference management in large wireless network. This will

set the stage for a discussion of our work in the rest of the thesis.
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2.3. Review of results on interference channel

2.3 Review of results on interference channel

This section tries to give the formal mathematical definitions of the concepts involved in the

problem of Gaussian interference channel and a brief review of the relevant results from the

literature. Definitions given here are for the most part standard and can be found in any

textbook on information theory. Results are stated as theorems but the proofs have been

omitted for brevity.

2.3.1 Formal definition of discrete memoryless single user and in-

terference channel and their associated capacity regions

The classical work of Shannon on determining the capacity of single-user channels, intro-

duces the discrete memoryless channel as a probabilistic system specifying the conditional

probability PY |X(y|x) of receiving any letter of the finite output alphabet set Y given that

any letter of the finite input alphabet set X has been sent. A code of rate R and length

n is an encoder-decoder function pair (E,D) such that the transmitter of the channel uses

E :M→ X n to map any message from a message set M of cardinality d2nRe to the n-fold

Cartesian product of X with itself and to use n transmissions to send them over the chan-

nel. The receiver in turn, uses D : Yn → M to map any received n-sequence of channel

output symbols to its estimate of the sent message. The probability of error for such a code

assuming an equiprobable distribution over the set of input messages is defined as:

λne =
1

|M|

|M|∑
i=1

P (D(yn) 6= mi|E(mi) was sent and yn received). (2.1)

The capacity of the channel, C is then defined as the supremum of the rates R so defined

for which there exists a sequence of codes of rate R for all n such that the sequence of error

probabilities of these codes converges to zero. In a less formal way, the supremum of the

rates for which reliable transmission (with zero asymptotic probability of error) is possible.

The discrete memoryless interference channel, as we saw previously and as shown in
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Figure 2.5: Two-user discrete memoryless interference channel

figure 2.5, is characterized by the presence of two pairs of transmitters and receivers using

a shared medium to exchange messages. The formal probabilistic set-up of the discrete

memoryless interference channel problem is very similar to the single-user channel except

that we now have to account for more users and more rates. Formally, an Interference

channel is characterized by two pairs of finite input and output alphabets (X1,Y1) and

(X2,Y2) and the conditional probability specification PY1,Y2|X1,X2(y1, y2|x1, x2) that specifies

the probability of receiving any pair of letters from the two output alphabets given that

any pair of letters from the two input alphabets are sent. This generally non-factorizable

specification is meant to model the cross-channel effects of the two users of the channel

having to share the communication resources. A code with rate pair (R1, R2) for the discrete

memoryless interference channel is a pair of message setsM1,M2 of cardinality d2nR1e and

d2nR2e respectively and two encoder-decoder function pairs (E1, D1) and (E2, D2) where

E1 : M1 :→ X n
1 and E2 : M2 :→ X n

2 are the encoders that map the message of each user

to a length-n sequence of the letters in the input alphabet of the corresponding user. On

the receive side, each receiver uses the corresponding decoder function D1 : Yn1 →M1 and

D2 : Yn2 → M2 that estimate the message from their corresponding transmitter based on
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Encoder 1

Encoder 2

Decoder 1

Decoder 2

Figure 2.6: Coding and decoding setup for the two-user discrete memoryless interference
channel

what they have received on their output for n channel use intervals. Each user’s probability

of error in such a coding scheme is defined as shown in Figure 2.6 by

λ
(n)
1,e =

1

|M1|×|M2|

|M1|∑
i=1

|M2|∑
j=1

P (D1(y
n
1,1) 6= mi|E(mi) and E(mj) were sent and yn1 , y

n
2 received)

(2.2)

λ
(n)
2,e =

1

|M1|×|M2|

|M1|∑
i=1

|M2|∑
j=1

P (D2(y
n
2,1) 6= mj|E(mi) and E(mj) were sent and yn1 , y

n
2 received)

(2.3)

λ(n)e = max(λ
(n)
1,e , λ

(n)
2,e ). (2.4)

A rate pair (R1, R2) is said to be achievable for the discrete memoryless interference

channel if there exists a sequence of codes of rate (R1, R2), one for each n, such that the se-

quence {λ(n)e } converges to zero. The capacity region of the discrete memoryless interference

channel is defined as the closure of the set of rate tuples (R1, R2) for which there exists a

sequence of codes such that (M1,M2) = (2dnR1e, 2dnR2e) for the n’th code in the sequence
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and that the associated sequence {λ(n)e } converges to zero.

2.3.2 Formal definition of the Gaussian interference channel

Figure 2.7: Gaussian Interference Channel (GIC)

The discrete-time Gaussian Interference Channel (GIC), shown in figure 2.7, is charac-

terized by real-valued input and output alphabets and the relationship between inputs and

outputs is given by

Y1[n] = a11X1[n] + a21X2[n] + Z1[n] (2.5)

Y2[n] = a12X1[n] + a22X2[n] + Z2[n], (2.6)

where Z1[n] and Z2[n] are stationary zero-mean i.i.d Gaussian random processes independent

of each other with sample variance of N1 and N2 (sometimes termed noise power) respectively

and for any code of length n we have

1

n

∑
i=1

n|X1[i]|2≤ P1 (2.7)

1

n

∑
i=1

n|X2[i]|2≤ P2, (2.8)
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where P1 and P2 are the power constraints of user 1 and 2.

This channel can be normalized so that the direct gains a11 and a22 and noise powers N1

and N2 become equal to 1. This is done by rescaling inputs and outputs as

X
′

1 =
a11√
N1

X1, Y
′

1 =
1√
N1

Y1, Z
′

1 =
1√
N1

Z1 (2.9)

X
′

2 =
a22√
N2

X2, Y
′

2 =
1√
N2

Y2, Z
′

2 =
1√
N2

Z2, (2.10)

and changing the power constraints to

P
′

1 =
a211
N1

P1, P
′

2 =
a222
N2

P2, (2.11)

whereby the cross-channel gains become
√
a
′
12 and

√
a
′
21 defined as:

a
′

12 =
a212N1

a222N2

(2.12)

a
′

21 =
a221N2

a211N1

. (2.13)

We will assume that all two-user interference channels are normalized from now on and the

cross gains are represented in square root notation.

The definition of a coding scheme for the discrete-time Gaussian interference Channel is

similar to the discrete memoryless case. A very important difference is that the preceding

definitions of discrete memoryless channels concern only the case where the channels is

discrete in time and the input and output alphabets are finite. The generalization from this

setup to the setup of continuous-alphabet channel where both time and signal amplitudes

are continuous requires generalizing all the definitions involved in the problem set-up to the

continuous-alphabet case and is basically a continuity argument. In short, in this argument

a sequence of ever finer quantizations of the input and output alphabet spaces is considered

and it is shown via a sequential completeness argument on the space of such quantizations
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that the limit of such increasingly accurate models of the underlying continuous-alphabet

channel exists and that indeed the problem of coding for the underlying channel is well-

defined. Of note is that for continuous alphabet channels, a restriction of the power of input

signals, or equivalently the variance of input random variables is necessary because otherwise

the capacity of the channel would be infinite. Most direct and converse coding arguments

carry through without change for this continuous alphabet setting by appropriate inclusion of

the power constraint and therefore many results for discrete channels have almost analogous

counterparts for the continuous-alphabet case. The rigorous details of this argument for

extension to continuous alphabets can be found in more mathematically-oriented books on

information theory (c.f. [63]).

Figure 2.8: Band-limited Gaussian interference channel

The definition of discrete-time Gaussian interference channel sets the stage for the defi-

nition of continuous-time Gaussian interference channel that is shown in figure 2.8. in this

channel, the signals and noises involved are in general continuous random processes in time

and are limited to be in the class of band-limited random processes of bandwidth W (re-

ferred to as BL(−W
2
, W

2
) in the figure). The spectral density of the noise, denoted by Sz(f)

is assumed to be flat and normalized to 1 over the bandwidth. The same power constraints
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as the discrete-time case apply here with the suitable redefinition of signal powers. Again,

using Shannon-Nyquist sampling theorem in this case, the problem of continuous-time chan-

nels can be reduced to a discrete-time continuous vector analogue where the components of

the vectors are given by the 2W samples per second required per Shannon sampling theory.

The power constraint now becomes a trace constraint on the covariance matrix of the in-

put random vectors of this equivalent channel and, for the case of AWGN13 channels, using

Hadamard inequality for the maximum determinant of a matrix with a trace condition it is

shown that this vector channel is equivalent to 2WT separate discrete-time channels over

which the total energy constraint of the signal is equally divided. This argument is also

standard (c.f. [64, 65]) and will not concern us anymore here.

2.3.3 Capacity region of the Gaussian interference channel

In general, the problem of calculating the capacity of the Gaussian interference channel is

still open. There are a few special cases where the capacity has been found which we will

review in this section. The next section is concerned with the other cases and reviews the

major inner bounds (achievability schemes) that have been discussed in the literature.

Channel without interference

If both cross-gains are zero in an interference channel it is easy to see how the channel can

be decomposed to two parallel point-to-point AWGN channels for each of which the capacity

is known.

Very strong interference

This is the first major result on interference channels and seems counterintuitive since it

shows that having very strong interference is as good as having no interference at all. The

intuitive reason for this is that interference, unlike noise, is structured and hence if it is

13Additive White Gaussian Noise
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strong enough it can be decoded and compensated for. This result is from Carleial [66] and

his coding theorems state:

Theorem 2.1. In a discrete memoryless channel for which both of the inequalities below hold

for any separable joint probability distribution on channel inputs, p(x1, x2) ∼ p(x1)p(x2),

I(X1;Y1|X2) ≤ I(X1;Y2) (2.14)

I(X2;Y2|X1) ≤ I(X2;Y1), (2.15)

the following rate region is achievable

R1 ≤ I(X1;Y1|X2) (2.16)

R2 ≤ I(X2;Y2|X1). (2.17)

For the Gaussian continuous-alphabet discrete-time channel, the following equivalent

theorem holds.

Theorem 2.2. If the power constraints and cross coefficients of a Gaussian interference

channel satisfy

1 + P1 < a2,1 (2.18)

1 + P2 < a1,2, (2.19)

the capacity region of the channel is attained for Gaussian input distributions and is given

by

R1 ≤
1

2
log(1 + P1) (2.20)

R2 ≤
1

2
log(1 + P2). (2.21)

Intuitively, in the very strong interference case, the cross-receiver’s reception of the signal,
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even considering interference from its own transmitter is better than the intended receiver.

This means that under any feasible rate pair, the cross receivers can completely eliminate

the effect of crosstalk and decode their intended signals as if there was no interference.

Strong interference

The case of very strong interference that we saw previously can be considered a special case

of strong interference, to be defined here. In this case, the cross paths have a better reception

than the direct path, but only if they can eliminate the effect of their intended signal. In

this case, the interference channel can be decomposed into two multiple-access channels and

the capacity region is shown to be the intersection of these capacity regions. In this case we

have the following coding theorem which is due to Costa and El-Gamal ([67]):

Theorem 2.3. In a discrete memoryless channel, if, for any separable probability distribution

on channel inputs p(x1, x2) ∼ p(x1)p(x2), the inequalities

I(X1;Y1|X2) ≤ I(X1;Y2|X2) (2.22)

I(X2;Y2|X1) ≤ I(X2;Y1|X1), (2.23)

hold, then the capacity region of the channel is given by

R1 ≤ I(X1;Y1|X2, Q) (2.24)

R2 ≤ I(X2;Y2|X1, Q) (2.25)

R1 +R2 ≤ min{I(X1, X2;Y1|Q), I(X1, X2;Y1|Q)}, (2.26)

for every time sharing random variable Q such that the probability distribution PQX1X2 fac-

torizes as p(q)p(x1|q)p(x2|q).
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The conditions of this theorem for the Gaussian case imply that

1 < a2,1 (2.27)

1 < a1,2, (2.28)

and the capacity region reduces to

R1 ≤
1

2
log2(1 +

P1

N1

) (2.29)

R2 ≤
1

2
log2(1 +

P2

N2

) (2.30)

R1 +R2 ≤ min{1

2
log2(1 +

P1 + a21P2

N1

),
1

2
log2(1 +

P2 + a12P2

N2

)}. (2.31)

Except for these two cases, the capacity of the interference channel in mixed and weak

interference regime is only known for special cases and restricted ranges of parameters. This

has motivated the introduction of inner bounds that characterize the achievable rates and

outer bounds that characterize the maximal rates that could possibly, but not necessarily be

achieved. We will review these bounds in the upcoming sections.

2.3.4 Achievability schemes for the interference channel

Han-Kobayashi Method

The intuitive idea of the Han-Kobayashi scheme [68] is for each transmitter to divide its

message into a public and a private part and use superposition coding to send them together.

The public parts of the messages are decoded by both receivers, but each user only decodes

its own private part and treats private part of the message of the other user as noise.

Formally, for every distribution PQU1V1U2V2X1X2Y1Y2 that can be factorized as

PQPU1|QPV1|QPX1|U1,V1PU2|QPV2|QPX2|U2,V2PY1,Y2|X1,X2 , (2.32)
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where the PY1,Y2|X1,X2 term denotes the transition probabilities that characterize the channel

and Ui and Vi, i ∈ {1, 2}, are auxiliary random variables representing the public and private

parts of the message respectively. Then, any rate pair (R1, R2) such that R1 and R2 can be

decomposed as R1v + R1u and R2v + R2u respectively that satisfy the following conditions,

both in their original form and with indices 1 and 2 swapped, is achievable. The conditions

are:

R1v ≤ I(V1;Y1|U1, U2, Q) (2.33)

R1u ≤ I(U1;Y1|V1, U2, Q) (2.34)

R2u ≤ I(U2;Y1|V1, U1, Q) (2.35)

R1v +R1u ≤ I(V1, U1;Y1|U2, Q) (2.36)

R1v +R2u ≤ I(V1, U2;Y1|U1, Q) (2.37)

R1u +R2u ≤ I(U1, U2;Y1|V1, Q) (2.38)

R1v +R1u +R2u ≤ I(V1, U1, U2;Y1|Q). (2.39)

Here, Riv and Riu, i ∈ {1, 2} denote the private and public message rates respectively. A

much simpler set of inequalities describing this rate region that was provided by Chong et. al

in [69] is that for any PQU1X1U2X2Y1Y2 that can be factorized as PQPU1|QPU2|QPX1|U1PX2|U2PY1,Y2|X1,X2 ,
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the rates

R1 ≤ I(X1;Y1|U2, Q) (2.40)

R1 +R2 ≤ I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (2.41)

2R1 +R2 ≤ I(X1;Y1|U1, U2, Q) + I(X1, U2;Y1|Q) + I(X2, U1;Y2|U2, Q) (2.42)

R2 ≤ I(X2;Y2|U1, Q) (2.43)

R1 +R2 ≤ I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|Q) (2.44)

R1 + 2R2 ≤ I(X2;Y2|U1, U2, Q) + I(X2, U1;Y2|Q) + I(X1, U2;Y1|U1, Q) (2.45)

R1 +R2 ≤ I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q), (2.46)

are achievable. As can be seen, this formulation removes the need for splitting rates into

their public and private parts and also the auxiliary random variables V1 and V2 are not

needed.

The Han-Kobayashi rate region is to date the most comprehensive achievability scheme

proposed for the interference channel, as it subsumes many other achievability schemes as

special cases. But despite conceptual simplicity, calculating and optimizing over the auxiliary

variables to arrive at the entire achievable rate region is a notoriously difficult and non-convex

optimization problem.

2.3.5 Generalized Degrees of Freedom (GDoF)

This section gives an overview of the degrees of freedom and generalized degrees of freedom

notions and their role in clarifying the effects of moderate and weak interference on inter-

ference channel capacity. An attempt at deriving limiting expressions for capacity region is

another alternative to inner and outer bounds that is used to tackle the complexity of exact

characterization of capacity for interference channels and can aid understanding the role of

structured interference as opposed to structureless noise. One way to accomplish this is by
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looking at the high-SNR behaviour of channel capacity since it deemphasizes the relative

importance of noise. This framework is known as the General Degrees of Freedom (GDoF)

analysis, and is a generalization of the notion of Degrees of Freedom (DoF). To understand

the terminology, we have to take a look at multiple-antenna channels. It is a well-known re-

sult for N ×N multiple-input-multiple-output(MIMO) point-to-point AWGN channels with

non-singular coefficient matrices, that the channel can be decomposed into N uncorrelated

spatial components corresponding to the left and right eigenvectors of the channel matrix.

This means that as the SNR goes to infinity, the asymptotically fastest growing term in

channel capacity is 1
2
N log(1 + SNR). In other words:

lim
SNR→∞

CMIMO−N×N(SNR)

log(1 + SNR)
= N. (2.47)

This scaling by N compared to SISO14 capacity is known as the multiple-antenna mul-

tiplexing gain as it is essentially another way of stating the existence of N independent

beamforming directions. Having N antennas at the transmitter and receiver is therefore

said to give N spatial degrees of freedom.

Adopting a similar notion is more complicated for the interference and other multiuser

channels as users are strategically competing for their rates and there is a capacity region

rather than a single capacity. Despite the competitive nature of multiuser channels, the same

insight of looking at the multiple of SISO point-to-point capacity at high-SNR proves useful

when analyzing the minimax capacity of the symmetric interference channel (where cross

and direct channel coefficients are equal for both users), since in this case, the rate region

is symmetric by symmetry of the users. The generalized degree of freedom of a symmetric

two-user interference channel is therefore defined as

d(α) := lim
SNR→∞

max(R1,R2)∈Cmin{R1, R2}
Cawgn

. (2.48)

14Single-input-single-output
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Here, Cawgn is the point to point capacity of the equivalent SISO channel. In this formulation,

DoF is characterized by an interference strength parameter α that defines the INR-SNR

scaling at high SNR’s, namely α := log INR
logSNR

, where α > 1 corresponds to strong and very

strong interference regimes and α < 1 represents weak interference. Generalized Degrees of

Freedom (GDoF) refers to this curve of d(α) showing the change in DoF of the channel as a

function of interference level. The work of Etkin, Tse and Wang [70] was the first to define

GDoF and obtain the now famous “W” shape of d(α) curve. Their work showed that for

values of α ∈ [0, 1/2] treating interference as noise is DoF-optimal. This was an observation

that was also made almost simultaneously by [71, 72, 73]. These results went against the

conventional view from the strong and very strong interference case that information-bearing

interference signals should not be discarded as noise. This was a crucial observation and one

that played a role in the application of interference alignment to interference channel which

we review in the next section.

