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Abstract

In this thesis, we design advanced interference management techniques for future wire-

less networks under the availability of perfect and imperfect channel state information

(CSI). We do so by considering a generalized imperfect CSI model where the variance of

the channel estimation error depends on the signal-to-noise ratio (SNR).

First, we analyze the performance of standard linear precoders, namely channel in-

version (CI) and regularized CI (RCI), in downlink of cellular networks by deriving the

received signal-to-interference-plus-noise ratio (SINR) of each user subject to both perfect

and imperfect CSI. In this case, novel bounds on the asymptotic performance of linear pre-

coders are derived, which determine how much accurate CSI should be to achieve a certain

quality of service (QoS). By relying on the knowledge of error variance in advance, we

propose an adaptive RCI technique to further improve the performance of standard RCI

subject to CSI mismatch.

We further consider transmit-power efficient design of wireless cellular networks. We

propose two novel linear precoding techniques which can notably decrease the deployed

power at transmit side in order to secure the same average output SINR at each user com-

pared to standard linear precoders like CI and RCI.

We also address a more sophisticated interference scenario, i.e., wireless interference

networks, wherein each of the K transmitters communicates with its corresponding re-

ceiver while causing interference to the others. The most representative interference

management technique in this case is interference alignment (IA). Unlike standard tech-

niques like time division multiple access (TDMA) and frequency division multiple access

(FDMA) where the achievable degrees of freedom (DoF) is one, with IA, the achiev-

able DoF scales up with the number of users. Therefore, in this thesis, we quantify the

asymptotic performance of IA under a generalized CSI mismatch model by deriving novel

bounds on asymptotic mean loss in sum rate and the achievable DoF. We also propose

novel least squares (LS) and minimum mean square error (MMSE) based IA techniques

which are able to outperform standard IA schemes under perfect and imperfect CSI. Fur-

thermore, we consider the implementation of IA in coordinated networks which enable us

to decrease the number of deployed antennas in order to secure the same achievable DoF

compared to standard IA techniques.
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Lay Summary

The next generation of wireless cellular networks will provide access to high-speed

data applications such as video streaming and internet browsing, together with relatively

low-rate applications such as voice and therefore enable the mobile users to experience

much higher quality of service (QoS). While there is an increasingly high demand for

wireless services, radio resources (e.g., bandwidth spectrum and transmit power) are often

scarce and resource allocation is very conservative. Therefore, spectrum and energy effi-

cient communications are major design goals for future wireless networks. In this thesis,

we address these concerns by proposing advanced interference management techniques to

increase the QoS in wireless cellular networks while keeping the usage of radio resources

as low as possible.

We do so by first analyzing and improving the performance of standard linear pre-

coders in downlink of cellular networks when imperfect channel state information (CSI)

is available at base station (BS). This becomes particularly important, since from the prac-

tical point of view, the availability of perfect CSI at BS is not pragmatic. We also consider

energy-efficient design of wireless networks. By considering a fixed transmit power at BS,

we introduce novel techniques which can deliver more signal-to-interference-plus-noise

ratio (SINR) to each mobile user compared to standard linear precoders. Equivalently, we

propose two novel transmit-power efficient linear precoding schemes which enable us to

decrease the deployed power at BS to meet an averagely constant output SINR at each mo-

bile user in comparison with two well-known linear precoding techniques, namely channel

inversion (CI) and regularized CI (RCI), in downlink of cellular networks.

Recently, an interference mitigation technique, named interference alignment (IA),

has been proposed which can significantly increase the throughput in wireless cellular

networks compared to standard techniques, like time division multiple access (TDMA)

and frequency division multiple access (FDMA), and consequently achieves much better

spectral efficiency. Therefore, in this thesis, we further consider performance analysis and

improvement of IA under both perfect and imperfect CSI by deriving novel bounds on

the asymptotic performance of IA and proposing new IA algorithms which outperform

standard IA schemes.
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Chapter 1

Introduction

1.1 Background

Wireless communications have been going through many advances to become what it

is today; from its primitive shapes in the form of the transmission of simple codes like

Morse code to much more complicated shapes like satellite and cellular communications.

Guglielmo Marconi was the pioneer in this filed who brought the attention of the world to

this spectacular technology by carrying out series of experiments and demonstrations dur-

ing 1897. Since then, wireless communications have been significantly evolved through

various efforts from many researches across the globe.