2.4 Interference alignment

As we discussed in the previous section, the GDoF framework led to the observation that

for some operating regimes, not decoding interference might not be suboptimal. At the

same time a generalization of this analysis to K-user channels was done in [74]. For MIMO

and time-varying channels, where many independent dimensions are available, attention was

turned towards encoding schemes that try to concentrate interference terms and desired sig-

nal into disjoint subspaces. This is the essential idea of interference alignment and was first

used for capacity characterization in multiple-antenna X-channels (where each transmitter

has messages for each receiver) in [75]. In [11], Cadambe and Jafar show that fully con-

nected K-user interference channel with time-varying or frequency-selective coefficients can

effectively have 1/2 degrees of freedom per user for a total of K/2 as opposed to the 1/K

previously thought for a total of 1. This was a major result that has led a large number
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of follow-up publications investigating the applicability of interference alignment to other

channel models and also finding other methods of performing interference alignment. These

results include ergodic interference alignment [76], that can be applied to any channel at

finite SNR where coefficients are time varying and ergodic-in-time with a symmetric around

zero probability distribution, and real interference alignment [77] that uses the vector space

dimensions of real numbers over rationals and their number-theoretic properties to provide

dimensions over which to align signal and interference. The book [78] and survey article

[79] offer a more complete exposition of the main ideas behind and variations of interference

alignment. One common trait of these different variations is their perceived lack of practical

relevance. Some of this perception stems from the GDoF framework itself, where it has

been shown that the GDoF is an almost-everywhere discontinuous function of the channel

coefficients [80] and that the GDoF of interference channels collapses when channel state

information has finite precision [81], but also from the delay-rate trade-off of interference

alignment [82, 83], to the required feedback and synchronization overhead and finite-SNR

sub-optimality that results from ill-conditioned or incompletely specified channel matrices

[8].

2.5 Optimality of Treating Interference as Noise (TIN)

In an even more promising direction, recently the authors in [62] have shown that for a large

class of interference networks, treating interference as noise is GDoF optimal. This is done

by removing the power control variables from the formulation of the GDoF region. Using

the potential theory of network flow problems, they show that a polyhedral inner bound is

obtained by a certain relaxation of this problem and that it matches an outer bound based on

repeated application of the cyclic interference channel outer bounds of [84]. A more refined

analysis then shows that the total gap to sum capacity is in fact constant. This work has

been extended by [85, 86] both to gain insights into the relationship between combinatorial
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problems and optimality of TIN and to extend it to other channel models. As mentioned,

this surprising result has already been used in [61] as the basis of a link scheduling algorithm

called ITLinQ which uses time sharing among subsets of links that satisfy the criteria of [62]

to service all links in a network.

The next two chapters concern the problems addressed in this thesis. Chapter 3 analyzes

a two-user cognitive channel and derives rate regions, decoder designs and rate optimization

strategies of the cognitive user. In Chapter 4, we study a large network link scheduling

problem and provide and analyze a scheduling method that has provable performance char-

acteristics with respect to the globally optimum schedule.
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Two-user cognitive GIC without

non-causal message information

In this chapter, we set up the model of Gaussian Interference Channel (GIC) with one cogni-

tive user that is the subject of our analysis. We then make the key observation that since the

legacy user cannot be realistically assumed to cooperate with the secondary user, a number

of techniques including time-sharing will not be available and therefore, the achievable rate

regions will be in general non-convex. This leads to a complicated rate optimization prob-

lems for the secondary (cognitive) user. Several rate-equivalent coding schemes are proposed

for this setup. The secondary rate-optimization problem is analyzed and its behaviour under

various regimes on parameter values classified. Part of the work in this chapter has been

previously presented in the paper [87].

The model that we have proposed here has elements of both underlay and interweave

setups. The secondary user both opportunistically senses whitespace in primary user’s band

and at the same time underlays part of its signal into the portion of the spectrum already

under use by this user. The secondary user must guarantee that the quality of service of the

primary does not fall below a certain threshold. The secondary receiver has the option to

apply joint decoding or treat interference as noise without relying on any cooperation from
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Figure 3.1: Band-limited Gaussian interference channel, BL(W1,W2) denotes the class of
signals limited to the (W1,W2) band and Sz(f) is the spectral density of noise

the primary user. The problem that we solve on this model is determining the bandwidth

usage and power division strategy of the secondary user so that its rate is maximized subject

to the constraint on the rate of primary user.

3.1 The model and problem

In this section, the channel model and the problem we are trying to solved are described.

3.1.1 The channel model

The network topology in our model is the same as a Gaussian interference channel (shown

in Fig. 3.1, see also [65] and references therein). The total bandwidth is W and the static

and non-frequency selective channel coefficient from transmitter i to receiver j is denoted

by
√
aij. We assume the usual normalization convention discussed in Chapter 2, so we have

a11 = a22 = 1 without loss of generality. The noise is white, which means it has a flat spectral
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density which is assumed equal to 1 by the same normalization convention. Transmitter i

is limited to a total power of Pi. User 1 is the primary (non-cognitive) user which has the

license to use the entire band. User 1 is unaware of the presence of user 2 which is the

cognitive or secondary user. Moreover, there is no cooperation among the users. Based on

its rate demand, user 1 only occupies a portion W0 of the whole bandwidth W .

3.1.2 The problem statement

With the channel model as above, user 2 is seeking to multiplex its data on the band W . It

occupies the whitespace W2 = W−W0 and to increase its transmission rate, it also underlays

part of its power over a portion Wc of the band W0 which is in use by user 1. This underlaying

is constrained by the quality of service condition R1 > Rth where Ri is the transmission rate

of user i and Rth is a fixed threshold on R1. The average transmission power of user 2 over

the bands Wc and W2 is Q and P2 −Q, respectively. Now the problem that user 2 is trying

to solve is that of maximizing its achievable rate without violating user 1’s rate constraint.

The optimization problem is formulated as

sup
Wc,Q:Wc≤W0,Q≤P2

sup
(R1,R2)∈R,R1>Rth

R2, (3.1)

where sup denotes the supremum (least upper bound) operation. R denotes the achievable

rate region for the two users where user 1 is using a legacy single-user encoder/decoder. In

other words, we are seeking a characterization of R and the maximum transmission rate

that user 2 can achieve when user 1 is achieving at least a rate Rth using simple single-layer

encoder/decoder architecture.

3.1.3 Example of a practical application

This problem is intended to model the scenario where a primary user with legacy equipment,

such as a VHF over-the-air TV broadcaster with licenses to a large number of analog VHF
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channels, wants to coexist with an agile user that tries to use the bandwidth whitespace

for its own data transmission. Since the broadcaster may be in the process of phasing out

analog TV and some TV channels do not have constantly running programming, at any given

instance only a fraction of the assigned bandwidth is carrying data. To maximally assist

the secondary user in utilizing bandwidth the primary can announce its minimum requisite

quality of service which is modeled here by a rate constraint. To incentivize the primary user

to take part in sharing its bandwidth, the goal is to not impose any extra capital expenditure

requirements on it. Therefore, it is not required to upgrade its analog and near end-of-life

infrastructure to add the capability to dynamically announce which parts of the spectrum

are in use, for example by simultaneous out-of-band signaling. The burden of whitespace

detection, therefore falls on the cognitive user which is better-equipped to do it. The problem

facing the secondary user, after detecting the unused band, will be to divide its transmission

power over the empty and occupied parts of band in a way that maximizes its own rate

without violating QoS specification of the primary user. The primary user is not required

to change its equipment and transmission scheme, and is therefore has a higher incentive to

accept new uses for its band.

3.2 The achievable rate region R

Let both users utilize Gaussian codebooks. User 2 does not split its transmission rate

by separate coding over the private and common parts of the spectrum, i.e., the signals

transmitted over W2 and Wc belong to a codeword in a codebook of rate R2. At the receiver

side, user 2 has the option to apply simultaneous decoding or treat interference as Gaussian

noise, while user 1 only treats interference as Gaussian noise. Let us define

r1 := (W0 −Wc)C

(
a1,2P1

W0

)
+WcC

(
Wca1,2P1

W0(Wc +Q)

)
, (3.2)
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s1 := W0C

(
a1,2P1

W0

)
, (3.3)

r2 := (W −W0)C

(
P2 −Q
W −W0

)
+WcC

(
W0Q

Wc(W0 + a1,2P1)

)
, (3.4)

s2 := (W −W0)C

(
P2 −Q
W −W0

)
+WcC

(
Q

Wc

)
(3.5)

and

t := (W0 −Wc)C

(
P1

W0

)
+WcC

(
WcP1

W0(Wc + a2,1Q)

)
, (3.6)

where C(x) := log(1 + x). Then the rate region R is given by

R := {(R1, R2) : 0 < R1 < t}⋂(
{(R1, R2) : 0 < R1 < s1, 0 < R2 < s2, R1 +R2 < s1 + r2}⋃

{(R1, R2) : 0 < R2 < r2}
)
. (3.7)

Fig. 3.2 shows the outline of R which is non-convex and resembles a chimney.

As an alternative coding scheme, user 2 can employ separate Gaussian codebooks over

the private and common parts of the spectrum, i.e., user 2 splits its rate R2 among two

independent codebooks transmitted over W2 and Wc separately. As before, user 2 has the

option to apply simultaneous decoding or treat interference as noise over the band Wc.

Denoting the achievable rate region under this alternative coding scheme by RRS, where

RS stands for rate-splitting, the following claim shows that RRS is the same as R given in

Equation 3.7.

Claim 3.1. Rate splitting gives the same region as joint coding, or RRS = R.

Proof can be found in Appendix A.
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Figure 3.2: The chimney rate region R described in 3.7.

3.3 Remarks on encoder and decoder structure

In this section we describe two alternate achievable schemes that do not enlarge the rate

region calculated in the previous section, but are of independent interest as they provide

different encoder and decoder structures that achieve different trade-offs between simplicity

of the decoding rule and memory requirements of their implementation.

3.3.1 Non-unique joint typicality decoding

In the previous schemes discussed, user 2 has to adaptively choose between treating interfer-

ence as noise and simultaneous decoding. The authors of [69] and [88] have independently

proposed an alternative decoder structure which is applicable to our scenario as well. To de-

scribe this decoder, we have to describe joint typicality and its use in information-theoretic
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decoders. A deterministic n-sequence is called typical for probability distribution PX of

random variable X if the probability of it being observed in n independent draws of X is

between 2−(nH(X)−ε) and 2−(nH(X)+ε), for a small positive ε, where H(X) is the entropy of

X. Intuitively, this means that the empirical frequency distribution of letters in the se-

quence is very close to PX , so the the sequence is typical of what is seen in draws from

X. This definition straightforwardly extends to joint typicality for two or more sequences

with respect to a joint probability distribution, say PX,Y , and is called joint typicality. This

means that the empirical joint frequency distribution of the letters from these sequences is

close to that joint distribution. Almost all achievability results in information theory rely

on joint typicality decoding which means that the decoder tests all codewords for joint typ-

icality with the observed channel output with respect to the input-output joint probability

distribution. It declares success if and only if there is exactly one codeword jointly typical

with the output and declares the index of that codeword as the message sent. When jointly

decoding two codewords from a single channel output, the joint typicality of three sequences

(two codewords and one channel output) has to be considered and a decoding error is raised

even if the failure of unique joint typicality occurs for a message that is not intended for

our receiver. The decoder proposed by [69] and [88], relaxes this by implementing the rule

of joint typicality decoding with non-unique decoding for undesired message codewords1. It

turns out that using this so-called indirect decoder in our setup will achieve the same rate

region as derived before.

Claim 3.2. Replacing the decoder of Section 3.2 with a non-unique joint typicality decoder

will result in the same achievable region

Proof can be found in Appendix A.

So, as we saw, replacing the rather complex decoder structure of the previous section

achieves the same rates with considerably more elegance and operational simplicity, though

1This means that an error is not declared even if more than one codeword is jointly typical with the
channel output if they all agree on the desired message index.
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at the expense of higher space (memory) complexity at the decoder. It is operationally

simpler because it achieves the same rate region with a unified one-step joint-typicality

decoder. This is in contrast with the decoder structure of the previous section that involves

implementing two joint-typicality decoders and selecting the output of the one giving the best

rate. This simplicity comes at a price though, since in a simple lookup table implementation,

this single joint-typicality joint decoder requires one lookup table of size 2R1+R2 , rather than

two successive lookup tables of size 2R1 and 2R2 respectively2.

3.3.2 Multi-layer encoding and successive cancellation

It is well-known that the corner points of the capacity region of a Multiple-access channel

can be achieved without resorting to simultaneous decoding. This is done by successive

interference cancellation (first used for decoding superposition codes in the paper by Cover

that introduced the broadcast channel [18]), where the message of one user is first decoded

and its effect subtracted from the channel output before decoding the message of the other

user. Normally, all other points on the boundary of the capacity region will be achieved

by time-sharing between these corner points. Unfortunately our setup does not allow for

time-sharing. Thus, it may seem that simultaneous decoding is inevitable in our scheme for

achieving points other than the corner points. This is not true however, since as it turns

out, with appropriate rate-splitting at the transmitter of user 2, successive cancellation of

interference can achieve all the boundary points. Our construction follows that of [89], the

details of which follow.

In the rate region achievable at receiver 2 in the previously discussed schemes, for the

points on the line R1 + R2 = s1 + r2 that are not corner points, it is implicitly assumed in

most practical designs that time-sharing between corner points can be used to achieve these

points using a simple interference cancellation scheme instead of the more computationally

demanding joint decoding at receiver 2. We recall that the specific setup of our problem

2This distinction might not be practically relevant since in both cases exponentially large lookup tables
are required.
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that precludes the cooperation by the primary, explicitly rules out this kind of time-sharing

cooperation and that this is indeed the reason that our rate region is non-convex. But,

while lack of cooperation leads to non-convexity of the achievable rate region it does not

mean joint decoding is the only way to achieve the non-corner points on the boundary of

the achievable region. Rimoldi et al. in [89] show that any point on the so-called dominant

face of the capacity region of a multiple-access channel (which in the case of the two-user

channel is exactly the set of rate pairs which attain the maximum sum-rate) can be achieved

by a computationally simple successive interference cancellation scheme. If we define the

function F (p, n) as

F (P, n) := log

(
1 +

P

n

)
, (3.8)

which gives the twice the capacity of a discrete-time AWGN3 channel with power constraint

P and noise variance n, the function F satisfies

F (P1, n+ P2) + F (P2, n) = F (P1 + P2, n). (3.9)

A consequence of this identity is that , for a point-to-point Gaussian channel, any division

of rate by dividing the total power P1 + P2 between two superimposed codebooks with

powers P1, P2, when combined with a successive decoding scheme does not incur any rate

penalty or advantage. Likewise, in our own problem, if we focus on the two-user MAC

seen by user 2 over the band Wc, which has power constraints Wc

W0
P1 and Q and gains

√
a1,2 and 1 for users 1 and 2 respectively, then for any rate pair (R1, R2) on the sum-

rate boundary R1 + R2 = WcF
(
a1,2

Wc

W0
P1 +Q,Wc

)
, user 2 can divide its power into Q1

and Q2 = Q − Q1 where Q1 is the unique non-negative number smaller than Q such that

R1 = WcF
(
a1,2

Wc

W0
P1,Wc +Q1

)
and generate a codebook C2,1 with rate R2,1 = WcF (Q2,Wc)

with power Q2 and another codebook C2,2 with rate R2,2 = WcF
(
Q2,WC + a1,2

Wc

W0
P1 +Q1

)
3Additive white Gaussian noise
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and power Q2. We have that

F (Q2,Wc) + F

(
a1,2

Wc

W0

P1,Wc +Q1

)
+F

(
Q2 ,Wc + a1,2

Wc

W0

P1 +Q1

)
= F

(
Q1 + a1,2

Wc

W0

P1 +Q2,Wc

)
= F (a1,2

Wc

W0

P1 +Q,Wc).

(3.10)

Since the term on the right side of (3.10) is the sum-rate of the channel divided by Wc, we

can achieve this arbitrary rate pair by a two-layer encoding on the transmit side. On the

receive side, we recover the messages in a three-step process. We first decode C2,2, treating

the power contributed by C1 and C2,1 as noise. After that the message from C1 can be decoded

treating the power contributed by C2,1 as noise. Finally, we decode C2,1 and reconstruct user

2’s message (So the decoding order is C2,2 → C1 → C2,1).

The coding approach referred to in the previous section leads to another result and that

is a converse that multilayer random coding will not enlarge the rate region achievable by

our scheme.

We begin with a lemma that generalizes Equation 3.9.

Lemma 3.1. For the AWGN capacity function F defined by Equation 3.8, we have

n∑
i=1

F (Pi, n+
i−1∑
j=1

Pi) = F (
n∑
i=1

Pi, n). (3.11)

Proof is by induction and can be found in Appendix A.

Claim 3.3. Multilayer random coding at user 2’s transmitter cannot enlarge the rate region

calculated in Section 3.2.

Proof can be found in Appendix A.
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3.4 Analysis of the rate-optimization problem

In this section, we study the optimization problem in (3.1) and reduce it to a number of

subproblems that can be solved using line search methods.

Using the definition of R, it is easy to see that

sup
(R1,R2)∈R:R1≥Rth

R2

=


s2 Rth ≤ min{s1, u}

r2 + s1 −Rth min{r1, t} ≤ Rth ≤ min{s1, t}

r2 min{s1, t} ≤ Rth ≤ t.

.