Perhaps, it is fair to say that the most astonishing advancements of wireless communi-

cations have been appeared within the area of mobile and cellular communications which

directly affect our daily lives. This becomes more prominent since instead of the tradi-

tional form of cellular communications meant solely for voice, nowadays we can easily

have access to high-speed data applications such as video streaming and internet browsing

on our smart phones or tablets.

To manifest this exponential growth of data traffic within cellular networks, it suffices

to mention that the overall mobile data traffic will grow at a compound annual growth rate

(CAGR) of 66 percent from 2012 to 2017, and it is expected to grow to 11.2 exabytes per

month by 2017, a 13-fold increase over 2012 [1] (see Fig. 1.1). This exponential growth of

demand for data requires advanced interference management techniques which are going

to be addressed in this thesis.
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Figure 1.1: Global Mobile Data Traffic, 2012 to 2017 [1].

1.2 Contributions

In all communication scenarios, the availability of perfect channel state information (CSI)

at transmit and/or receive side is vital to achieve the desired performance. For example,

to achieve the sum capacity in downlink of cellular networks (and consequently achieve

the maximum data rate), perfect CSI must be available at the base station (BS). From the

practical point of view, however, having access to perfect CSI is not readily possible and

this compromises the intrinsic capabilities of a communication system. Therefore, it is es-

sential to evaluate and enhance the performance of communication techniques under CSI

mismatch. In this thesis, we aim to do so by first introducing a generalized imperfect CSI

model which accommodates a variety of distinct scenarios (like CSI feedback and recip-

rocal channels). We then focus on the performance analysis of prevalent and promising

interference management techniques in future wireless networks under this imperfect CSI

model. The most important research contributions of this thesis can be summarized as

follows:

• We derive novel bounds on asymptotic mean loss in sum rate and achievable degrees

of freedom (DoF) as a function of channel estimation error variance for multiuser

multiple-input multiple-output (MIMO) downlink. We then propose an adaptive

regularized channel inversion (RCI) precoding technique, which with the knowledge

of error variance in advance, can significantly improve the performance of standard

2
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RCI subject to the availability of imperfect CSI at BS.

• Similar to the case of RCI which improves the performance of channel inversion

(CI), we propose the idea of regularized phase alignment (RPA) by deriving opti-

mum regularization parameters. It is shown that the proposed RPA precoding out-

performs standard linear precoders (i.e., CI, RCI, and phase alignment (PA)) under

both perfect and imperfect CSI. Also it is shown that PA and RPA precoding tech-

niques are power-efficient alternatives for CI and RCI precoding, respectively.

• We derive novel bounds on asymptotic mean loss in sum rate and achievable DoF

as a function of channel estimation error variance for wireless interference networks

with interference alignment (IA). We then propose an adaptive maximum signal-

to-interference-plus-noise-ratio (Max-SINR) algorithm, which with the knowledge

of error variance in advance, can significantly improve the performance of original

Max-SINR under the availability of imperfect CSI. Moreover, two novel IA schemes

based on least squares (LS) and minimum mean square error (MMSE) criteria are

also proposed. It is shown that the proposed LS and MMSE based IA schemes

outperform standard IA techniques under both perfect and imperfect CSI.

• We propose novel IA techniques for wireless interference networks with partially

coordinated receivers in order to decrease the number of deployed antennas. In this

case, on average, half of the total decoded data is needed to be shared by receive

nodes. It is shown that even with this reduced number of deployed antennas, the

proposed schemes are able to achieve notable performance compared to standard IA

techniques under both perfect and imperfect CSI.

1.3 Thesis Organization

Chapter 2 provides an overview of wireless communications and the state of the art inter-

ference management techniques. In Chapter 3, we consider performance analysis of CI

and RCI precoding under imperfect CSI by deriving novel bounds regarding their asymp-

totic performance. We also propose an adaptive RCI technique to improve the performance

of standard RCI under CSI mismatch. In Chapter 4, we propose two novel transmit-power

efficient linear precoding schemes which enable us to decrease the power at BS to secure

the same average output SINR at each user compared to standard linear precoders like CI

and RCI. In Chapter 5, we consider performance analysis of constant MIMO IA under

CSI mismatch by deriving asymptotic bounds on mean loss in sum rate and the achievable

3
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DoF, and also proposing an adaptive Max-SINR algorithm. By relying on the concept

of partial coordination in Chapter 6, we propose novel IA techniques which enable us to

decrease the deployed number of transmit and/or receive antennas compared to standard