(3.12)

Defining

D := (0,W0]× (0, P2], (3.13)

v1 := sup
(Wc,Q):Rth≤min{r1,t}

s2, (3.14)

v2 := sup
(Wc,Q):min{r1,t}≤Rth≤min{s1,t}

r2 + s1 −Rth, (3.15)

and

v3 := sup
(Wc,Q):min{r1,t}≤Rth≤t

r2, (3.16)

it is evident that

sup
(Wc,Q)∈D

sup
(R1,R2)∈R:R1≥Rth

R2 = max{v1, v2, v3}. (3.17)

Since r1 and t are decreasing functions of Q, we can define f(Wc), g(Wc) as the unique

solution for Q in terms of Wc in the equations r1 = Rth and t = Rth, respectively. It is

straightforward through algebraic manipulation to arrive at the following explicit expressions
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for f and g:

f(Wc) =


∞ Wc ≤W0

(
1− Rth

s1

)+
Wc

(
2
s1
W0 −1

2
s1
W0 2

Rth−s1
Wc −1

− 1

)+

Wc > W0

(
1− Rth

s1

)+
,

(3.18)

and

g(Wc) =


∞ Wc ≤W0

(
1− Rth

R∗

)+
Wc
a2,1

(
2
R∗
W0 −1

2
R∗
W0 2

Rth−R∗
Wc −1

− 1

)+

Wc > W0

(
1− Rth

R∗

)+
,

(3.19)

where x+ := max{x, 0} and R∗ := W0C
(
P1

W0

)
is the maximum achievable rate for user 1 in

the absence of user 2. Noting that s1 is a constant, the conditions on Rth are seen to be

equivalent to

Rth ≤ min{r1, γ} ⇐⇒ Q ≤ min{f(Wc), g(Wc)}, (3.20)

min{r1, t} ≤ Rth ≤ min{s1, t} ⇐⇒

min{f(Wc), g(Wc)} ≤ Q ≤ g(Wc)1Rth≤s1 ,
(3.21)

and

min{s1, t} ≤ Rth ≤ t ⇐⇒ g(Wc)1Rth≤s1 ≤ Q ≤ g(Wc), (3.22)

where 1{·} denotes the indicator function of a set.

Since r2, s2 and r2 + s1 − Rth are increasing functions of Wc, the optimizers in (3.14),

(3.15) and (3.16) are achieved on the boundary, i.e.

v1 = sup
(Wc,Q)∈∂rmD1

s2,

D1 := {(Wc, Q) ∈ D : Q ≤ min{f(Wc), g(Wc)}} ,
(3.23)

v2 := sup
(Wc,Q)∈∂rmD2

r2 + s1 −Rth,

D2 := {(Wc, Q) ∈ D : min{f(Wc), g(Wc)} ≤ Q ≤

g(Wc)1Rth≤s1} ,

(3.24)
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and

v3 = sup
(Wc,Q)∈∂rmD3

r2,

D3 := {(Wc, Q) ∈ D : g(Wc)1Rth≤s1 ≤ Q ≤ g(Wc)} ,
(3.25)

where for any region C in the x-y plane with boundary ∂C, ∂rmC denotes the “rightmost”

boundary of C defined by

∂rmC := {(x, y) ∈ ∂C : (x, y′) /∈ ∂C, ∀ y′ > y} . (3.26)

Next, we discuss some properties of the functions f and g that will help us in solving the

subproblems (3.23), (3.24) and (3.25).

3.5 Relative magnitude of f and g

The boundaries of D1 and D2 depend on the relative magnitudes of f and g. If f and g

intersect, the boundaries ∂rmD1 and ∂rmD2 may not be smooth curves. In the cases of weak

and strong interference, one of f and g dominates the other.

Claim 3.4. For the case of weak interference a1,2, a2,1 < 1, g(Wc) > f(Wc) for all Wc ∈

[0,W0]. For the case of strong interference a1,2, a2,1 > 1, g(Wc) < f(Wc) for all Wc ∈ [0,W0].

Proof can be found in Appendix A.

When interference is mixed, i.e., a1,2 > 1, a2,1 < 1 or a1,2 < 1, a2,1 > 1, f and g can

potentially intersect. It is easy to see that the equation f(Wc) = g(Wc) can be simplified as

(1− a2,1)2
R∗+s1
W0 2(2Rth−R∗−s1)Tc

+2
R∗
W0 (a2,12

β1
W0 − 1)2(Rth−R∗)Tc

+2
s1
W0 (a2,1 − 2

R∗
W0 )2(Rth−s1)Tc + 2

R∗
W0 − a2,12

β1
W0 = 0,

(3.27)
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where Tc := 1
Wc

. Descartes rule of signs [90] is useful for getting bounds on the number of

roots of a polynomial equation by counting sign changes in its sequence of coefficients. The

following lemma generalize Descartes rule of signs from polynomials to functions that are a

linear combination of exponential terms:

Lemma 3.2. The number of solutions of the equation a1e
b1x + a2e

b2x + · · · + ane
bnx = 0 in

the real variable x where b1 < b2 < · · · < bn is at most the number of sign changes in the

sequence of coefficients (a1, a2, . . . , an) and has the same even-odd parity. In particular, any

such equation cannot have more than n− 1 solutions.

Proof runs along the same line as the proof of Descartes rule of signs and can be found

in Appendix A.

Using this Lemma, (3.27) can at most have three solutions in the real variable Tc. Note

that Tc = 0 is always a solution, however, this corresponds to Wc =∞ which is not accept-

able. As such, if the number of sign changes in the (properly sorted) sequence of coefficients

in equation (3.27) is two, there is exactly one finite value of Wc such that f(Wc) = g(Wc).

However, if the number of sign changes is three, the number of finite values Wc satisfying

f(Wc) = g(Wc) is either zero or two.

3.5.1 Characterizing the boundaries of D1, D2 and D3

We saw that the properties of the rate expressions characterizing our rate region are such

that the extreme value is taken on the boundaries where different rate expressions dominate.

These boundaries are given in terms of the functions f and g as defined above. In this

section, we characterize these boundaries.

Note that s1 is not dependent on the design parameters Wc and Q. If Rth > s1, then

Rth > min{r1, t} due to the fact that r1 ≤ s1. Hence, D1 is empty by (3.20) and (3.23). Also,

D2 is empty by (3.24). As such, one only needs to compute v3. If Rth ≤ s1, one needs to

find all v1, v2 and v3. In what follows, we discuss the cases Rth > s1 and Rth ≤ s1 separately

under various interference regimes:
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Weak Interference (a12, a21 < 1)

• Rth > s1: In this case, only the rightmost boundary of D3 is of interest. This boundary

is comprised of the curve Q = g(Wc) : Wc ∈ [0,W0] and the vertical line segment

{W0} × [0, g(W0)].

• Rth ≤ s1: In this case, the rightmost boundaries of all D1, D2 and D3 are of interest.

Since g > f , ∂rmD1 consists of the curve Q = f(Wc) : Wc ∈ [0,W0] and the vertical

line segment {W0} × [0, f(W0)], ∂rmD2 consists of the curve Q = g(Wc),Wc ∈ [0,W0]

and the vertical line segment {W0} × [f(W0), g(W0)] and ∂rmD3 consists of the curve

Q = g(Wc) : Wc ∈ [0,W0]. Therefore, ∂rmD3 ⊂ ∂rmD2. Since Rth ≤ s1, we have

r2 + s1 − Rth ≤ r2 for given Q and Wc. Hence, v3 ≤ v2 and computing v3 is not

necessary.

Strong Interference (a12, a21 > 1)

• Rth > s1: In this case, only the rightmost boundary of D3 is of interest. This boundary

is comprised of the curve Q = g(Wc) : Wc ∈ [0,W0] and the vertical line segment

{W0} × [0, g(W0)].

• Rth ≤ s1: In this case, the rightmost boundaries of all D1, D2 and D3 are of interest.

Since f > g, ∂rmD1 consists of the curve Q = g(Wc) : Wc ∈ [0,W0] and the vertical line

segment {W0} × [0, g(W0)] and ∂rmD2 and ∂rmD3 coincide and are represented by the

curve Q = g(Wc),Wc ∈ [0,W0]. Since Rth ≤ s1, we have r2 + s1−Rth ≤ r2 for given Q

and Wc. Hence, v3 ≤ v2 and computing v3 is not necessary. Note that ∂rmD2 ⊂ ∂rmD1,

however, r2 + s1 −Rth = s2 + r1 −Rth may be smaller or larger than s2. As such, one

is required to compute both v1 and v2.
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Mixed Interference (a12 > 1, a21 < 1 or a12 < 1, a21 > 1)

• Rth > s1: In this case, only the rightmost boundary of D3 is of interest. This boundary

is comprised of the curve Q = g(Wc)Wc ∈ [0,W0] and the vertical line segment {W0}×

[0, g(W0)].

• Rth ≤ s1: In this case, the rightmost boundaries of all D1, D2 and D3 are of inter-

est. As f and g may intersect, ∂rmD1 consists of the (possibly) non-smooth curve Q =

min{f(Wc), g(Wc)},Wc ∈ (0,W0] and the vertical line segment {W0}×[0,min{f(W0), g(W0)}].

As in the case of weak interference regime, ∂rmD2 consists of the curve Q = g(Wc),Wc ∈

[0,W0] and the vertical line segment {W0} × [f(W0), g(W0)] and ∂rmD3 consists of the

curve Q = g(Wc) : Wc ∈ [0,W0]. This shows that ∂rmD3 ⊂ ∂rmD2. Following similar

line of reasoning as in the case of weak interference regime, we conclude that v3 ≤ v2

and computing v3 is not necessary.

Using Lemma 3.2, sufficient conditions can be given in terms of the relationship be-

tween channel coefficients and the primary user’s Rth that constrain the number of

intersections of f and g. The following proposition provides conditions such that

∂rmD1 consists of both f and g, i.e., f and g intersect over the interval [0,W0]. The

unnatural form of inequality on cross-channel gain a2,1 is required for the sign-counting

to work.

Proposition 3.1. Let Rth < s1, a2,1 >
2
R∗
W0 −2

Rth
W0

2
s1
W0 −2

Rth
W0

and a1,2 < 1. Then f and g intersect

at a unique point in the interval (0,W0). Denoting this unique solution of f(Wc) =

g(Wc) by Wc = w, ∂rmD1 is described by Q = f(Wc),Wc ∈ [0, w], Q = g(Wc),Wc ∈

[w,W0] and the vertical line segment {W0} × [0, g(W0)].

Proof of this can be found in Appendix A.

In the sequel, we provide a numerical example where we demonstrate the situation happening

in proposition 1.
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3.6 Possible extreme cases of the problem

We have analyzed and broken down the rate optimization problem into its constituent sub-

problems. In this section we discuss under which conditions the optimum Wc obtained will

be equal to W0 and 0 respectively. as these two cases correspond to when it’s optimal to

share the entire primary user’s band and sharing exactly nothing

3.6.1 Wc = 0

In our formulation of the problem, if Rth > s1, the optimal power-bandwidth relationship is

given by g, likewise if Rth < s1, it is given by min{f, g}. Now, the functions f and g have

both vertical asymptotes at a positive non-zero Wc at and to the left of which they both

go to infinity. Since practically, Q is also limited by user 2’s available power P2, this means

that for values of Wc smaller than the asymptote, including zero, the optimal Q equals P2.

On the other hand, for a fixed power budget clipped at P2, rate is monotone increasing in

Wc, hence Wc = 0 could not be optimal.

3.6.2 Wc = W0

This case, that corresponds to the total band of primary user being shared can actually

happen. One numerical example that this case is indeed possible is W = 3,W0 = 2, P1 =

P2 = 100, a12 = 0.1, a2,1 = 2.2, Rth = s1
5

where the optimal Wc equals W0 and gives R2 ≈

7.336.

3.7 Numerical Examples

To give a better insight into the performance of the proposed scheme, this section provides

a number of numerical examples.

First, we consider a scenario where W = 8 Hz, W0 = 6 Hz, P1 = 7 dB, P2 = 9 dB,
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Figure 3.3: The region D1.

a1,2 = 6
7

and a2,1 = 5
2
. In this case, R∗ = 5.6141 bits/sec/Hz and s1 = 4.6742 bits/sec/Hz.

Assume Rth < β1, say, Rth = 3.5057 bits/sec/Hz.4 As discussed in the previous section,

we only need to compute v1 and v2. The regions D1 and D2 are shown in Fig. 3.3 and

Fig. (3.4), respectively. Note that the region D2 is the union of the shaded region and

the tail-like curve extending from Wc = 2.62 Hz to Wc = 6 Hz. Note that ∂rmD1 has a

breaking point at (Wc, Q) = (2.62, 4.601). It turns out that Wc = 2.62 Hz is the solution

for f(Wc) = g(Wc). In fact, the part of ∂rmD1 extending from Wc = 2 Hz to Wc = 2.62 Hz

is the curve Q = f(Wc) and the part extending from Wc = 2.62 Hz to Wc = 6 Hz is the

curve Q = g(Wc). This observation is consistent with the result of proposition 1. In fact,

2
R∗
W0 −2

Rth
W0

2
β1
W0 −2

Rth
W0

= 1.5238. Since a2,1 > 1.5238, Rth < s1 and a1,2 < 1, the point Wc = 2.62 Hz5

in fact the unique solution w to f(Wc) = g(Wc) as verified by proposition 1. Fig. 3.5, Fig.

3.6 and Fig. 3.7 demonstrate the values of objective functions ∂rmD1 and ∂rmD2. It is seen

that the optimum tuple (Wc, Q) is given by (Wc, Q) = (5.36, 6.05) which occurs on the part

of ∂rmD1 represented by Q = min{f(Wc), g(Wc)}.
4We have Rth

R∗ = 0.6244.
5While the frequencies used here are too small to be practically relevant, we note that this is an artifact

of the chosen input parameters W and W0 being small. As is customary in information theory literature,
small parameter values are selected so that performance parameters can be demonstrated with relatively
small numbers. Similar analysis carries over for multi-megahertz bandwidths as well.
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3.7. Numerical Examples
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Figure 3.4: The region D2.
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Figure 3.5: Plot of s2 in terms of Wc on the part of ∂rmD1 represented by Q =
min{f(Wc), g(Wc)}.

3.7.1 Maximum can be attained in different parts of the boundary

In this section, we provide a few concrete numerical examples to show how the point that

achieves the maximum rate can be moved to different parts of the boundary by changes in

value of the problem parameters. We assume that W = 3 Hz, W0 = 2 Hz, P1 = P2 = 20 dB,

a12 = 0.1 and a21 = 2.2. Now we can see that if we set Rth = 1.5 bits/s, then the maximum

will be taken on the rightmost boundary of the region of definition of v2 and in particular the
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Figure 3.6: Plot of s2 in terms of Q on the part of ∂rmD1 that is a vertical line segment
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Figure 3.7: Plot of r2 + s1 −Rth in terms of Wc on ∂rmD2 represented by Q = g(Wc).

Wc = 2 Hz and Q = 63.33 Watts. For the same problem, if we set Rth = 2.02 bits/s, then the

maximum will be taken on the topmost boundary of the region of v2 for Wc = 1.91 Hz and

Q = 57.76 Watts. More interestingly for Rth = 1.63 bits/s the maximums at the topmost

and rightmost boundaries coincide at Wc = 2 and Q ≈ 59.03 Watts.
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3.8. Shape of the rate curve

3.7.2 Sensitivity of achievable rates to changes in parameter val-

ues

To see how the behaviour of the maximum achievable rate changes with changes to parameter

values, we demonstrate here how changes in a12 and Rth affect the achievable rates, holding

all other parameters constant. For W = 1Hz, W0 = 0.7Hz, P1 = P2 = 100, a12 = 0.6 and

a21 = 26, Fig. 3.8 shows the effect of changing Rth on the maximum achievable R2. Similarly

for W = 1Hz, W0 = 0.7Hz, P1 = P2 = 100 and a21 = 2, Fig 3.9 shows the effect of changing

a12 on the maximum achievable R2 for the case that Rth is chosen to be 0.33s1.
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Figure 3.8: Plot of maximum achievable R2 as a function of changing R∗.

3.8 Shape of the rate curve

To complete our numerical examples, in this section, we also provide examples of the overall

shape of the rate region. In figure 3.10 you can see the maximum value of R2 attainable by

this scheme for W = 5, W0 = 2, a1,2 = 0.5, a2,1 = 5 and P1 = P2 = 10dB as a function of

R1 = Rth. The rate region is also calculated for W = 5, W0 = 2, a1,2 = 0.2, a2,1 = 0.2 and

6As discussed previously, small round numbers are used for input parameters, as is customary in informa-
tion theory literature, to be able to demonstrate the example without having to deal with many significant
digits.
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Figure 3.9: Plot of maximum achievable R2 as a function of changing a12.

P1 = 17dB P2 = 13dB as is shown in figure 3.11. As can be seen, this region is not in general

convex.

3.9 Conclusion

Thus far, we proposed and analyzed the interference channel with one cognitive user. We

proposed a series of achievability schemes for this channel that all achieve the same rate

region, but do so by emphasizing different components of the trade-off between conceptual

and computational simplicity of coding and decoding schemes. We then analyzed the rate

optimization problem that the cognitive secondary user faces and noted its non-convexity.

The structure of this problem was exploited to reduce its solution to a number of subproblems

of smaller dimension. Rigorous results were obtained on the structure and interrelationship

of these subproblems in different interference strength regimes. Numerical examples were

provided to supplement these results and shed light on the behaviour of our problem and

give an idea of its performance for some ranges of parameters.
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Chapter 4

Approximate link scheduling in large

networks

This chapter concerns the second part of the thesis that deals with the problem of SINR-

feasible link scheduling in large wireless networks. Contrasting the approach taken in the

previous chapter, we turn our attention from the two-user networks to the issue of interfer-

ence management in the presence of large number of interfering users. The scale of these

networks makes complex encoding and decoding schemes impractical and leaves only the

simplest transmitter and receiver design strategies like treating interference from structured

messages of other users as added noise. These simplified approaches are not without theoret-

ical basis. As noted previously, the importance of interference management and interference

control has been put on theoretically firm ground by the advent of degrees-of-freedom (DOF)

analysis and interference alignment (IA) that put the burden of interference management on

the transmitter and treat whatever remains at the receiver as noise. But these approaches,

based mostly on channel-state dependent transmitter-side constellation designs, have offered

limited prospects for large-scale practical applications due to excessive complexity of channel-

code design and encoding operations[12, 13, 82]. Recently, a series of results have emerged

that show near-optimality of treating-interference-as-noise (TIN) without any transmitter
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Chapter 4. Approximate link scheduling in large networks

side signal shaping for large classes of interference networks [62, 85]. This has paved the

way towards providing a more direct mapping from theory to practice in interference man-

agement, and suggests an approach that is particularly suited to scenarios encountered in

emerging large Machine-to-Machine (M2M) and Device-to-Device (D2D) networks. These

developments stress the importance of treating Signal to Interference as Noise Ratio (SINR)

itself as a key metric to optimize for attaining the best achievable rates in large networks, in-

stead of seeing it just as an approximation to the true capacity metric whose only advantage

is simplicity of analysis. Inspired by these results, new heuristic SINR-aware wireless schedul-

ing algorithms have appeared in the literature including the previously reviewed FlashLinQ

[60] and ITLinQ [61] that aim at producing higher-throughput link schedules that target

SINR levels and are not computationally expensive. As discussed previously, this combina-

tion of theoretical and practical developments means that investigating approaches to link

scheduling that are simple, scalable and have theoretically provable performance guarantees

is an important research direction. This chapter, after defining a network model and stating

the scheduling problem formally, describes an approximate scheduling algorithm that has

provable performance guarantees and show that it performs well in practice, specially as the

size of the network grows.