IA techniques to secure the same DoF. Section 7 contains novel LS and MMSE based

IA techniques which are shown to achieve better performance than standard IA methods

under both perfect and imperfect CSI. Finally, Section 8 contains concluding remarks and

further notes to expand the presented materials within this thesis for future work.
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Chapter 2

An Overview of Wireless

Communications

2.1 Introduction

In this chapter, we reiterate some basic concepts of wireless communications along with

some key metrics for evaluating their performance. First, we consider the point-to-point

communications and we revisit the advantages of MIMO signaling over single-input single-

output (SISO) systems by emphasizing on the achievable DoF. Next, we reintroduce the

idea of transmit beamforming (or precoding) for single-cell broadcast channels. We then

discuss why single-cell communication techniques are not spectrally efficient and we

therefore overview the state of the art interference management techniques in multi-cell

(or wireless interference) networks along with their limitations. We finally place our focus

on one of the promising interference management techniques, namely IA, by pointing out

some of its key features.

2.2 MIMO Communications

The simplest form of wireless communications includes one single-antenna transmitter

and one single-antenna receiver. Affected by the surrounding environment, the transmit-

ted signal goes through various paths from the transmitter to the receiver and consequently

may undergo a change in amplitude, phase and frequency. In this case, the received mul-

tipath components may add up destructively and this results in a degraded quality of the

transmitted signal at the receiver. The amplitude variations of the received signals are
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Figure 2.1: M ×N point-to-point MIMO communications.

referred as fading [2]. Therefore, by relying on the knowledge of CSI, the transmit beam-

forming tries to steer the transmitted signal into specific paths so that the received multi-

path components at the intended receiver add up constructively and better sinal reception

can be experienced.

Over the past years, the idea of MIMO communications has attracted lots of attention

due to its inherent capability to overcome the destructive fading and to deliver higher qual-

ity of service (QoS) to the receiver [2]. In this case, multiple antennas at both transmit and

receive side of a communication link can be deployed. Fig. 2.1 illustrates a point-to-point

MIMO system where the transmitter and receiver have N and M antennas, respectively.

The received signal can then be shown as




y1
...

yM


 =




h1,1 h1,2 · · · h1,N

h2,1 h2,2 · · · h2,N

...
...

. . .
...

hM,1 hM,2 · · · hM,N







s1
...

sN


 +




z1
...

zM




y = Hs+ z (2.1)

where sj , j = 1, . . . , N, is the transmitted signal from the jth antenna, hk,j is the time-

variant channel response between the jth transmit antenna and the kth receive antenna, and

zk, k = 1, . . . ,M, is the noise at the kth receive antenna. In a rich scattering environment,

the entries of H, i.e., hk,j, k = 1, . . . ,M, j = 1, . . . , N, are considered to be independent

and identically distributed (i.i.d.) zero mean unit variance circularly symmetric Gaussian
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random variables which denote Rayleigh fading channel model, i.e.,

hk,j = N
(
0,

1

2

)
+
√
−1 · N

(
0,

1

2

)
(2.2)

where N
(
0,

1

2

)
designates a real Gaussian random variable with mean zero and variance

1
2
. Moreover, z is the additive white Gaussian noise (AWGN) vector which its entries are

considered to be independent zero mean Gaussian random variables with variance σ2, that

is

zk = N
(
0,

σ2

2

)
+
√
−1 · N

(
0,

σ2

2

)
(2.3)

which results to the fact that E
{
zzH
}
= σ2 I, where E {·} denotes the expectation opera-

tor, and the superscript (·)H designates the Hermitian transpose.

Compared to SISO, MIMO systems provide remarkable performance gains as follows

[2]:

• Power gain: by judiciously steering the transmit and/or receive signals, we can in-

crease the signal-to-noise ratio (SNR) at the receiver. This can be done by coherently

combining the received signals and/or by allocating more power to the transmit an-

tenna with the better gain which further enhances the quality of the reception. It

is worthwhile to note that the power gain can be gleaned in single-input multiple-

output (SIMO) systems as well. In the case of the availability of CSI at the trans-

mitter, multiple-input single-output (MISO) systems are also able to deliver power

gain.

• Diversity gain: multiple replicas of the transmitted signal are received by the sink

node. Consequently, it becomes more likely that at least one of these copies does not

undergo a deep fading. This results in a more reliable recovery of the transmitted

signal. The diversity gain can be gleaned in both MISO and SIMO systems as well.