The outline of the rest of the chapter is as follows. Section 4.1 describes the model.

Section 4.2 gives a formal definition of the minimum length scheduling problem. In sec-

tion 4.3 the problem of finding the minimum-length schedule is formulated as a mixed in-

teger program. Using this framework, mathematical programs are given that are amenable

to solution using optimization tools such as CPLEX[91] and Gurobi[92]. Mixed integer

programming gives exact solutions but the time and memory requirements grow very fast

with the instance size, therefore an alternate formulation is given that can be repeatedly

solved to obtain successively refined lower bounds1 and feasible solutions and which provides

an interval containing the exact minimum length and accommodates larger instance sizes.

1A lower bound is inferred when the MIP solver declares that the instance has no feasible integer solution
with the given schedule length.
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4.1. Model and assumptions

Next, an approximation algorithm for the solution of the link scheduling problem based on

graph-theoretical ideas is proposed. This algorithm takes advantage of the geometric struc-

ture imposed by the metric space of the link endpoints to decompose the links into subsets

having specific properties and uses a specialized scheduling algorithm as a subroutine to

separately schedule subsets of the resulting decomposition. The proposed algorithm finally

composes these sub-schedules into an approximate schedule for the general-form input in-

stance. Section 4.4.1 defines the criteria based on which this decomposition process takes

place. This section also gives notation and definitions for other properties that are used

to further describe the scheduling algorithm and specify its approximation ratio. This al-

gorithm and its building blocks are introduced in Section 4.4.2. This includes a flow-chart

of the top-level method as well as the special-case approximate scheduling algorithm that

is used as a subroutine. The description of the steps these algorithms take is accompanied

with a series of lemmas establishing their correctness and approximation ratio. Proofs of

these lemmas are outlined but the details are relegated to Appendix B. Finally, we report on

numerical experiments and conclude this chapter in Section 4.5. Part of the work described

in this chapter has been previously presented in the paper [93].

4.1 Model and assumptions

This section describes the underlying model of the wireless network. Our model considers a

set of {1, ..., L} links. Each link l ∈ L is characterized by the tuple (o(l), d(l), p(l), G(l)).

The points o(l), d(l) are the origin and destination points of link l. These points are

only constrained to be in a doubling metric space M2. The use of doubling metric space

assumption is technical as we make use of triangle inequality and doubling constraint in

proving some lemmas. To make this technical assumption more intuitive, the reader can

2A doubling metric space is a metric space for which there are constants C and m such that every ball

B(p, r) of radius r can contain at most C
(

r′

r

)m
disjoint balls of radius r′. The number m is called the

doubling dimension of the metric space.
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Chapter 4. Approximate link scheduling in large networks

assume that all nodes are in the Euclidean R2 plane3. All flows are single-link, so the input

instance represents L simultaneous data transfer demands.

Link power p(l) is given by the power-control scheme that we adopt. This is a local link-

length dependent power control of the form p(l) = p0
(
Do(l),d(l)

)α/2
where D is the distance

metric. We use the shorthand `(l) for Do(l),d(l) for cleaner notation. This power control

choice is halfway between full channel inversion (equal received power at all destinations) and

uniform power (equal transmit power at all origins). The reason is that the aforementioned

two power control schemes can produce schedules that are in the worst-case exponentially

longer in some problem parameters than that achieved by `(l)α/2 power control [50]. In the

case of uniform transmit power, this is caused by longer links being disadvantaged compared

to shorter links. In the case of complete channel inversion, longer links will cause undue

interference at other receivers.

Link gains G(l) are characterized by a path loss model with a loss exponent of α. There-

fore, for a link l, the direct gain is given by |G(l)|2:= |Go(l),d(l)|2= g0(Do(l),d(l))
−α. Typical

values of α are in the range of 2 to 6 [94].

The interference model we are considering is based on an additive white Gaussian noise

(AWGN) interference channel, hence the received signals at the destination of link l is given

by

rl =
L∑
l′=1

G(l′, l)sl + zl, (4.1)

where G(l′, l) is the cross-path coefficient from the origin of l′ to the destination of l, sl is

the signal sent by the transmitter at o(l), and the terms zl are independent Gaussian noise

terms with a joint distribution of N (0, N0I). Similar to the direct gains, the cross-channel

gain of interference from o(l′) on d(l) is given by |G(l′, l)|2:= |Go(l′),d(l)|2= g0(Do(l′),d(l))
−α.

We assume that links are synchronized so there is no ambiguity around time indices or any

problems with synchronization. Channel gains are assumed to take on real values.

3For the Euclidean space Rm, the doubling dimension is equal to m, the ordinary notion of dimension of
the space.
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4.2. Formal definition of scheduling problem

We make the major simplifying assumption that the links are single-rate, so we impose

the uniform SNR threshold of β. We require that

γl =
p(l)G(l)

N0 +
∑
l′ 6=l

l′ active with l

P (l′)Gl′l

≥ β,

for link l to do a successful transfer. In practice, β as a parameter is a function of physical

layer technology, RF chain sensitivity and the desired bit-error-rate.

With the elements of the network model described, the next section defines the problem

that we are trying to solve.

4.2 Formal definition of scheduling problem

The model of the network was defined in the previous section. We are now ready to give a

formal definition of the scheduling problem. The problem input instance is a set of network

links {1, ..., L}. Also, two sets of parameters are used to characterize the exact conditions

under which the network operates. The first set of parameters is a function of the ambient

space that our link endpoints operate in (which is itself assumed to be a metric space M

with doubling dimension m and distance measure D). They are the path loss exponent α,

noise spectral density N0 and the normalized unit distance gain g0. The second set consists

of parameters characterizing the radio hardware at the link endpoints and consists of the

normalized transmit power p0 and receiver SNR threshold β. Each link in the input instance

is characterized by the tuple (o(l), d(l), p(l), G(l)) where o(l), d(l) are the free parameters

characterizing the link’s origin and destination. They fully characterize the other two com-

ponents of the tuple as p(l) := p0D
α/2
o(l),d(l) and |G(l)|2:= g0D

−α
o(l),d(l). As noted before, the

shorthand notation `(l) := DO(l),d(l) is used for the length of link l. Using this shorthand,

link transmit power and gain can be written as p(l) = p0`(l)
α/2 and |G(l)|2= g0`(l)

−α, respec-

tively. As shown by equation 4.1, the effect of interference is modeled by an additive channel
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with cross-gains of |G(l′, l)|2= g0D
−α
o(l′),d(l) from link l′ on link l. As described previously, all

gains are real-valued and the noise is white, Gaussian-distributed and additive.

The output corresponding to an input instance, the optimum schedule, consists of a

partition of {1, ..., L} into subsets {s1, ..., sS}, such that each l is in exactly one st, or

t, t′ ∈ {1, ..., S}, t′ 6= t⇒ St ∩ St′ = ∅ (4.2)

S⋃
t=1

st = {1, ..., L}, (4.3)

(4.4)

and for each st, all links l ∈ st satisfy

∀st,∀l ∈ st γl :=
p(l)G(l)

N0 +
∑

l′ 6=l∈st P (l′)Gl′l
≥ β. (4.5)

Also, and crucial to optimality, the cardinality S of the partitioning {s1, ..., sS} is minimum

among all such partitions satisfying the above criteria.

It is clear that having such optimum {s1, ..., sS}, we can associate each st to a different

time instant such that all transfer requests are satisfied and this is the shortest length of

timeslots in which this can happen. This justifies the name minimum-length schedule.

The sets si satisfying the above criteria are called, in analogy to vertex-independent sets

of a graph, scheduling-independent sets or ISets for short. With this terminology, optimum

scheduling is the problem of partitioning the set {1, ..., L} into the minimum number of ISets.

Formally, the parameters, input and output of the optimum link scheduling problem are:

Parameters: path loss exponent α, metric M , dimension m and associated distance

measure D, Noise spectral density N0, normalized gain g0 and power p0 and SNR threshold

β.

Input: a set of links {1, · · · , L} with each link l associated to the tuple (o(l), d(l), p(l), G(l))

of which o(l), d(l) determine the other two components based on the parameters. Similarly
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4.2. Formal definition of scheduling problem

the cross gains G(l, l′) are defined by the path loss formula as described before.

Output: a number S and sets s1, s2, . . . , sS such that:

1. st’s are disjoint and cover all of {1, ..., L}.

2. st’s are scheduling ISets as defined previously.

3. Their cardinality, S is minimum among all partitions satisfying the previous two con-

ditions.

It is obvious that this problem has a well-defined, computable solution. In particular,

the cardinality S of the partitioning is at least 1 and at most L and there is only finitely

many partitions of {1, ..., L} to examine and find the smallest consisting only of ISets.

If the problem output specification above is relaxed to finding, instead of the exact

minimum partition, a partition whose length is approximately close to minimum, we will

have the problem of approximate link scheduling. For a positive non-decreasing function h

of instance size and parameters, an algorithm for the approximate link scheduling problem

is said to O(h)-approximate link scheduling if the ratio of the length of its output schedule

to the minimum-length output schedule asymptotically grows like O(h).

4.2.1 Example of a practical application scenario

A scenario where solving this problem is useful is for a large-scale network of autonomous

radio devices arranged in peer-to-peer setup. An example of this is a large scale device-to-

device network of autonomous vehicles or drones. The network will operate over consecutive

rounds where a static set of demands declared at the start of the round are serviced in a

finite number of transmission timeslots before the start of the next round. In order to max-

imize utilization of the network, we want to conclude each round in as small a number of

transmission slots as possible. A scheduling algorithm decides on the number of timeslots

and the links transmitting in each timeslot of the round. Therefore, an exact or approximate
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solution to finding the minimum number of timeslots required to schedule a set of transmis-

sion requests allows achieving the highest possible link utilization and minimizes the time

between successive rounds. Having a scalable algorithm is important if the size of network

is large or if limited computational resources are available at each node.

4.2.2 Complexity of exact scheduling

As discussed previously, the scheduling problem can in principle be solved by exhaustively

examining all partitions of the set {1, ..., L} and producing the one that has the smallest

cardinality (length) and consists only of β-SINR feasible ISets. This brute force approach

does not exploit any structure present in the problem instance and takes exponential time

in L. Therefore, solving the SINR-based minimum-length with more clever algorithms and

characterizing its worst-case performance is an important problem. Since many simpler

versions of link scheduling, for instance graph-based independent set scheduling discussed

previously are equivalent to NP-complete problems (such as producing vertex colourings of

general graphs), it might seem reasonable to assume that the problem defined above is NP-

complete as well. This is not a rigorous argument as there might be a smart way of exploiting

the structure inherent in the problem to drastically cut down on the time required to solve

it. In contrast, formally showing that this problem is NP-hard, involves finding a way of

reducing general instances of an already known NP-complete problem to it. This section

reviews the literature on the complexity of link scheduling problem.

Apart from results on graph vertex colouring, Turong et al. in [95] were the first to

look at the complexity of wireless link scheduling. They consider an interference model

where the two-hop neighbourhood of any two transmitting nodes should be disjoint and

show that obtaining the optimal schedule in this setting is NP-complete. Borbash et al. in

[96] consider the problem of SINR-based scheduling without geometric constraint on channel

gains and show a reduction to it from a generalized graph-matching problem which they

hypothesize to be NP-complete. Later, Behzad et al. in [97] gave a linear programming
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formulation of the minimum-length scheduling with a SINR metric that is of exponential

size in problem parameters. They also proved, by a reduction from instances of graph edge-

colouring problem to their formulation, that SINR-based scheduling with general channel

coefficients is NP-Complete. Both of these reductions lead to arbitrary matrix of channel

gains without any geometric structure. Of more interest to our case, Goussevskaia et al. in

[51] showed that even instances of minimum-length SINR-based scheduling where channel

gains are constrained to be related to link lengths by a path loss formula are still expressive

enough to represent general instances of NP-complete problems. In particular, they show

through a reduction from general instances of set-partitioning problem to geometric instances

of SINR-based scheduling, that even in this restricted setting, scheduling is NP-complete.

This result definitively establishes that the problem we are trying to solve is NP-complete.

This makes it imperative to look at approximate solutions for larger instances. The next

section shows that scheduling can be formulated as a mixed integer program in a format

that is suitable for mathematical programming software and that these software tools can

be used to find exact solutions for intermediate-sized instances.

4.3 Exact solution of scheduling using a mixed integer

program

Having formally defined the problem of finding exact minimum-length SINR-feasible sched-

ule and looked at its complexity, this section formulates this problem as an instance of

Mixed Integer Programming (MIP). This allows us to enlist the well-developed MIP-solving

capabilities of general-purpose optimization software for its solution. The standard MIP for-

mulation also serves as a concise alternative formal definition of the problem. Before that,

we briefly discuss the subject of mixed integer programming.

A mixed integer program is an optimization problem (mathematical program) in which

the objective function and constraints are linear functions of the variables and with the

73



Chapter 4.

added constraint that some variables only take on integer values. The addition of integrality

constraints distinguishes these problems from linear programs (LP) and gives them extra

expressive power. This expressiveness comes with the disadvantage that standard simplex

and interior point methods are not adequate for solving MIP instances. In the worst case,

solving MIP’s requires solving an exponentially large number of LP instances corresponding

to fixed choices for the values of discrete variables. Still, there is a group of well-developed

techniques for pruning this search tree of discrete choices which, together with heuristics for

ordering these choices, makes many mixed integer programs of interest effectively solvable.

For general MIP problems, these techniques include the branch and bound [98] and branch

and cut [99] methods. Both of these methods require many calls to LP solvers on intermediate

instances obtained by relaxations of the original program and use the results to further

prune the set of remaining tree nodes they have to examine. This reliance on search tree

pruning in general MIP solving strategies has consequences both in formulating combinatorial

optimization problems as MIP instances and in the choice of successive relaxations that

solvers internally make. One example is that in formulating a problem as a mixed integer

program, there is often a trade-off between the work done per node of the search tree and the

number of nodes that need to be examined on average. A formulation with more constraints,

which leads to an increase in the size of intermediate LP instances, can prune the search tree

nodes more effectively on average and therefore be more efficient overall. A formulation with

less constraints, on the other hand, solves smaller intermediate LP instances but might need

to look at a larger fraction of the search tree nodes. In any case, the framework of general

mixed integer programs is so expressive that it can represent every NP-complete problem,

so there is good reason to believe that this exponential search tree complexity might be

inherent.

The problem we are trying to solve is a general set partitioning problem with extra

constraints, where these constraints needs to only hold between elements that are inside the

same subset of the partition (namely, the SINR feasibility constraint of link has to hold only
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relative to links in the same partition as itself). One way to formulate this problem is to use

binary indicator variables indexed by both link and ISet indices to signify when a link belongs

to a certain ISet. The SINR feasibility constraint on a link when receiving interference from

all links in some ISet, then, will only need to hold if the indicator variable of the link in that

ISet is 1. It seems hard at first to express this logical constraint activation without using

multiplication and when confining ourselves to linear expressions in the indicator variables.

The big-M trick [100] is a method in mathematical programming that can be used, among

other things, to formulate these logical constraints that are not strictly linear, as linear

constraints of a specialized form. As mentioned, the SINR constraint is of this logical

type as its incorporation is predicated on the link belonging to a certain ISet. Using the

big-M trick, a constraint activation condition such as our SINR feasibility criterion will be

incorporated by subtracting from the right hand side of the unconditional constraint written

as a ≥ inequality, a large number M4 times the indicator variable of interest. With this extra

term, whenever the indicator variable is 1, the inequality is vacuously satisfied and does not

further constrain other variables involved.

With this primer, two formulations are presented next. The first formulation uses a

smaller number of constraints and is symmetric under renaming ISet indices. It has many

feasible solutions corresponding to what is qualitatively the same scheduling solution and as a

result can require a larger branch and bound tree. The second formulation, on the other hand

tries to order the ISet indices by their cardinality and breaking ties lexicographically. This is

done in order to make the correspondence between MIP and original problem solutions one-

to-one and the search tree smaller. This comes at the cost of extra constraints to enforce

this ISet ordering, which increase the size of relaxed instances that need to be solved at

intermediate nodes of the branch and bound tree.

4Hence the name big-M.
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4.3.1 First approach

Similar to what we did for links in the general formulation, we equate the ISets Ss with

their index s, so that both links and ISets are identified with integers. This helps make the

mathematical programs that follow cleaner. With this convention, the lowercase l is used to

index the set of links and lowercase s the set of ISets. Using indicator variables xls to denote

link l belonging to set s, the problem of minimizing the schedule length can be formulated

as the mathematical program below (with the use of shorthand notation [N ] for the set

{1, ...N}):

min
S,{xls}

S

s.t. xls ∈ {0, 1} S ∈ N,∀l ∈ [L],∀s ∈ [S]
S∑
s=1

xls = 1 ∀l ∈ {1, .., L}

xlsG(l)p(l) ≥ xlsβN0 +
∑
l′ 6=l
l′∈s

xl′sp(l
′)G(l′, l)−M(1− xls) ∀l ∈ {1, .., L},∀s ∈ {1, ..., S}.

(4.6)

As can be seen, The first constraint signifies that xls is the binary indicator of whether or

not link l is put into partition s. The second constraint states that the schedule should be

valid, that is every link should be scheduled exactly once. The last constraint uses the big-M

trick to enforce the SINR constraint only when a link belongs to an ISet.