• Interference suppression: In multiuser systems and under the same usage of time

and frequency resources, while one transmitted data stream is just meant for one

specific user, it causes interference to the other unintended users. In this case, de-

ploying multiple antennae enables us to efficiently null out this interference. In the

case of downlink communications, this interference gets precanceled by precoding,

which will be discussed in detail within section 2.4.

• Multiplexing gain (or DoF): the transmitter is now able to simultaneously send par-

allel independent data streams to the receiver using the same radio frequency bands
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for all data streams. The DoF can be further interpreted as the pre-log factor of the

sum rate, i.e.,

R = d log2 (SNR) + o (log2 (SNR)) (2.4)

wherein R is the achievable sum rate and d denotes DoF. In other words, at high

SNRs, the achievable sum rate linearly scales with DoF. Unlike power gain and

diversity gain which can be gleaned for MISO and SIMO systems, the multiplexing

gain is only achievable in MIMO systems. In the following section, we provide

more discussions regarding the role of the multiplexing gain.

2.3 Performance Metrics

Sum capacity (or the achievable sum rate) is one of the most important key metrics to

evaluate the performance of communication systems. In the remainder of this section, we

provide an overview of the deterministic and ergodic sum capacity at low and high SNR

regimes.

2.3.1 Deterministic Capacity

For a simple SISO system, the capacity can be shown as

CSISO = log2 (1 + γ |h|) bits per channel use (2.5)

where γ = P
σ2 is the operational (or nominal) SNR, P is the transmit power, σ2 is the

noise power at the receiver, h is the channel response between the transmit antenna and

the receive antenna and | · | represents element-wise absolute value. For the MISO and

SIMO channels, the sum capacity can be represented by

CSIMO|MISO = log2 (1 + γ ‖h‖2) bits per channel use (2.6)

where ‖·‖2 is the vector 2-norm. In the case of the MISO channel, h is a 1×N vector and

for the case of the SIMO channel, h is a M × 1 vector.

The sum capacity of the MIMO systems by considering the availability of CSI at the

receiver can be shown as

CMIMO = max
Q : Tr[Q]≤P

log2 det

(
I+

1

σ2
HQHH

)
bits per channel use (2.7)
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where det (·) denotes the determinant of a square matrix and Q is the covariance matrix of

the transmitted data stream. Note that the above optimization depends on the knowledge

of the transmitter regarding the channel matrix H.

If full CSI is available at transmitter, the optimum transmission scheme can be ob-

tained by assigning more power to the subchannels with more gains. This strategy is also

referred as waterfilling [2]. If the transmitter has no knowledge about the CSI, the opti-

mum transmission scheme is equal power allocation among all transmit antennas. In this

case the sum capacity is equal to

CEq. = log2 det
(
I+

γ

N
HHH

)
bits per channel use (2.8)

2.3.2 Ergodic Capacity

Apart from deterministic capacity which deals with one specific realization of H, another

important performance metric is ergodic capacity which considers the effects of channel

fading. In the case of time-variant channels, H becomes a random matrix, and conse-

quently the ergodic capacity is defined as the maximum achievable rate averaged over all

channel realizations as follows:

CErg. = max
Q : Tr[Q]≤P

E

{
log2 det

(
I+

1

σ2
HQHH

)}
bits per channel use (2.9)

It has been shown that in the case of the i.i.d. Rayleigh fading model, Q = P
N
I is the

optimal covariance matrix, i.e., equal power allocation among all transmit antennas is the

optimal transmission scheme. With equal powers, the resulting sum capacity is

C = E

{
log2 det

(
I+

γ

N
HHH

)}

= E

{
d∑

ℓ=1

log2

(
1 +

γ

N
λℓ

)}

=
d∑

ℓ=1

E

{
log2

(
1 +

γ

N
λℓ

)}
bits per channel use (2.10)

where d = rank (H) is the achievable DoF, and λℓ is the ℓth largest eigenvalue of HHH.

If H has i.i.d. elements chosen from a continuous distribution (like Rayleigh), we have

d = min (M,N).

It is worthwhile to point out that by considering i.i.d. Gaussian input signaling, the
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achievable sum rate can be similarly shown as

R ≈
d∑

ℓ=1

E {log2 (1 + ηℓ)} bits per channel use (2.11)

where ηℓ is the output (or received) SNR per DoF and it heavily depends on the channel

statistics and also the employed communication technique. The value of ηℓ for some well-

known communication scenarios will be determined in the upcoming chapters.