This formulation is a straightforward translation of the problem. Unfortunately, since the

range of indices for variables xls depends on another program variable S, this formulation

does not strictly conform to the definition of MIP. This can be overcome as will be discussed

shortly, but a variation of this formulation, as a mixed integer feasibility problem5 can be

used as a decision procedure to determine whether a certain number of ISets suffices for a

given set of links. As such, repeatedly solving of this variation can give successively tighter

5In an MIP feasibility problem, the goal is to only determine whether the feasible region of a set of MIP
constraints is nonempty.
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4.3. Mixed integer programming formulation

feasible solutions and infeasible schedule lengths which act as upper and lower bounds for

the exact solution. When these bounds meet, we know that we have that exact solution.

Conversion to this feasibility problem works by replacing the range of s in xls with the

constant s0 for which we want to check if there is a solution with that many ISets. This will

lead to the following program:

min
{xls}

2

s.t. xls ∈ {0, 1} ∀l ∈ [L], ∀s ≤ s0
s0∑
s=1

xls = 1 ∀l ∈ {1, .., L}

xlsG(l)p(l) ≥ xlsβN0 +
∑
l′ 6=l
l′∈s

xl′sp(l
′)G(l′, l)−M(1− xls) ∀l ∈ {1, .., L},∀s ∈ {1, ..., s0},

(4.7)

which has the constant 2 as the dummy objective to show that it is only the feasibility of

constraints that are important. For any given s0, the above problem is feasible if and only

if s0 is equal to or greater than the minimum schedule length for that instance. This is a

proper MIP feasibility problem. The difference between Programs 4.6 and 4.7 can be seen

by way of an example:

Assuming that we have a set of L = 100 links represented as L = {1, ..., 100} and we like

to determine an interval containing the optimum schedule length. It is very unlikely that

all links are simultaneously feasible, and it is also unlikely that 100 individual timeslots are

required. Therefore a reasonable first guess might put the optimum value in the range of 15
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to 35 ISets. If the program

min
{xls}

2

s.t. xls ∈ {0, 1} ∀` ∈ L,∀s ∈ {1, ..., 35}
35∑
s=1

xls = 1 ∀l ∈ L

xlsG(l)p(l) ≥ xlsβN0 +
∑
l′ 6=l
l′∈s

xl′sp(l
′)G(l′, l)−M(1− xls) ∀j ∈ N,

(4.8)

is feasible and replacing 35 by 15 makes it infeasible, our initial guess of [15, 35] is validated

and we can tighten the range to, say [20, 30]. Otherwise, depending on the solution of the

two programs, the range should be enlarged from one end until it contains the exact solution.

By successively tightening the upper and lower ends of the range, the exact optimum s can

be found. An advantage of this formulation is that the gradual refinement of the interval

means that we have an upper and lower bound to the exact answer even computation is

stopped before the exact solution is pinpointed.

Program 4.6 can be converted to a proper MIP by noting that S is at most L (the

ISets are singleton sets in the worst case). The range of indices for xls can now be changed

accordingly. To accommodate the new possibility that some of the L ISet indices may not

be used, a new set of indicator variables ys can be added that indicates whether the s’th
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4.3. Mixed integer programming formulation

ISet is empty or not. With these changes, the program below results:

min
S,{xls},ys

S

s.t. xls ∈ {0, 1} ∀l, s ∈ {1, ..., L}
L∑
s=1

xls = 1 ∀l, s ∈ {1, ..., L}

ys ∈ {0, 1} ∀s ∈ {1, ..., L}

ys ≥ xls ∀l, s ∈ {1, ..., L}

ys ≤
L∑
l=1

xls ∀s ∈ {1, ..., L}

L∑
s=1

ys = S

xlsG(l)p(l) ≥ xlsβN0 +
∑
l′ 6=l
l′∈s

xl′sp(l
′)G(l′, l)−M(1− xls) ∀j ∈ N.

(4.9)

The added constraints on the ys’s enforce that ys represents the non-emptiness of ISet s and

that their sum is equal to the variable S which is also the program objective.

As pointed to previously, this mixed integer program has many solutions corresponding

to any distinct solution of the original problem, all of which are equivalent up to a relabel-

ing of the ISet indices s. In practice, a general-purpose branch and bound solver without

information about this symmetry might need to look at a much larger number of search

tree nodes than absolutely required to conclude that it has exhausted all possibly better

solutions.

4.3.2 Adding ordering constraints to reduce symmetry

The formulation in the previous section was a straightforward translation of problem objec-

tive and constraints. It had the disadvantage that each qualitatively distinct solution of the

original problem was equivalent to large number of MIP solutions by relabeling of the in-

dices s. The formulation presented here tries to alleviate this blowup using extra constraints
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that favour smaller indices s for the larger ISets and break ties by lexicographic ordering of

the elements of [L]. Using similar notation and indicator variables names, xls, ys as in the

previous section, this formulation adds two extra constraints as presented below:

min
S,{xls},ys

S

s.t. xls ∈ {0, 1} ∀l, s ∈ {1, ..., L}
L∑
s=1

xls = 1 ∀l, s ∈ {1, ..., L}

ys ∈ {0, 1} ∀s ∈ {1, ..., L}

ys ≥ xls ∀l, s ∈ {1, ..., L}

ys ≤
L∑
l=1

xls ∀s ∈ {1, ..., L}

ys+1 ≤ ys
L∑
s=1

ys = S

xlsG(l)p(l) ≥ xlsβN0 +
∑
l′ 6=l
l′∈s

xl′sp(l
′)G(l′, l)−M(1− xls) ∀j ∈ N

L∑
l=1

xls ≥
L∑
l=1

xl,s+1 ∀s ∈ {1, ..., L− 1}

L∑
l=1

lxls ≥
L∑
l=1

lxl,s+1 −M ′(
L∑
l=1

xls −
L∑
l=1

xl,s+1) ∀s ∈ {1, ..., L− 1}.

(4.10)

The last constraint uses a big M’ value to enforce ordering by cardinality (the other parts of

the constraint enforce lexicographic ordering when cardinalities are equal). The second to last

constraint requires smaller s indices to be used for nonempty ISets first before using larger

s values. The SINR criterion with the big-M trick is the same as the previous formulation,

as are the constraints used to enforce xls and ys representing a proper partitioning of [L].

These mixed integer programs can be solved using standard mathematical programming

software such as CPLEX [91] and Gurobi [92] to obtain the exact solution. As it will be

discussed in Section 4.5, programs 4.9 and 4.10 become prohibitive for instances of larger
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than about 50 and 30 links respectively. As such, in that section, we use the bounding

approach along with program 4.7 to compare the proposed algorithm with the interval bounds

containing the exact solution, for medium-sized instances of up to 250 links. With the MIP

formulations of the exact problem provided, the next section turns attention to the proposed

approximate scheduling algorithm, where its operation is described and correctness and

approximation ratio are established.

4.4 The proposed algorithm for approximating the op-

timum schedule

This section defines the scheduling algorithm of our schemes and provides an analytical

treatment of its performance. We first give a preliminary account of the top-level organization

of this algorithm together with required definitions in Section 4.4.1. Detailed discussion of the

algorithm and lemmas and theorems characterizing its performance are given in Section 4.4.2.

4.4.1 Notation and preliminaries

We defined the notation used for the links and described what an ISet is while formally

defining the minimum-length scheduling problem. This section is both a recap of those and

also defines new terms that are used in describing our approximate scheduling algorithm.

The set of intended transmit-receive pairs is denoted by set {1, 2, . . . , L} of links as before,

where each link l represents a transmitter located at o(l) and a receiver at d(l). The distance

metric between two points p1 and p2 is being denoted by D(p1, p2) := Dp1,p2 and we use the

shorthand Dl,l′ = Do(l),d(l′). As previously noted, `(l) := Do(l),d(l) denotes the length of link

l.

We use the notation [L] for the set {1, ..., L}, and more generally [N ] for a set {1, ..., N}

of numbers from 1 to N , in subscripts and in other places when it causes less clutter. Also, to

harmonize our notation with what is customary for representing instance sizes in discussion
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of algorithmic complexity, we denote the size of [L], which is the number L as n. Using this

notation, we define ∆, the ratio of longest to shortest link as: ∆ :=
maxl∈[L] `(l)

minl∈[L] `(l)
.

Length class: a length class or an almost equilength class is a set of links the lengths

of which do not vary by more than a factor of two. As we will see, it is sometimes easier to

divide a set of links into a number of length-classes and treat each class separately.

Normalized ISR and affectance: we first note that the Interference-to-Signal ratio

(ISR) between a two links is

I ′l′(l) =
p(l′)/D(l′, l)α

p(l)/`(l)α
.

This can be generalized to ISR of a set S on a link defined as

I ′S(l) =

∑
(l′ 6=l)∈S p(l

′)/D(l′, l)α

p(l)/`(l)α
.

Similarly for total ISR sent from a link to links on a set S, we have

I ′l(S) =
∑

(l′ 6=l)∈S

p(l)/`(l)α

p(l′)/`(l′)α
.

The definition of I ′S1
(S2) is analogous. An advantage of this notion is additivity, that is

I ′S1∪S2
(l) = I ′S1

(l) + I ′S2
(l) for disjoint S1 and S2.

In order to normalize this metric with respect to β, we use the notion of affectance. This

variation of ISR, first introduced in [52] and refined in [54] and [55] is defined as

Il′(l) := min

(
1, gl

p(l′)/D(l′, l)α

p(l)/`(l)α

)
= min

(
1, gl

p(l′)

p(l)
·
(

`(l)

D(l′, l)

)α)
,

where the factor gl := β/(1 − βN0`(l)
α/p(l)) depends only on properties of the link l and

problem parameters. This can be analogously extended to affectance to and from sets as

Il(S) :=
∑

l′∈S Il(l
′), IS(l) :=

∑
l′∈S Il′(l), and IS(T ) :=

∑
l′∈S Il′(T ) for sets S and T . It is
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easy to see that a set S being an ISet is equivalent to IS(l) < 1 for each l ∈ S.

As a first step in the scheduling algorithm, we pass from the geometric arrangement of

nodes in a metric space to an abstract graph. The vertices of this graph correspond to

network links and vertex connectivity is based on geometry of the network in a way that

helps us build the approximation to the optimum link schedule. In order to go from the

notion of an SINR-feasible ISet which defines a hypergraph on vertices representing links to

a binary edge-connectivity relation between link pairs, we use a pairwise relaxation of the

SINR feasibility of an ISet. What we mean by a relaxation is that if a subset of links forms

an ISet, then all of its pairs of links will be disconnected in this relaxed notion. The reverse

relationship, of a subset that is vertex-independent according to this binary relation being

SINR-feasible and therefore an ISet, does not necessarily hold. This has the advantage of

enabling us to use the conceptual simplicity of graph theory while still remaining close to

the SINR formulation. We will see that the conflict graph built on this notion provides lower

bounds on length of any SINR-feasible schedule. More importantly, the relaxed notion is still

strong enough that it can be used advantageously in the design of our scheduling method

and yet the conflict graphs built on it are structured enough to be efficiently colourable.

This is the notion of q-independence defined next.

q-independence: parameterized by a number q, q-independence is a pairwise relaxation

of the notion of SINR-feasibility. Formally, two links l′ and l are q-independent if they satisfy

D(l′, l) ·D(l, l′) ≥ q2 · `(l)`(l′). This is equivalent to Il(l
′) · Il′(l) ≤ glgl′

q2α
, independent of the

power scheme used. If two links are not q-independent, they are called q-dependent or q-

adjacent since they are adjacent in the graphic representation of this relation. Likewise, a

set of links is called q-independent if all pairs of its links are q-independent and its called

q-dependent otherwise.

The q-dependence graph is defined by having a vertex for each link and having an edge

between two vertices whenever they are q-dependent.

From the above definition, it is easy to see that if two links are q-dependent they cannot
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be simultaneously active in a qαβ-SINR feasible ISet (that is an ISet that satisfies the more

stringent qαβ SINR criterion), but the reverse will not necessarily be true as interference

power is accumulative.

The q-dependence graph of [L] is represented by Gq([L]). Recall that this graph has

vertices corresponding to all links in [L] and an edge between two vertices whenever their

respective links are q-dependent.

The top level of the proceeds by first colouring Gq([L]). This is done by a greedy subrou-

tine which takes linear time in the number of edges and vertices of the graph. It produces a

vertex-colouring that, using a special property of Gq([L]), is shown to use at most a constant

factor more colours than the its chromatic number, which is by definition, the minimum

number of colours required for a vertex colouring of this graph.

Since q-independence is, as noted, a relaxation of the notion of SINR-feasibility of ISets,

this colouring can serve as a rough first step in putting links whose simultaneous transmission

directly leads to SINR conflicts into different ISets.

The next step considers each monochromatic set, which is by definition a q-independent

subset of [L], separately when allocating ISets to avoid obvious pairwise conflicts between

q-dependent links. In order to build an ISet partition for each such q-independent monochro-

matic subset, we will have to define a few more refined properties that allow bounding of

sum-interference from other links when putting a link into a tentative ISet. The next few

definitions explicitly define these properties between pairs or subsets of links. The roles these

conditions play and the way they are satisfied at various stages of the algorithm is clarified

in the next section. To motivate the definitions though, they are accompanied by a short

description of how they help in different stages of the scheduling.

τ-interfering links: two links l, l′ are said to be τ -interfering if max{Il(l′), Il′(l)} > τ ,

that is at least one is causing a normalized ISR of more than τ on the other. Later, when

we try to assign links to different ISets (timeslots) using a greedy binning approach, we use

properties of this definition with an appropriately defined value of τ to show that the chosen
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4.4. Proposed approximate algorithm

number of bins is enough.

Lengthwise well-separated link set: a set of links is lengthwise well-separated if for

every link l, and all longer links l′, we either have that `(l′) < 2`(l) or `(l′) > 2.(4n)
2
α `(l).

Informally, what this says of a set is that the length relationship between any pair of links in

it is such that they are either almost equilength or else have widely differing lengths. Noting

that the length ratio in the second case is a growing function of instance size n, this notion

helps in making an argument based on pigeonhole principle that the total interference from

certain types of links on others is bounded.

p-greedily binnable link-set: parameterized by a natural number p, a subset A ⊆ [L]

is said to be p-greedily binnable if for every link in [L], there are at most p-links in the

set that are both 2.(4n)
2
α -times longer than it and 1

2n
-interfering with it. This is where the

τ -interfering property mentioned earlier is used. When a group of subsets have this property,

their links can be aggregated in p+1 bins corresponding to different ISets in a greedy manner

while assuring that the total interference any link receives in its assigned ISet is bounded.

4.4.2 Description of the algorithm, its correctness and perfor-

mance

In this section, using the definitions just provided, we state our algorithm and characterize its

correctness and approximation ratio using a series of lemmas. During its operation, the top-

level algorithm invokes a greedy graph colouring algorithm and a special-case link scheduling

algorithm (which requires its input instance to satisfy certain conditions) as subroutines.

When discussing each of these algorithms, a compact description the steps of the algorithm

is given first, then the operation of the algorithm is discussed step-by-step together with

lemmas that show correctness and bounds on the approximation ratio. For each lemma, a

high-level overview of why it holds and the role it plays in showing the overall correctness

and performance of the algorithm is given, but longer derivations and proofs are relegated

to Appendix B. As stated previously, the power control scheme assigns power proportional
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to `(l)α/2 due to the advantages this choice offers compared to both uniform power and

complete channel inversion. Nevertheless, in one particular stage of the algorithm, when

considering links within a length class (where, as we saw, lengths differ within a factor of at

most 2), we will state and use a lemma about uniform transmission powers and use the fact

that since the lengths do not differ by a factor more than 2, uniform and `(l)α/2-power are

in a certain sense, very similar.

As one last note, the ultimate goal of this algorithm is to partition a set of transmission

requests into a set of ISets feasible with SINR β so that members of different ISets can be

active over successive timeslots. At the same time, we are trying to make the cardinality of

this partition as close to the minimum cardinality as possible. In what follows, therefore,

we use the terms timeslots and ISets interchangeably. In principle, different ISets could

be assigned to different frequency bands, which would make the objective equivalent to

minimizing the number of frequency channels, but this is not relevant to the structure of the

problem.

Algorithm 1 is the top-level algorithm that we use for scheduling a set of links:

Algorithm 1 Scheduling arbitrary sets of links.

1. Construct the q-dependence graph for q = 3, G3([L]) on the set of links [L].

• We have the graph G3([L]) at this stage.

2. Colour G3([L]) using Hochbaum’s greedy colouring algorithm.

• After this step, we have [L] split into 3-independent subsets L1, L2, . . . , Lk where
k is at most cχ(G3([L]) by Theorem 4.1.

3. For i = 1, 2, . . . , k apply Algorithm 3 to the set Li.

• After this step, we get for each i, a partition of Li into a collection of ISets
Σi = {S1

i , S
2
i , . . . , S

ki
i }, where ki is the cardinality of the collection.

4. The output schedule is the set of all ISets in collections calculated for different Li’s:
∪iΣi

The flowchart of this algorithm is shown in Figure 4.4.2. The algorithm starts by con-
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Figure 4.1: Flowchart for Algorithm 1.
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structing the q-independence graph. As can be seen, q = 3 is chosen in step 1 above. This

choice is justified by the fact that it leads to subsets that satisfy the input conditions of

Algorithm 3 invocation in step 3 as will be discussed later. This step has worst case time

complexity O(n2) which is the maximum number of edges of the graph.

Step 2 uses a greedy algorithm to vertex-colour G3([L]). The greedy colouring algorithm

used is due to Hochbaum [101]. There, it is shown to have a complexity of O(|V |+|E|) on a

graph with vertex set V and edge set E, which corresponds to a worst-case time complexity of

O(n2) in our notation. This is Algorithm 2, called greedy Min-Degree-Last and the following

lemma characterizes its performance for q-independence graphs.

Algorithm 2 Greedy Min-Degree-Last vertex colouring

input : Graph G.
Output : A vertex colouring of graph G, with colours indexed by integers 1 and above.

1. Obtain the total order Min-degree-last on graph G as follows:

(a) Initialize an empty stack for the vertices.

(b) Select v a vertex of minimum degree in G.

(c) Remove v and its incident edges from G, push v onto the stack.

(d) Go to step (b) and continue removing until all vertices are removed.

(e) After the above steps are finished, the top-to-bottom order of vertices on the
stack is the desired total order, inductively defined such that each vertex is has
the minimum degree in the graph induced by itself and vertices coming before it
in the order.