2.3.3 High SNR Regime

By considering the ergodic capacity in (2.10), we have

d∑

ℓ=1

log2

(
1 +

γ

N
λℓ

)
➀

≤ d log2

(
1 +

γ

N

[
1

d

d∑

ℓ=1

λℓ

])
(2.12)

where ➀ is due to the Jensen’s inequality. Therefore at high SNRs, the capacity for the

i.i.d. Rayleigh channel can be given by

C ≈ d log2

( γ

N

)
+

d∑

ℓ=1

E {log2 λℓ} (2.13)

Since E {log2 λℓ} > −∞, the achievability of d DoF is guaranteed [2]. In fact, we have

d∑

ℓ=1

E {log2 λℓ} =

max(M,N)∑

ℓ=|N−M |+1

E
{
log2 χ

2
2ℓ

}
(2.14)

where χ2
2ℓ is a χ-square distributed random variable with 2ℓ degrees of freedom. There-

fore, the sum capacity can be represented as

C = d log2 γ + o (log2 γ) (2.15)

which has the same exact for as the achievable sum rate in (2.4). In other words, the sum

capacity and the achievable sum rates are linearly increasing with the DoF at high SNRs.

Note that the number of DoF is restricted to the minimum of the number of transmit and

receive antennas. This further implies that to achieve the multiplexing gain of more than

one, we need multiple transmit and multiple receive antennas.
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2.3.4 Low SNR Regime

At low SNRs, the sum capacity in (2.10) can be given as

C =

d∑

ℓ=1

E

{
log2

(
1 +

γ

N
λℓ

)}

➁≈
d∑

ℓ=1

γ

N
E {λℓ} log2 e

=
γ

N
E
{
Tr
[
HHH

]}
log2 e

➂
= Mγ log2 e bits per channel use (2.16)

where ➁ follows the fact that for sufficiently small a we have log2 (1 + a) ≈ a log2 e, and

➂ is due to the fact that for i.i.d. Rayleigh fading channel we have E
{
Tr
[
HHH

]}
= MN

[3] where Tr [·] denotes trace operator.

Thus at low SNRs, an M × N MIMO system yields a power gain of M over a single

antenna system. Interestingly, it can be seen that by increasing the number of transmit

antennas, the power gain is not boosted, except for the case where the channel state is

available at the transmitter and the waterfilling strategy is applicable to attain power gain.

By considering (2.13) and (2.16), we can conclude that:

1. At high SNRs, the capacity is approximately equal (up to an additive constant) to

d log2 γ bits per channel use where d = min (M,N) is the DoF.

2. At low SNRs, the capacity is approximately equal to Mγ log2 e bits per channel use,

so only a receive power gain can be achieved.

3. For the case of M = N = d, the sum capacity (or the achievable sum rate) increases

linearly with d over the entire SNR range.

4. When CSI is available at the transmitter, an additional power gain can be gleaned

by using waterfilling at low SNR ranges. In other words, at low SNR, the capacity

with full CSI at transmitter is significantly larger than when CSI is only available at

the receiver. However, at high SNR, the difference between the two goes to zero.

From the above discussions we can conclude that the total DoF, i.e., d, is one of the

most important factors to achieve higher sum rates, i.e., the larger the d , the higher data

rates can be achieved for all SNR ranges.
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2.4 Precoding

One of the applications of point-to-point communications is in cellular networks where

a serviced area is partitioned into several cells, each typically has one BS serving some

mobile terminals (MTs). The very earlier forms of cellular communications consist of

single-antenna BSs and single-antenna MTs. For this scenario, since each BS has one

antenna, it can only transmit to one user at each time. Since there are several users ex-

pecting to be serviced by the BS, they need to be spread across time or frequency. In

this case, time division multiple access (TDMA) and frequency division multiple access

(FDMA) are prevalent techniques which provide fair access to all MTs within a cell. For

example, one of the earliest standards for cellular communications is Global System for

Mobile (GSM) where users within each cell are serviced via TDMA [4]. However even

for this case, if there are two or more cells and the adjacent cells share the same set of

radio frequencies, the transmission of each BS can cause interference to the other active

MTs in nearby cells. Therefore, one approach to suppress this inter-cell interference is

allocating distinct radio frequency bands to adjacent cells.

In the following, we first consider the scenario where different sets of frequencies have

been assigned to nearby cells. In this case, each cell can be analyzed separately and we

therefore turn our focus on the transmission schemes which provide reasonable perfor-

mance in downlink of single-cell scenario. We will next consider the scenarios wherein

the nearby cells share the same radio frequency bands and we introduce the relevant state

of the art interference management techniques to overcome the inter-cell interference in

this case.

Note that in the cellular downlink, since BS can have access to partial or perfect CSI,

it is more appropriate to shift the major signal processing enhancements to transmit side

to keep MTs simple and low-cost.

In downlink of cellular networks, it has been shown that if instead of merely one an-

tenna, multiple antennas are deployed at BS, significant throughput gains can be achieved

[5]. Now, all the aforementioned performance gains of MIMO systems can be gleaned.

However, instead of assuming one user with multiple antennas, it is more reasonable to

consider several MTs with a single antenna. This is due to the fact that deploying more

than one antenna at each MT results in larger handsets and also leads to more power con-

sumption, which is not practical from the user’s perspective. Therefore, in the case of

multi-antenna BS and single-antenna MTs, each transmit antenna can be used to serve one

single-antenna MT, and consequently several MTs can be simultaneously serviced within

12



2.4. Precoding
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Figure 2.2: Single-cell broadcast channel where dash red arrows represent intra-cell interference
while solid green arrows denote desired links.

each cell. This is the multiplexing gain of MIMO systems, discussed in the previous sec-

tion, and results in higher sum rates, i.e., multiple MTs can now be provided with higher

data rates.

Although using multiple antennas at BS results in higher multiplexing gains, it causes

intra-cell interference, i.e., while each transmitted signal from one specific antenna at the

BS is intended for just one specific single-antenna MT, it causes interference to the other

receiving MTs within the same cell. Consequently, the downlink transmission strategy

tries to design the beam patterns such that each MT receives its intended signal interference

free. The more judicious transmission schemes try to increase the received SNR by having

the received signals from the various transmit antennas add up in-phase (coherently) and/or

by allocating more power to the transmit antenna with the better gain. This strategy, i.e.,

aligning the transmit signal in the direction of the transmit antenna array pattern, is called

transmit beamforming (or hereafter we call it “precoding”).

There are various precoding schemes, each of which has been designed to meet a

certain criterion. Based on how the transmitted signals are related to the input data streams,

the precoding techniques are categorized as linear and nonlinear. For example, it has been

shown that the dirty paper coding (DPC), which is a nonlinear precoding, is capable of

achieving the downlink capacity [6]. Nevertheless, due to its very high complexity, some

less complex nonlinear precoders like vector perturbation [7–9] and Tomlinson-Harashima

[10,11] are also of particular interest. The simplest transmission scheme for multi-antenna

downlink is CI [12], which is linear, such that the intra-cell interferences are precanceled at
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BS in order to enable each MT to receive its intended signal interference free. For example,

as illustrated in Fig. 2.2, it has been assumed that BS has 3 antennas and is therefore able to

send 3 independent data streams simultaneously to 3 single-antenna MTs. Therefore, each

transmitted data stream acts as an intra-cell interference to the other 2 unintended MTs.

In this case, the channel coefficient form antenna j to the kth MT can be modeled by

hk,j, k, j = 1, . . . , 3. We can represent the whole CSI as H ∈ CM×N which collectively

denotes the channel coefficients from the N-antenna BS to M single-antenna MTs, and

for the special case of M = N = 3 as denoted in Fig. 2.2, we have

H =



h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3


 (2.17)

It is worthwhile to note that the total number of MTs is typically thought to be equal to

or less than the total number of antennas at BS, i.e., M ≤ N , otherwise the users must be

scheduled since one BS is only able to service up to N MTs simultaneously. We further

denote c ∈ CM×1 as the data vector containing the M symbols chosen from an arbitrary

constellation that are intended for the M MTs. By considering the fact that the perfect CSI,

i.e., H, is known at BS, the transmitted signal based on CI precoding can be represented

by [13]

sCI = gCIH
H
(
HHH

)−1
c (2.18)

where gCI is the scaling factor which its value will be given in subsection 3.3.1. Now as

can be seen in (2.18), the transmitted signal from BS, i.e., sCI, is linearly dependent on the

input data vector c. In this case, the transmitted signals are received interference free as

follows:

yCI =
√
PHsCI + z

=
√
PgCI

✘
✘
✘
✘
✘
✘
✘
✘
✘✘

[
HHH

(
HHH

)−1
]

︸ ︷︷ ︸
canceled interference

c+ z

=
√
PgCIc+ z (2.19)

where z ∈ CM×1 is the noise vector, and P is the transmit power. As seen in (2.19), for

each MT, all intra-cell interferences get suppressed and eventually each MT receives a

scaled version of its transmitted data which can be readily recovered.