2. Go through vertices in Min-degree-last ordering (so the last vertex remaining in the
previous step comes first here) and colour each vertex with the smallest colour not
used by any of its adjacent predecessors.

Lemma 4.1. Algorithm 2 is a greedy colouring algorithm that colours any q-independence

graph Gq using cχ(Gq) colours for c a constant.

Proof: The proof is based on showing that the neighbourhood of each vertex in Gq

has a bounded maximum independent set size. To show this, the geometric structure of the

connectivity in Gq is used. The details are in Appendix B.
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4.4. Proposed approximate algorithm

Step 3 of the Algorithm 1 relies on Algorithm 3. Invocation of this Algorithm is where

most of the scheduling work happens. We defined the notion of p-greedily-binnable subsets

previously and briefly discussed how this property is useful by allowing greedy aggregation of

links from different p-greedily-binnable subsets into a set of p+ 1 separate bins. Algorithm 3

requires the set of links at its input be q-independent and p-greedily binnable. Under these

conditions, the output of this algorithm will be a collection of ISets of cardinality O(p log n).

Algorithm 3 Scheduling q-independent and p-greedily binnable sets of links.

Input : A q-independent p-greedily binnable set Q, for some p > 0 and q ≥ 1.
Output : A partition of Q into O(p log(n)) ISets.

1. Let Q = ∪iQi, where Qi = {l ∈ Q|`(l) ∈ [2i−1`min, 2
i`min)}, for i = 1, 2, . . . , imax ≤

dlog(∆)e.

2. Assign Bi = ∪iQi+j·(1+d 2
α
log 4ne), for 1 ≤ i < 1 + d 2

α
log 4n)e.

3. Schedule each Bi = ∪jKj, where Kj := Qk+j·(1+d 2
α
log 4n)e, using the steps that follow:

(a) Using the SINR-strengthening lemma from Theorem 4.3 transform each Kj into

an e-SINR feasible partition of ISets: Σj = {Ssj}
kj
s=1 under uniform power with

e = 2α/2+1β.

• After this step we have a collection of subsets of Kj, each of which is an ISet
feasible with SINR 2α/2+1β under uniform power. Since, maximal pairwise
length ratio is 2, changing power control from uniform to `(l)α/2 means that
each ISet is at the worst 2β-SINR feasible.

(b) s← 1.

(c) Assign S ← ∪jSsj : if for some j, kj < s, then we take Ssj = ∅.
(d) Sort S in the non-increasing order of link lengths: `1 ≥ `2 ≥ . . . `|S|.

(e) T rs ← ∅, r = 1, 2, . . . , p+ 1.

(f) For k = 1, 2, . . . , |S| do: find a T rs not containing links u with `u > 2.(4n)
2
α `k

which are 1/(2n)-interfering with k, and assign T rs ← T rs ∪ {k}.
(g) s ← s + 1: if s ≤ max kj, then go to step 3.(c), otherwise the schedule for Bi is
{T rs |T rs 6= ∅}.

4. Output the union of the schedules of all Bi.

The flowchart of Algorithm 3 is shown in Figure 4.4.2. Step 1 of this algorithm decom-

poses the input set of links into a series length classes, sets where maximum link length ratio
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Figure 4.2: Flowchart for Algorithm 3.
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4.4. Proposed approximate algorithm

is at most 2, namely the Qi’s. Step 2 then takes the union of Qi’s whose indices differ by

an integer multiple of 1 +
⌈
log
(

(4n)
2
α

)⌉
into the maximal well-separated sets Bi. Recall

that a well-separated set is a set of links where for every pair the length ratio is either less

than 2 or more than 2.(4n)
2
α , so step 2 forms the maximal well-separated subsets of Q in

the most straightforward way. It is also simple to see that exactly 1 +
⌈
log
(

(4n)
2
α

)⌉
sets

Bi are formed at the end of this step containing all the links in Q. When discussing the

operations of step 3, it is useful to denote the j’th subset in the union defining Bi, that is

the set Q
i+j.(1+dlog((4n)

2
α )e)

by Kj, with its dependence on i being implicit.

Step 3.(a) refines each set Kj := Q
i+j.

(
1+
⌈
log
(
(4n)

2
α

)⌉) into a collection of its subsets that

are SINR feasible ISets for SINR level 2α/2+1β. The correctness of this step relies on two

lemmas.

The first lemma and the only place that we rely on uniform power in this derivation is

a result that shows the one-way implication from SINR-feasibility to q-Independence, which

results from the latter being a relaxation of the former, has a restricted converse. More

precisely, if a set of links is a length class, has maximal pairwise link length ratio at most

2, and all pairs of links are q-independent, It will be SINR-feasible for a certain SINR level

kβ (k > 1) with uniform power control. The sets Kj are by definition q-independent and

length class subsets and satisfy this condition. The following lemma states this restricted

equivalence between SINR-feasibility and q-independence.

Lemma 4.2. Any almost equilength class of links in a doubling metric space that is q-

independent is also SINR feasible under uniform power assignment.

Proof: To bound the total interference to a given receiver, this proof accounts for the

interference from transmitters of other links located inside different concentric rings around

this receiver separately. An argument based on the geometric definition of q-independence,

together with all pairs of links being almost equilength, puts an upper bound on the number

of transmitters in each ring using the doubling property of the metric. This leads to a bound

on total interference from transmitters in k’th concentric ring for each integer k. Summing
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over all k gives a desired bound on total interference that implies the link SINR criterion is

met. The full details are in Appendix B

The next ingredient in showing the correctness of step 3.(a) is noticing that different SINR

levels are interchangeable in the sense that an ISet that is feasible for a certain SINR level

can be refined into a collection of a constant number of its subsets, each of which are feasible

for a given higher target SINR level. This is shown by the following SINR-strengthening

result:

Lemma 4.3. [SINR strengthening] Any collection of S-SINR feasible ISets can be refined

into a collection S ′-SINR feasible subsets (S ′ > S), increasing the cardinality of the collection

by at most
⌈(

2S′

S

)⌉2
.

Proof: The proof is rather simple and proceeds by judiciously dividing each ISet of the

original collection into a number of ISets in a two-step greedy process, such that the new

ISets are feasible for the higher SINR level. The complete proof can be found in Appendix B.

Application of the previous lemma in step 3.(a) decomposes each Kj into a constant

number of its subsets Ssj ’s, each of which is an ISet with SINR level 2α/2+1β under uniform

power. Since the pairwise link length ratios in these ISets is upper-bounded by 2, changing

power control from uniform to `(l)α/2 makes the ISets Ssj feasible for SINR 2β in the worst

case.

Steps 3.(b) to 3.(g) depend on the assumption that the input set of links is p-greedily

binnable. The following lemma states that if q ≥ 3, this property holds for inputs given to

Algorithm 3 by the top-level Algorithm 1. This is where the arbitrary-seeming value of 3

comes from in step 1 of that algorithm.

Lemma 4.4. Any q-independent set of links for q ≥ 3 is O(log log ∆)-greedily binnable.

Proof: At a high level, this proof uses the geometric definition of q-independence and

the triangle inequality in the metric space of nodes to establish a lower bound on the length

ratio of two-links that are both at least 2.(4n)
2
α times longer than a given link l, mutually
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4.4. Proposed approximate algorithm

q-independent with each other, and more than 1
2n

-interfering with l. This bound implies a

doubly exponential growth rate on the lengths of successively longer links of this type which

is then used to upper bound their total number. Full details are in Appendix B.

For a given Bi of fixed index i, these steps (3.(b) to 3.(g)) take all links in the first ISet

(or first timeslot), S1
j , produced in step 3.(a) for Kj’s with different j’s (note that Kj’s and

therefore Ssj ’s implicitly depend on i which is omitted here to avoid clutter). These links

in
⋃
j S

1
j are put greedily in descending length order into the first one of the p + 1 initially

empty ISet bins where they receive less than 1
2n

normalized ISR from links already scheduled

in that bin. The same process is repeated again for the second ISets (or second timeslots),

S2
j , of all Kj’s with p + 1 new ISet bins and so on until the links corresponding to the

highest partition index, kmax := maxj kj, have been binned. Since by definition links from

different Kj’s for the same Bi are well-separated, when binning there are at most p links that

are longer by more than 2.(4n)
2
α and at least 1

2n
-interfering by the definition of p-greedily

binnable property that the input set of links has to satisfy. This means that the greedy bin

selection process always succeeds. Moreover, after all links are assigned to bins, each link is

receiving at most 1
2β

total ISR from links in the same Sj (because Sj was a feasible ISet for

SINR 2β). But it also receives at most 1
2n

normalized ISR from each link that is longer or

shorter by more than a 2.(4n)
2
α factor. To see why this is true, note that by construction,

the shorter of two links is added to their common bin only if both the ISR it receives from

or puts on the other link is bounded above by 1
2n

. This crucially depends on the presence

of max in the definition of τ -interfering property. It also deserves noting that in the worst

case, finding a suitable bin in this step may add a total of O(n2) time steps to the algorithm

runtime since each link might need checking against O(n) other links until a suitable bin is

found.

The previous discussion, combined with Lemma 4.2 and Lemma 4.3 as summarized by

the following theorem, establish that Algorithm 3 works according to its input-output spec-

ification and schedules a p-greedily-binnable and q-independent set in O(p log(n)) steps.
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Theorem 4.1. Algorithm 3 schedules any p-greedily binnable set of links in O(p log n) slots

Proof: The proof follows from the operation of steps 2 and 3.(a) to 3.(g) of the algorithm

together with the aforementioned lemmas establishing correctness conditions at various steps.

Appendix B contains the complete proof.

Combining this with Lemma 4.4 means that steps 3 of the top-level Algorithm 1 partitions

each monochromatic, and therefore 3-independent, component ofG3([L]) intoO(log(n) log(log(∆)))

ISets. By Theorem 4.1, step 2 of this algorithm outputs at most cχ(G3([L])) of these q-

independent sets. Therefore, Algorithm 1 produces a O(log(n) log(log(∆))χ(G3([L])))-ISet

partitioning of [L].

To show the approximation ratio of the algorithm, the O(log(n) log(log(∆))χ(G3([L])

output length should be connected with the minimum β-SINR schedule length. To do this,

we first note that since feasibility for 3αβ-SINR is by definition a stronger condition that

3-independence, any partition into ISets with 3αβ-SINR level is at least as large as the

minimal vertex colouring of the graph G3([L]). This means χ(G3([L])) is a lower bound

on the minimum-length schedule with 3αβ SINR level. Lemma 4.3 means that this sched-

ule is itself within a constant factor of length from the minimal β-SINR feasible schedule

(the latter schedule can be converted to an at most constant-factor longer 3αβ-schedule

which is by definition longer than the minimum-length 3αβ-SINR schedule). These two facts

together mean that the best β-SINR schedule is within a constant factor of χ(G3([L])).

Therefore, the O(log(n) log(log(∆))χ(G3([L])))-long schedule output by Algorithm 1 is an

O(log(n) log(log(∆)))-factor approximation for the minimum-length scheduling problem.

Theorem 4.2. Using Algorithm 1 gives O(log n log log ∆)-factor approximation to the prob-

lem of link-scheduling with `α/2 power control.

Proof: The proof follows from the previous discussion using Theorem 4.1 together with

Lemma 4.4. A concise writeup is given in Appendix B.

This establishes the correctness of Algorithm 1 and its approximation ratio. As discussed

previously in Chapter 2, the reduction of SINR-based scheduling to a graph-theoretical model
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4.4. Proposed approximate algorithm

used in our algorithm has major differences from approaches previously used in the litera-

ture. Having described the operation of the algorithm and its correctness and approximation

ratio, we are in a position here to elaborate in greater on the differences of our approach

from the existing graph-based methods for SINR-feasible scheduling and the significance of

the choices we made in its design. In particular, we describe how our algorithm trades con-

ceptually simple operation and a geometrically more faithful graph model for a more refined

network graph with more involved algorithmic and analysis steps but better performance and

reference lemmas that highlight what has to be done differently in our algorithm and how

our choices confer desirable performance properties. The graph representation that we build,

while defined using pairwise geometric distances between network links, is abstracted away

from the global geometric structure imposed by the underlying metric space in that it is not

necessarily a geometric graph embeddable in this metric space. This contrasts with previous

work (for example the work of [51]) where the deployment area is divided into varying-sized

square cells and only links that are close in length and whose cells are coloured differently

can be simultaneously active. Our graph Gq([L]), has network links rather than square cells

of the plane as vertices. Its vertex connectivity relation does not admit a simple geometric

notion such as a disk radius in a disk graph or cell adjacency in a plane cell-decomposition

graph. This means that we cannot use the planar graph colourability results to show that

colouring our graph is easy. Instead, we have to painstakingly show that this graph still has

enough structure to allow efficient and near-optimal colouring by a simple greedy algorithm

(as is shown in Lemma 4.1). In return for this extra complexity, the connectivity relation of

our graph relates to SINR-feasibility much more closely than simpler geometric notions (as

shown by Lemma 4.2). Concretely, this means that our algorithm does not a priori exclude

links from being scheduled together only because they have differing lengths or that they are

physically close to one another. The price that we pay for this is the added complexity of an-

alyzing efficient colourability. Also, the sequence of algorithmic steps we use for building up

the link schedule from the colouring is slightly more complicated than previous approaches.
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The upshot is that this algorithm has more of a global outlook on the set of links and does

not suffer from the unnecessary slack that results from a priori separating spatially close or

lengthwise far links from each other and that manifests itself in large constant factors that

has made previous graph-theoretic SINR-based scheduling algorithms impractical [57]. In

the next section, we report on numerical experiments of the performance of our algorithm.

4.5 Simulations and conclusion

In this section, we perform numerical performance experiments to observe how the proposed

algorithm compares with the alternatives. First, the methodology and parameters of the

simulations are briefly discussed. Next, the feasibility-problem variation of the MIP formu-

lation is used as a benchmark to see how far from optimum the algorithm is for intermediate

problem sizes. The section after that will compare the throughput performance of the al-

gorithm in the large-network regime, where exact algorithms will be intractable, with the

iterative algorithms FlashLinQ and ITLinQ

4.5.1 Setup and choice of parameters

Before discussing the numerical results, the setup and choice of parameters for simulations

is discussed. The parameters chosen are similar to that used in [60, 61] for FlashLinQ and

ITLinQ algorithms and represent typical radio equipment and propagation characteristics of

an outdoor environment. We assume our transmitters and receivers operate in the 2.4 Ghz

ISM6 band. The receiver front-end is assumed to have a noise figure of 7 dB7. This is

consistent with the characteristics of 2.4 Ghz band transceivers [102, 103] where the low-

6Industrial, scientific, medical bands are a set of radio frequency bands set aside for unlicensed operation
by International Telecommunication union (ITU).

7Noise figure of a receiver is the ratio of SNR in its output to SNR in its input. It quantifies the amount
of extra thermal noise added by receiver’s internal circuitry compared to the noise that is received at the
antenna input (which is typically attributed to cosmic microwave background and transmitter noise). When
expressed in decibels, noise figure values should be subtracted from receiver input SNR before calculating
bit error rate and other receiver characteristics.
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4.5. Simulations and conclusion

noise amplifier (LNA) has a typical noise figure of around 4.5 dB and the whole chain of

LNA, down-converter and demodulator have a total noise figure of around 6.5 to 7.5 dB.

Also, we assume transmitter power to be 20 dBm for a 1 metre link and that antenna gain

relative to isotropic transmission be 2.5 dBi8. A dipole antenna has a gain of 2.15 dBi and

patch antennas may reach up to 3.5 dBi [104], so 2.5 dBi is a good middle of the range value.

To model the path loss parameters of the propagation environment, we use the model from

ITU-T recommendation 1411 [105], which is compendium of experimentally validated radio

channel models for the 900 Mhz-100 Ghz frequency range. We use the line of sight model

and use 1.5 metres as both user equipment and base station antenna height since the model

is intended for a peer-to-peer setup. What this amounts to in our setup at 2.5 Ghz centre

frequency is a path loss exponent of 3 together with a path loss of 68 dB at a distance of

72 metres. We assume a channel bandwidth of 5 Mhz which together with the noise spectral

density of -184 dBm/Hz gives a noise variance of around -115 dBm. We use a SINR threshold,

β, of 15 dB that is typical for bit error rate (BER) performance of 10−4 in a bandwidth-

efficient modulation scheme such as 64QAM [106]. We disperse random transmitters in a

square area of 1000 metre× 1000 metre size and the receivers are put in a random direction

at a uniformly random distance between 2 and 74 metres from their designated transmitter.

4.5.2 Comparison with exact solution algorithms

In section 4.3 the exact scheduling problem was formulated as a mixed integer program in

two slightly different ways. In experimenting numerically, it was discovered that for the MIP

formulation in Equation 4.9, with instance sizes of more than about 50 links and for the MIP

formulation in Equation 4.10, with instance sizes of more than about 30 links, they will take

extremely long to produce a solution9. In Section 4.3.1, the feasibility-problem formulation

8The gain of an antenna is used to quantify how much better it is in directing electromagnetic energy
than an isotropic radiator. It is a measure of antenna directivity and is typically measured in dBi or decibels
relative to isotropic.

9Not converging to a solution using CPLEX after around 5 × 108 branch and bound iterations which
correspond to runtime of 5-6 days using about 20% of the cores of a 48-core Intel Xeon server with 256GB
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of Equation 4.7 was given to iteratively refine bounds around the exact minimal schedule

length. Further experimentation with this latter formulation showed that for medium-sized

networks of up to around 250 links, it can be used to efficiently confine the exact solution

to a relatively small interval. This formulation suffers from an increase in runtime for larger

instances as well, but this is typically observed when the endpoints of the interval are pushed

closer together (and thereby to the exact solution). We use this program, reproduced below,

in this section to compare the schedule length produced by our algorithm:

min
{xls}

2

s.t. xls ∈ {0, 1} ∀l ∈ [L], ∀s ≤ s0
s0∑
s=1

xls = 1 ∀l ∈ {1, .., L}

xlsG(l)p(l) ≥ xlsβN0 +
∑
l′ 6=l
l′∈s

xl′sp(l
′)G(l′, l)−M(1− xls) ∀l ∈ {1, .., L},∀s ∈ {1, ..., s0}.