Although CI precoding achieves reasonable performance in downlink of cellular net-
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works with multi-antenna BSs, it may deteriorate the performance of users at low-to-

intermediate SNRs. This is due to the fact that some of the received signals may undergo

a deep fading and this can further lead to an ill-conditioned channel matrix such that tak-

ing the inverse of HHH, i.e.,
(
HHH

)−1
, becomes problematic. In this case and as will

be shown in detail within section 3.4, regularizing this inverse by adding an appropriate

multiple of the identity matrix can notably improve the performance of CI. This precoding

is called RCI [13] such that the transmitted signal from BS can now be shown as

sRCI = gRCIH
H
(
HHH + ε I

)−1
c (2.20)

where the optimum values of ε will be determined in chapter 3. Now as can be seen in

(2.20), the transmitted signal from BS, i.e., sRCI, is linearly dependent on the input data

vector c. This further implies that similar to CI, RCI precoding is linear as well. However,

unlike the CI precoding where all the intra-cell interferences are completely canceled,

RCI precoding allows some constructive interference from unwanted MTs spill over the

received signal of each user. In other words, the regularization parameter ε controls the

amount of interference introduced to each user which is not zero at low-to-intermediate

SNRs. Therefore, RCI precoding tries to constructively add up the interference with the

desired signals such that the received SNR gets increased.

As stated earlier, even by deploying multiple antennas at BS and using one of the

aforementioned linear or nonlinear precoding and in order to avoid inter-cell interference,

we still have to assign different radio frequency bands to adjacent cells. Since spectrum

allocation is extremely conservative and expensive, in order to increase the spectral effi-

ciency of the entire network, it is more desirable to use the same set of radio frequencies

for two or more nearby cells. To meet this demand, several advanced precoding techniques

of increased complexity have recently emerged for wireless access, which are inherently

cooperative schemes. One of the promising techniques is network MIMO [14] which en-

ables BSs to share the same frequency bands by the combined use of multiple antennas

in several neighboring cell sites. However, the BSs further need to share all the trans-

mitted data streams through, for example, low-latency high-capacity backhaul links like

the optical fibers, as illustrated in Fig. 2.3. This way, the inter-cell interference gets can-

celed and each user receives its intended data interference free. However, these backhaul

links request for additional infrastructures which may not be readily implementable due

to the excessive needs of data sharing between different sites and the need for additional

antennas, which is impractical due to many hardware and cost constraints.
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Cell #1 Cell #2

Cell #3

BS #3MT #3
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BS #2
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Figure 2.3: Network MIMO for cellular communications where all the BSs share the transmitted

data streams via backhaul links which are denoted as thick blue lines. This way, the inter-cell

interference is canceled and each MT received its intended data stream interference free.

Apart from network MIMO, another interesting approach towards higher spectral effi-

ciency is massive MIMO where unlike network MIMO, there is no need to share the data

streams between BSs [15]. However as illustrated in Fig. 2.4, large number of antennas

are needed to be deployed. This way, the transmitted signals are beamformed towards

the intended MTs without causing interference to the unintended MTs in nearby cells.

Massive MIMO communications heavily depend on the two emerging technologies [16]:

1. Remote radio heads (RRHs) which allow for geographically distributed access via

radio-over-fibre connections to a BS.

2. Electronically steerable passive array radiators (ESPARs) which provide multi-ante-

nna-like functionality with a single active radio frequency chain only.

Although massive MIMO seems to be a part of the future wireless networks, it also needs

extra infrastructure like fiber connections between each BS and the RRHs, and the spread-

out installation of large number of antennas across a wide area which may result in huge

implementation costs. Therefore, there is a need for a different interference management
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Cell #1 Cell #2

Cell #3

BS #1

MT #2

MT #3

MT #1

BS #2

BS #3

Figure 2.4: Massive MIMO for cellular communications. Having large number of antennas, each

BS is now able to beamform the transmitted data streams to its intended MT without causing

inter-cell interference.

technique which removes the extra overhead of network MIMO and massive MIMO sys-

tems.