Simulations were performed for 100, 150, 200 and 250 links. For each data-point, 5 random

realizations of the networks were generated as discussed (with transmitters in a 1000 Metre×

1000 Metre square and receivers distanced randomly from 4 to 72 metres from their desig-

nated transmitter) to average out the variation due to randomness. Transmitter, receiver

and channel parameters were selected as discussed above. Repeated iterations of the above

feasibility problem were performed until tightening the upper and lower range would increase

the runtime by a factor of more than 1000. The simulations were performed using approx-

imately 20% of the cores of an Intel Xeon server with 48 cores and 256 GB of RAM. The

aggregate time taken by all simulations was about 25 days with individual instances running

for around two days at the most. As is expected from our approximate scheduling algorithm

being suboptimal, it produces an output that in the case of 100 links is completely outside

the interval produced by the MIP. For other values, the output is within the interval con-

taining the exact solution but still not optimal. The graph also shows the beginning of the

of RAM.
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trend toward better approximating the optimal schedule as the number of links increases.
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Figure 4.3: Output schedule length of proposed algorithm compared to the bounds obtained
by mixed integer programming

4.5.3 Throughput performance in large-network scenario

This section compares the throughput performance of the algorithm with two heuristic link

scheduling methods proposed in the literature for large networks. The algorithms are Flash-

LinQ and ITLinQ. These were discussed earlier and represent the state of the art for device-

to-device network approximate scheduling. Both of these algorithms have worst-case time-

complexity of O(n2) similar to our algorithm as they also might have to check O(n2) link

pairs against each other in the worst case. The main difference between the three algorithms

is in the pairwise criteria used to allow a link to be added to a tentative Iset of the sched-

ule. The algorithm proposed here is the only one that rigorously relates its performance to

the shortest possible schedule in the general case. ITLinQ has the property that treating

interference as noise is GDoF optimal for its chosen Isets which under restricted conditions
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can be related to it giving an approximation to the optimum schedule. FlashLinQ does not

give any theoretical guarantees but it is an end-to-end system implemented on top of 802.11

OFDMA10 physical layer and therefore much more complicated to analytically study.

For 10 iterations, n transmitters were randomly dispersed in a 1 Km×1 Km area with the

corresponding receiver placed randomly between 2 and 74 metres away in a uniformly random

direction. Transmitter, receiver and channel parameters were selected as discussed above.

Figure 4.4 shows the total achievable sum rate of ITLinQ, FlashLinQ, no scheduling and our

scheme as a function of n. The algorithms were run side by side on an Apple Macbook pro

laptop with an Intel Ivy-bridge core i7 CPU and 16 GB of RAM. The simulations took an

aggregate time of about 30 minutes to complete. Individually our algorithm runs at about the

same speed as ITLinQ and about 4 times slower than FlashLinQ. The data corresponding to

no-scheduling shows the collapse in throughput as interference increases. The results seem to

confirm the theoretical advantages of the proposed method compared to other approximation

schemes as instance sizes increase. It is easy to see that asymptotically, the algorithm

proposed here compares very well in the achieved sum-rate with both FlashLinQ and ITLinQ,

specially as the size of the network increases. As discussed in the beginning of the chapter

and background part of the thesis, we think that with the advent of very large-scale M2M

and D2D deployments, these large network scenarios will become increasingly relevant and

it is therefore important to investigate link scheduling methods that offer provable scaling

characteristics for large number of users.

10Orthogonal Frequency Division Multiple-Access.
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Chapter 5

Summary of contributions and future

work

In this chapter, we first provide a summary of the work described in this thesis. We then

discusses some of the limitations od our models and approaches to the problems discussed

and compare and contrast our work with similar work and state of the art. We then explicitly

go over our contributions and finally conclude by discussing future directions.

5.1 Summary of contributions

The contributions of this thesis can be summarized into two parts, corresponding to the

two-user channel model and many-user interference networks.

In Chapter 3, a two-user cognitive channel model based on Gaussian interference channel

was proposed. The best achievable rate regions via single and multi-layer coding for this

channel were characterized through various alternative decoder and encoder designs. The

secondary user’s rate optimization problem was analyzed and characterized through case by

case analysis of the relevant rate expressions. Numerical examples were also provided.

In Chapter 4, an approximate SINR-based wireless scheduling algorithm for large net-

works was proposed. The essence of the algorithm was based on a graph-based representation
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simplifying the SINR-feasibility criterion. Correctness and approximation ratio of this algo-

rithm was analytically established and its performance simulated.

5.2 Limitations

For the model of Chapter 3, to the best of our knowledge, this is the first time this or a

similar model has been studied. One limitation with our approach is that the problem setup

restricts us to rather simple encoding and decoding schemes due to lack of collaboration

from the primary user.

For the model of chapter 4, our model assumes a single SINR threshold to be maintained

for all nodes whereas it might be reasonable to consider different SINR requirements for

different types of RF front-end equipment.

5.3 Comparison

Our work in Chapter 4, compared to FlashlinQ, which is based on the multi-tone structure

of IEEE 802.11 OFDMA physical layer, we study an abstract single-channel model. This

simplified setup captures the problem and allows us to prove formal guarantees about the

performance of our method, but is limited in scope compared to their work which included

hardware implementation and field tests. Compared to ITlinQ, we have a more structured

metric assumption on node placement and propagation environment in our model and also a

proscribed SINR to be maintained at all links. Their method works by assigning time-slots to

subsets of links that are GDoF-optimal under treating-interference-as-noise. Our algorithm

does not guarantee GDoF-optimality in each timeslot but we build our schedule in a way

that can be shown to be close to the best schedule achieving a given SINR.

Compared to exact formulation of scheduling based on mixed integer programming, our

algorithm is suboptimal as it only produces an approximation to the shortest schedule. On

the other hand, it can scale to networks of up to thousands of nodes while mixed integer
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programming becomes intractable for more than a few hundred links.

5.4 Future Work

One way to extend the model in Chapter 3 is to look at the problem in a cooperative context

where one user has much lower data rate compared to the other (for example control data

compared to payload data) and relate it to the corner point problem of Gaussian interference

channel. This is the maximum rate of the secondary where the required back-off from the

optimum point to point rate of the primary user is exactly zero. What we are after therefore

is the supremum of rates Rε where the secondary user can send Rε bits per channel use

without affecting the primary at all. Namely

inf
(C1−δ(Rε),Rε)∈CGIC,P1,P2,√a12,√a21

δ(Rε)

This corner point problem has a long history. It was first studied by [107] by Costa, where

he proved rate expressions for the corner points of Gaussian interference channel under some

conditions on channel coefficients. Later, Sason in [108] found an error in the proof of [107]

but conjectured the expressions to be correct. This led to naming these as the “Missing corner

points” ([109, 110, 111]). Sason has recently also studied the achievable rates in the high SNR

limit in [112]. Even more recently, Costa and Rioul [113, 114] have shown the equivalence

between correctness of the conjectured corner points and a conjectured differential entropy

inequality between what they define as “Almost-Gaussian” random variables where certain

Markov relationships between them are “Almost lossless”.

For the model of Chapter 4, one direction for future work is adding different SINR thresh-

olds for different nodes in the network, perhaps by generalizing our relaxation to take account

of different SINRs. This can be useful to model different sensitivity characteristics of radio

hardware on different nodes. Another direction is adding fading to model signal strength

variations. It has been shown in the literature [115, 116] that a closed form expression for
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the cumulative distribution function of SINR can be given for Rayleigh fading. This can be

used to generalize our scheduling method to a probabilistic one with precise performance

bounds.
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Appendix A

Proofs from chapter 3

A.1 Proof of Claim 3.1

Claim 3.1. Rate splitting gives the same region as joint coding, or RRS = R.

Proof: Let us separate R2 as:

R2 = R2,p +R2,c. (A.1)

where R2,p is the rate of the codebook used by user 2 on its private band and R2,c is the rate

of the codebook used by user 2 on the common band. Then, if R1 < γ, user 1’s receiver will

be able to decode its message. Furthermore, if we define the region RRS
2 as

RRS
2 :=

{
R1 < W0C

(
a1,2P1

W0

)
, R2 < WcC

(
Q

Wc

)
,

R1 +R2 < WcC

(
a1,2P1

W0

+
Q

Wc

)
+ (W0 −Wc)C

(
a1,2P1

W0

)}
,(A.2)

user 2’s receiver will be able to decode its desired message if

(
(R1, R2,c) ∈ RRS

2 or R2,c < WcC

(
W0Q

Wc(W0 + a12P1)

))
and R2,p < (W −W0)C

(
P2 −Q
W −W0

)
.

(A.3)
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Using Fourier-Motzkin elimination[117] to eliminate R2,p, R2,c, we see that:

R = RRS
MUD ∪RRS

TIN , (A.4)

where RRS
MUD (MUD stands for Multi-user decoding) is the set of (R1, R2) that satisfy the

following inequalities:

R1 ≤ min

{
W0C

(
a12P1

W0

)
, (W0 −Wc)C

(
P1

W0

)
+WcC

(
WcP1

W0(Wc + a21Q)

)}
(A.5)

R2 ≤ WcC

(
Q

W2

)
+ (W −W0)C

(
P2 −Q
W −W0

)
(A.6)

R1 +R2 ≤ WcC

(
a12P1

W0

+
Q

Wc

)
+ (W0 −Wc)C

(
a12P1

W0

)
+ (W −W0)C

(
P2 −Q
W −W0

)
,

(A.7)

and RRS
TIN (where TIN stands for treating interference as noise) is the set of rates (R1, R2)

that satisfy

R1 ≤ (W0 −Wc)C

(
P1

W0

)
+WcC

(
WcP1

W0(Wc + a21Q2)

)
(A.8)

R2 ≤ WcC

(
W0Q

Wc(W0 + a12P1)

)
+ (W −W0)C

(
P2 −Q
W −W0

)
, (A.9)

or in an equivalent way that better shows the chimney structure of this region

RRS = RRS
1 ∩RRS

2 , (A.10)

where RRS
1 denotes the region achievable by receiver 1

R1 ≤ (W0 −Wc)C

(
P1

W0

)
+WcC

(
WcP1

W0(Wc + a21Q2)

)
, (A.11)
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and RRS
2 denotes the chimney region achievable by receiver 2

R2 = RRS
2,T IN ∪RRS

2,MUD, (A.12)

where R2,T IN is the region given by

R2 ≤ WcC

(
W0Q2

Wc(W0 + a12P1)

)
+ (W −W0)C

(
P2 −Q2

W −W0

)
, (A.13)

and R2,MUD is the region given by

R1 ≤ W0C

(
a12P1

W0

)
(A.14)

R2 ≤ WcC

(
Q2

W2

)
+ (W −W0)C

(
P2 −Q2

W −W0

)
(A.15)

R1 +R2 ≤ WcC

(
a12P1

W0

+
Q2

Wc

)
+ (W0 −Wc)C

(
a12P1

W0

)
+ (W −W0)C

(
P2 −Q2

W −W0

)
,

(A.16)

which by inspection of the inequalities, shows that the regions obtainable by rate-splitting

and joint coding are the same.

A.2 Proof of Claim 3.2

Claim 3.2. Replacing the decoder of Section 3.2 with a non-unique joint typicality decoder

will result in the same achievable region

Proof: Assume that we have replaced the rate-maximizing decoder of Section 3.2 with

an indirect decoder. If the rates of the transmitted messages are in the portion of R that cor-

responds to decoding interference from user 1’s transmitter at user 2’s receiver, there should

have been one unique pair of messages M1,M2 such that the tuple (XN
1 (M1), X

N
2 (M2), Y

N
2 )

is jointly typical. Therefore, the relaxed decoding condition of indirect decoder (that the

undesired messages need not necessarily be unique) does not come into play.
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On the other hand, if the rate pair (R1, R2) is in the portion of the rate region that

treating interference from user 1’s transmitter at user 2’s receiver as noise is rate-optimal,

it is in the vertical strip of the chimney region. In this part of the rate region, the rate of

the message transmitted by user 1 is above what can be reliably decoded by receiver 2. This

means that there will be more than one tuple (XN
1 (M1), X

N
2 (M2), Y

N
2 ) of channel inputs

and output that are jointly typical with high probability for any given message index. All

such tuples should have the same message index M2 in the second component though, as

otherwise the treat-as-noise decoder would not be able to reliably decode the message either.

Therefore, indirect decoding can achieve the same rate pair in this case as well.

This decoder does not enlarge the rate region, since for any rate pair outside this region,

unique joint typicality decoding will fail with probability approaching 1, similarly to the case

for conventional joint typicality decoders.

A.3 Proof of Lemma 3.1

Lemma 3.1. For the AWGN capacity function F defined by Equation 3.8, we have

n∑
i=1

F (Pi, n+
i−1∑
j=1

Pi) = F (
n∑
i=1

Pi, n). (3.11)

Proof: Proof is by induction:

Base case: for n = 2, the statement of the lemma is equivalent to (3.9).

Inductive step: Assuming the statement of the lemma holds for n− 1 we show that it
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holds for n as well:

F (
n∑
i=1

Pi, N) = F (
n−1∑
i=1

Pi, N) + F (Pn, N +
n−1∑
i=1

Pi) = (A.17)

=
n−1∑
i=1

F (Pi, N +
i−1∑
j=1

Pj) + F (Pn, N +
n−1∑
i=1

Pi) (A.18)

=
n∑
i=1

F (Pi, N +
i−1∑
j=1

Pj) (A.19)

Where the equality in (A.17) holds by the base case and the equality in (A.18) holds because

of the assumption that the equality holds for n− 1.

A.4 Proof of claim 3.3

Claim 3.3. Multilayer random coding at user 2’s transmitter cannot enlarge the rate region

calculated in Section 3.2.

Proof: Take some arbitrary n-layer codebook C2,1, · · · , C2,n+1 with codeword powers

P2,1, · · ·P2,m. Assume that decoding interference from user 1 is done before layer m. So the

order of decoding is C2,1 → · · · C2,m−1 → C1 → C2,m → · · · C2,n. Using the Lemma 3.1 we can

see that the sum rate achievable by this method is:

m−1∑
i=1

F (P2,i, N +
i−1∑
j=1

P2,j) + F (P1, N +
m−1∑
i=1

P2,i) +
n∑

i=m

F

(
P2,i, (N +

m−1∑
i=1

P2,j + P1) +
i−1∑
j=m

P2,j

)
(A.20)

= F (
m−1∑
i=1

P2,i) + F (P1, N +
m−1∑
i=1

P2,i) + F (
n∑

k=m

P2,k, N +
m−1∑
j=1

P2,j + P1) (A.21)

Which is equivalent to the sum rate of a two-layer coding scheme where the total power of

user 2 is divided between the two layers as
∑m−1

i=1 P2,i and
∑n

i=m P2,i respectively. Therefore,

the achievable maximum sum rate of n-layer coding cannot be higher than 2-layer coding.
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A.5 Proof of Claim 3.4

Claim 3.4. For the case of weak interference a1,2, a2,1 < 1, g(Wc) > f(Wc) for all Wc ∈

[0,W0]. For the case of strong interference a1,2, a2,1 > 1, g(Wc) < f(Wc) for all Wc ∈ [0,W0].

Proof: We only prove the first part of the claim as proof of the second part is similar

with the direction of inequalities changed. We only need to show the proposition thatg(Wc) >

f(Wc) for all Wc ∈ [0,W0] for the values of Wc in the interval of interest at which f and g

take finite values, that is from the vertical asymptote of either function that is farthest away

from the origin to W0. In this case it is g’s vertical asymptote. This is because we have

R∗ > s1 due to weak interference, hence Rth
R∗

< Rth
s1

and 1− Rth
R∗

> 1− Rth
s1

. To prove g > f ,

we do a change of variable from Wc to k where the two variables are related by Wc = W0

k
.

So, for the portion of Wc axis where f and g are both finite they are given by the following

two expressions:

f =
W0

k

(
2
s1
W0 − 1

2
(1−k)s1
W0 2

kRth
W0 − 1

− 1

)
(A.22)

And:

g =
1

a2,1
× W0

k

(
2
R∗
W0 − 1

2
(1−k)R∗
W0 2

kRth
W0 − 1

− 1

)
(A.23)

Disregarding the common W0

k
factor and noting that k ranges in the interval

[
1, 1

1−Rth
R∗

]
, it is

easy to see that 1
a21

> 1, 2
R∗
W0 − 1 > 2

s1
W0 − 1 and 2

(1−k)R∗
W0 2

kRth
W0 − 1 < 2

(1−k)s1
W0 2

kRth
W0 − 1 where

the last identity holds because k > 1, hence g > f for the Wc’s of interest.

A.6 Proof of Lemma 3.2

Lemma 3.2. The number of solutions of the equation a1e
b1x + a2e

b2x + · · · + ane
bnx = 0 in

the real variable x where b1 < b2 < · · · < bn is at most the number of sign changes in the

sequence of coefficients (a1, a2, . . . , an) and has the same even-odd parity. In particular, any

such equation cannot have more than n− 1 solutions.
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Proof:

This lemma generalizes Descartes rule of signs, which relates the number of sign changes

in the coefficient sequence of a polynomial to its number of zeros, too transcendental functions

expressible as a sum of exponentials. The proof therefore, follows along the same lines as

the proof of Descartes rule of signs. First, we claim that the number of sign changes in the

sequence (a1, . . . , an) and the number of zeros have the same even-odd parity. To see why, we

note that for x→ −∞ the function is dominated by the term a1e
b1x, likewise for x→ +∞ it

is dominated by the term ane
bnx. So, if a1, an have the same sign, the function has an even

number of zeros and if they differ in sign, the function has an odd number of zeros. The

parity of the number of sign changes in the sequence (a1, . . . , an) determines whether or not

a1, an have the same sign. So the parity of the sign changes in (a1, . . . an) and the number

of zeros is the same. We prove that the number of zeros is strictly less than the number

of sign changes by induction on the latter. Denote by #SC the number of sign changes in

the coefficients of the above equation. It is easy to see that the claim holds for #SC = 0.

Now assume that the claim hold for any function with #SC = k − 1 sign changes in the

ascending sequence of coefficients. To show that it holds for k changes, consider the function

h(x) = a1e
b1x + · · · anebnx that has k sign changes in the sequence (a1, . . . , an) and assume

one of these changes occurs for index m ∈ {1, . . . , n − 1}, that is sgn(amam+1) = −1, now

choose some b ∈ (bm, bm+1). It is not hard to see that ebx d
dx
e−bxh(x) =

∑n
l=1 al(bl − b)eblx

has exactly m− 1 sign changes in its coefficients and therefore by the hypothesis of function

satisfies #Z ≤ #SC. Since the multiplicative exponential factor is always non-zero, it does

not change the number of zeros of the function and since by Rolle’s theorem, differentiating

a function reduces the number of zeros by at most 1, h(x) has at most one zero more than

ebx d
dx
e−bxh(x) and since it has exactly one more sign change in its sequence of coefficients,

we have that it also satisfies #Z ≤ #SC.
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A.7 Proof of proposition 3.1

Proposition 3.1. Let Rth < s1, a2,1 >
2
R∗
W0 −2

Rth
W0

2
s1
W0 −2

Rth
W0

and a1,2 < 1. Then f and g intersect at

a unique point in the interval (0,W0). Denoting this unique solution of f(Wc) = g(Wc) by

Wc = w, ∂rmD1 is described by Q = f(Wc),Wc ∈ [0, w], Q = g(Wc),Wc ∈ [w,W0] and the

vertical line segment {W0} × [0, g(W0)].

Proof: Since a1,2 < 1, then s1 < R∗. This together with the assumption a2,1 >
2
R∗
W0 −2

Rth
W0

2
s1
W0 −2

Rth
W0

implies that a2,1 > 1. The coefficients of variable Tc in the four exponents appearing in

(3.27) are ordered as 2Rth − R∗ − s1 < Rth − R∗ < Rth − s1 < 0. After sorting the

coefficients of the exponential terms in (3.27) according to Lemma 1, we obtain the sequence

(1 − a2,1)2
R∗+s1
W0 , 2

R∗
W0 (a2,12

s1
W0 − 1), 2

s1
W0 (a2,1 − 2

R∗
W0 ), 2

R∗
W0 − a2,12

s1
W0 . Since a2,1 > 1, the first

and second terms are negative and positive, respectively. The third term can be either

positive or negative. The forth term 2
R∗
W0 − a2,12

s1
W0 can be easily seen to be negative due

to the assumption a2,1 >
2
R∗
W0 −2

Rth
W0

2
s1
W0 −2

Rth
W0

. Hence, we obtain the sequence of signs as −,+, ∗,−

where ∗ stands for the sign of 2
s1
W0 (a2,1 − 2

R∗
W0 ). Regardless of the status of ∗, the number

of sign changes in the sequence −,+, ∗,− is two. As such, f = g has exactly one solution

by Lemma 3.2 and the discussion appearing immediately after this Lemma. According to

(3.18) and (3.19), f is smaller that g for Wc sufficiently close to W0

(
1− Rth

R∗

)
. The inequality

a2,1 >
2
R∗
W0 −2

Rth
W0

2
s1
W0 −2

Rth
W0

is easily seen to be equivalent to f(W0) > g(W0) . This shows that f an

g must intersect in at least one point Wc = w where W0

(
1− Rth

R∗

)
< w < W0. However,

we showed that f = g has exactly one solution. As such, w must be the unique solution to

f = g.
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Proofs from chapter 4

B.1 Proof of Lemma 4.1

Lemma 4.1. Algorithm 2 is a greedy colouring algorithm that colours any q-independence

graph Gq using cχ(Gq) colours for c a constant.

The colouring algorithm known as the Min-Degree-Last heuristic, first appeared in [101]

and therefore is known as Hochbaum’s greedy colouring algorithm. It was shown in [101]

that if we define δ := max{d| ∃G” ⊆ G∀v ∈ V (G′) dG′(v) ≥ d}, this algorithm takes δ + 1

colors to color G. This implies an upper bound on χ, the chromatic number of a graph, of

δ + 1.

For graph families on which Min-Degree-Last algorithm works within a constant factor

of χ, such as geometric and unit disk graphs, the standard way of showing this is using a

corresponding linear lower bound on χ in terms of δ and this is what we set out to prove.

Specifically assume that, for a graph family, we can show that there is a vertex v of degree

d such that the subgraph induced by the neighbourhood of v 1 has a bounded maximum

independent set size of k, then it is easy to see that χ > d
k
− 1 or d < kχ − k. This is a

lower bound on χ in terms of d. We say that a graph family has bounded neighbourhood

1The subgraph of a graph G containing V and vertices adjacent to v and edges between them.
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independence number if has the above property. To relate this bound on d to a bound on δ, it

suffices to have a stronger version of this property, which we term having hereditary bounded

neighbourhood independence number. What this property says is that there exists a vertex

v in every induced subgraph G′ of G from the family for which the bounded neighbourhood

independence number property holds uniformly. If a graph family has this latter property, by

applying the neighbourhood independence number bound to G” in the definition of δ above,

we obtain that δ < kχ−k and therefore Min-Degree-Last algorithm colours the graphs from

the family within a constant of the optimum.

The following shows, by selecting v to correspond to the shortest link, that the q-

independence graph has the hereditary bounded neighbourhood independence number prop-

erty

Theorem B.1. For q ≥ 2, the graph Gq([L]) has hereditary bounded neighbourhood inde-

pendence number.

Proof: Assume j to be the shortest link in the network, we want to show that there is

a constant upper bound on the size of the maximum independent set of the neighbourhood

N(j) of j in the q-dependence graph. As will be seen, this proof and that of Lemma 4.4

are similar except that here, the shortest link length is only guaranteed to be merely shorter

than other links, rather than shorter by a scaling factor depending on network size.

Denote by I ⊆ N(j) one such independent set of links. By the selection of j and I, we

have that for each i ∈ I, `i ≥ `j and:

min{Di,j, Dj,i} ≤ q
√
`j`i (B.1)

I is by definition a q-independent set, which we show combined with these inequalities,

upper bounds its size by a constant. To simplify discussion, we re-index the elements of I

as I = {1, 2, . . . , |I|} and j by 0. Since for each different i, k = 1, 2, . . . , |I|, i and k are

q-independent, then we have Di,k > q
√
`i`k and Dk,i > q

√
`k`i. Let us assume that `i ≤ `k.
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Then using the triangle inequality we have D(sk, si) ≥ Dk,i − `i > q
√
`i`k − `i, and since

`i ≤ `k, we get

D(sk, si) > (q − 1)
√
`i`k. (B.2)

With a similar argument we get

D(rk, ri) > (q − 1)
√
`i`k. (B.3)

Now, from equation B.1, we have that for each k ∈ I, at least one of D0,k ≤ q
√
`0`k or

Dk,0 ≤ q
√
`0`k holds. Therefore, half or more of the links satisfy one of these inequalities.

Without loss of generality we consider the case where the first inequality holds for half or

more of links. We denote these links by I ′. Now, consider the sender of j := 0, s0 and the set

of receivers of links in I ′, R = {rt|t ∈ I ′} which is re-indexed again without loss of generality

to be I ′ = {1, . . . , t}. The argument is symmetric if half or more of the links satisfy the

second condition with senders and receivers swapped so we omit the analysis for that case.

We have that |R|≥ |I|/2, so any constant bound on |R| implies the same for |I|. We

have: √
`0 ≤

√
`m for m = 1, 2, . . . , t (B.4)

D(s0, rm) ≤ q
√
`0
√
`m for m = 1, 2, . . . , t (B.5)

D(rm, rn) > (q − 1)
√
`m
√
`n, for m,n = 1, 2, . . . , t,m 6= n, (B.6)

Where B.4 is true by definition of link 0, B.5 holds because all links in I ′ are adjacent to link

0 and B.6 is a restatement of B.3. From the triangle inequality, for m,n = 1, 2, . . . , t,m 6= n

we have

D(rm, rn) ≤ D(s0, rm) +D(s0, rn),
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so using B.5 for the left hand side and B.6 for the right hand side, we get

q
√
`0
√
`m + q

√
`0
√
`n > (q − 1)

√
`m
√
`n (B.7)

Suppose the smallest between `m and `n is `m. Then from (B.7) we get
√
`0 >

q − 1

2q

√
`m,

thus we have that
√
`0 is more than

q − 1

2q

√
`m for all but one of m > 0. If we suppose

without loss of generality these m’s are 1, 2, . . . , t− 1. Then we have that:

D(s0, rm) <
2q2

q − 1

√
`0

2
and d(rm, rn) >

q − 1

q2

√
`0

2

form,n = 1, 2, . . . , t−1,m 6= n. The last two inequalities imply that the ballsB(rm,
q−1
q2

√
`0

2
/2)

for different m’s don’t intersect and all of them are contained in the ball B(s0, (2q
2/(q −

1) + q − 1/2q2)
√
`0

2
). As the metric space has a doubling dimension m, we get t − 1 ≤

C(
4q4

(q − 1)2
+ 1)m. Therefore t ≤ C( 4q4

(q−1)2 + 1)m + 1 and |I|≤ 2C( 4q4

(q−1)2 + 1)m + 2 which is a

constant independent of network size.

B.2 Proof of Lemma 4.2

Lemma 4.2. Any almost equilength class of links in a doubling metric space that is q-

independent is also SINR feasible under uniform power assignment.

Proof: Let l, L be the shortest and longest link length in the set X. We first observe

that senders of links in X are of situated at least (q − 2)l apart. Otherwise, if D(su, sw) ≤

(q − 2)l, for some pair u,w, by triangle inequality we have Du,w ≤ D(su, sw) + `w + `v ≤ ql,

and similarly Dwu ≤ ql. Which means u,w are not q-independent, which contradicts our

assumption. Let X ′ be the set of senders of links in X. Let r = (q − 2)l/2. The previous

discussion implies that X ′ is an r-packing. The definition of a doubling metric implies the
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following about the packing density in this space:

P(B(x, tZ), Z) ≤ Ctm . (B.8)

Let n be a natural number and si be a sender in X ′ belonging to link i. Let Xn = {sj ∈

X ′|D(si, sj) < nr} be the set of senders that are less than nr apart from si, and define

Rn := Xn \Xn−1. By q-independence, we have that X2 = ∅. Each sender sj in Rn is at least

(n− 1)r far from si, so Dj,i ≥ (n− 1)r−L ≥ (n− 2)r if q ≥ 6. Since `x ≤ 2l, the affectance

of sj on ri is at most

Ij(i) =
1/Dα

j,i

1/`αi
≤
(

2l

(n− 1)r

)α
=

(
4

(n− 2)(q − 2)

)α
, ∀sy ∈ Tg.

Observe that

1

(n− 2)α
− 1

(n− 1)α
=

(n− 1)α − (n− 2)α

(n− 1)α(n− 2)α
≤ α(n− 1)α−1

(n− 1)α(n− 2)α
<

α

(n− 2)α+1
.

Then,

IX(i) =
∑
n≥3

IRn(x)

≤
∑
n≥3

|Xn \Xn−1|·
(

4

(n− 2)(q − 2)

)α
=

(
4

q − 2

)α∑
n≥3

|Xn|
(

1

(n− 2)α
− 1

(n− 1)α

)
≤
(

4

q − 2

)α∑
n≥3

|Xn|
α

(n− 2)α+1
. (B.9)

The balls of radius r centered at points in Xn are all contained within the ball B(i, (n+1)r).

For n ≥ 3, the packing bound (B.8) then implies that |Xn|≤ P(B(i, (n+1)r), r) ≤ C(n+1)m,
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and thus we have that

|Xn|
(n− 2)α+1

≤ C(n+ 1)m

(n− 2)α+1
≤ 4mC

(n− 2)α+1−m .

Continuing from (B.9),

IX(i) ≤
(

4

q − 2

)α
α ·4mC

∑
x≥1

1

xα+1−m =

(
4

q − 2

)α
α ·4mC(ζ(α+ 1−m)) :=

(
4

q − 2

)α
C1 .

Where ζ is the Riemann zeta function. Thus, S is an SINR feasible with SINR s, where

s = 1
C1

( q−2
4

)αβ.

B.3 Proof of Lemma 4.3

Lemma 4.3. [SINR strengthening] Any collection of S-SINR feasible ISets can be refined

into a collection S ′-SINR feasible subsets (S ′ > S), increasing the cardinality of the collection

by at most
⌈(

2S′

S

)⌉2
.

Proof: Without loss of generality, assume the S-SINR feasible schedule to consist

of one timeslot only. The procedure that follows works the same if applied individually

to every timeslot. First, sort all the links in ascending order of length, start with empty

slots S1, . . . , Sk. Going through the links according to order we put each l in first slot for

which ISi(l) < 1/2S ′. Since the original schedule was S-feasible, the number of sets will

be at most
⌈
2S′

S

⌉
. Now, we sort the links in descending order of length. For each slot Si,

it is partitioned into slots S1
i , . . . , S

m
i where we go through the links in the new descending

length order and add the link l to the first Sji for which ISji
(l) < 1/2S ′. Again, the length

of schedule is increased by at most a factor
⌈
2S′

S

⌉
. Now, since each link is receiving at mos

1/2S’ Normalized ISR from shorter and the same amount from longer links in its slot, the

total ISR on each link, by the additivity property, is at most 1/S ′ for a total expansion factor

of
⌈
2S′

S

⌉2
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B.4 Proof of Lemma 4.4

Lemma 4.4. Any q-independent set of links for q ≥ 3 is O(log log ∆)-greedily binnable.

Proof: Such a set S consists of two types of links: those that affect the link j /∈ S

by at least 1
2n

under `α/2 power assignment, and those that are affected by j by this much.

At least half of the links should belong to one of these classes. Without loss of generality

consider the first type to have more than half; the argument is nearly symmetrical for the

second type, and is omitted.

Consider a pair i, i′ in S that put normalized ISR on j of at least 1/2n, and suppose

without loss of generality that `i ≥ `i′ . The normalized ISR (affectance) condition of i on j

means that:
√
`j`i

α ≥ Dα
ij · 1/2n, or

Dij ≤
√
`j`i2n

1/α =

√
`j`i(2n)

2
α .

Similarly, Di′j ≤
√
`j`i′(2n)

2
α . By triangle inequality it is the case that:

Di′i ≤ D(si′ , rj) +D(rj, si) +D(si, ri) ≤ `i +

√
4.(2n)

2
α `j`i < 3`i,

using the fact that `i ≥ 2.(4n)
2
α `j. Similarly, we have:

Dii′ ≤ Dij +Di′j + `i′ ≤ `i′ +

√
4.(2n)

2
α `j`i .

Multiplying these together, we get:

Di′i ·Dii′ ≤ 3`i′`i + 3

√
4.(2n)

2
α `j`i · `i .

By the assumption of q-independence for q ≥ 3 Di′i · Dii′ ≥ 9`i`i′ . By combining the last
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two inequalities and canceling a 6`i factor, we have that `i′ ≤
√

(2n)
2
α `j`i, or

`i ≥
`2i′

(2n)
2
α `j

. (B.10)

If we label the links in S as 1, 2, . . . , t in ascending length order, Equation (B.10) implies

that

`u+1

`u
≥ `u

`j(2n)
2
α

≥ 2`u
`1
, (B.11)

for all u = 2, 3, . . . , t. Thus, if we denote λu := `u/`1, we get using (B.11) that λu+1 ≥ 2λ2u,

and by induction it’s not hard to see that λt ≥ 22t−1−1. Hence, |S|= t ≤ log log λt + 2 ≤

log log ∆ + 2, and the result therefore follows.

B.5 Proof of Theorem 4.1

Theorem 4.1. Algorithm 3 schedules any p-greedily binnable set of links in O(p log n) slots

Proof: It is easy to see that Bi’s are well-separated sets by definition. The number of

Bi’s is O(log n). It suffices to show that each Bi is scheduled into O(p) slots using the mean

power assignment. According to Theorem 4.2, each Qi is at least a kβ-SINR feasible set

(k > 1) using uniform power. This is because each Kj is a nearly equilength set of links that

is also q-independent. Using Theorem 4.3, Kj can be transformed into an e-SINR feasible

schedule with at most O((e/s)2) slots, where e = 2α/2+1β. Let Sj be some slot from the

resulting schedule of Kj. Let S = ∪jSj. For completing the proof it is enough to show that

S is binned into p + 1 SINR-feasible slots, since SINR strengthening generates at most a

constant number of slots.

For scheduling S the algorithm uses p+ 1 slots Ti for i = 1, 2, . . . , p+ 1. It assigns each

link v to a slot Tr, which does not contain links w, such that `w ≥ 2.(4n)
2
α `v and v and w

are 1/(2n)-interfering. Such a Tr exists because the set Q is p-greedily binnable. Consider a

link v ∈ Tr which we took from the slot Sk. The affectance on v by nearly equilength links
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(i.e. links from Sk ∩ Tr) is at most 1/e because of the e-feasibility property. Changing the

power assignment in the set Sk from uniform to mean power increases the affectance by at

most 2α/2, so overall the affectance by the links with nearly the same length as v is at most

2α/2/e = 1/2. The links from Tr \ Sk, each can affects v by less than 1/(2n) by definition,

and since their number is at most n, the total affectance by those links, according to the

additivity of affectance is at most 1/2. This shows that ITr(v) < 1, i.e. Tr is SINR-feasible,

which completes the proof.

B.6 Proof of Theorem 4.2

Theorem 4.2. Using Algorithm 1 gives O(log n log log ∆)-factor approximation to the prob-

lem of link-scheduling with `α/2 power control.

Proof: First, note that feasibility for 32αβ-SINR is by definition a stronger condition

that 3-independence. Therefore any partition into ISets with 32αβ-SINR level is at least as

large as the minimal vertex colouring of the graph G3([L]). So χ(G3([L])) gives a lower bound

on the minimum-length schedule with 3αβ SINR level. Lemma 4.3 means that this schedule

is itself within a constant factor of length from the minimal β-SINR feasible schedule. This

is because the latter schedule can be converted by Lemma 4.3 to an at most constant-factor

longer 3αβ-schedule. This latter schedule is by definition longer than the minimum-length

3αβ-SINR schedule. Together, these two observations mean that the best β-SINR schedule is

within a constant factor of χ(G3([L])). Therefore, the O(log(n) log(log(∆))χ(G3([L])))-long

schedule output by Algorithm 1 is an O(log(n) log(log(∆)))-factor approximation for the

minimum-length scheduling problem.
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