2.5 Interference Alignment

As mentioned in the previous section, even by using CI and RCI precoding, the MTs

in nearby cells can still experience inter-cell interference if the assigned radio frequency

bands of two or more adjacent cells would be the same. This implies that even for the

case of multi-antenna BSs, to avoid inter-cell interference, different sets of frequencies

are still needed to be used. With respect to the fact that in contemporary urban environ-

ments, there are several BSs, if each cell requests a unique set of frequencies, this leads

to a huge spectrum reservation for the entire network. However, since resource allocation

(like energy and spectrum) is extremely conservative and valuable, it is more desirable to

design advanced interference management techniques such that more adjacent cells can

share the same set of frequencies. We also pointed out the two emerging and promising
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wireless communication techniques, namely network MIMO and massive MIMO, which

enable us to use the same radio frequency bands for the nearby cells by precoding the data

streams towards the intended users while suppressing the inter-cell interference. However,

both network MIMO and massive MIMO communications need extra infrastructure to be

available. This includes radio-over-fiber connections which may not be readily imple-

mentable.

Therefore in this section we represent another potential and alternative approach to-

wards interference management in future wireless networks. To do so, we first reintroduce

the concept of wireless interference networks (or interference channels (IC)) where it has

been shown that IA will be a dominant technique since it enables several BSs to transmit

to their corresponding MTs simultaneously on the same radio frequencies. Now in this

case and unlike network MIMO or massive MIMO communications, there is no need for

backhaul links or excessive number of antennas. Therefore while each BS communicates

with its intended MT, it causes inter-cell interference. This has been depicted in Fig. 2.5

where dash red arrows represent inter-cell interference while solid green arrows denote de-

sired links. In this case, although each BS makes interference to the unintended MTs, IA

enables us to design appropriate transmit filters (“precoders”) for BSs and receive filters

(“combiners”) for MTs such that each MT is now able to cancel the inter-cell interferences

received from nearby BSs [17].

Unlike point-to-point, multiple access (uplink) and broadcast (downlink) communica-

tions, the capacity characterization of interference channels is still an open problem. This

prompted the information theorists to propound the concept of DoF to outline the perfor-

mance of IC. It is worthwhile to reiterate that the DoF is the pre-log factor of the sum rate

or the multiplexing gain, as discussed in section 2.3.

To highlight the spectrum-efficiency of IA compared to standard techniques, it suffices

to mention that while for standard cellular communications like GSM and IS-136, the

typical frequency reuse factor1 is 1
3

and 1
7
, respectively, for IA, the frequency reuse factor

is one.

Example 2.1: In this example, we demonstrate the difference between conventional

downlink precoding techniques (as discussed in section 2.4) and IA in terms of the achiev-

able DoF. We consider the same scenario as the one in Fig. 2.5, i.e., there are three cells in

the network such that each cell has one BS and each BS possesses three antennas and com-

municates with one single-antenna MT. In this case and by using IA, all BSs are able to

1The frequency reuse factor of 1

n
means that there are n cells in one cluster and each and every cell has

its own set of frequencies.
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Cell #1 Cell #2

Cell #3

BS #3MT #3

BS #1

MT #2

BS #2

MT #1

Figure 2.5: 3-cell wireless interference network where all BSs transmit simultaneously on the

same radio frequencies. Each BS communicates to its corresponding MT while causing inter-

ference to the other MTs in adjacent cells. In this case, dash red arrows represent inter-cell
interference while solid green arrows denote desired links.

communicate with their corresponding MTs simultaneously on the same radio frequency

bands. Therefore, the achievable DoF is now equal to three, i.e., all three MTs can now be

serviced by using the same frequency and time resources. However by deploying down-

link precoding techniques, the BSs can not communicate to their intended MTs at the same

time on the same radio frequencies. In this case and in order to avoid inter-cell interfer-

ence, each cell should be assigned to unique radio frequencies (using OFDM) or the MTs

need to be scheduled in different time slots (using TDMA). Therefore by using downlink

precoding, the achieve DoF is now equal to one, i.e., only one MT can be serviced by re-

lying on the same frequency and time resources. Consequently, for the depicted scenario

in Fig. 2.5, IA achieves three times as many DoF as downlink precoding techniques and

is thus more spectral efficient.

With respect to the above example and the depicted scenario in Fig. 2.5, IA is distin-

guishable from standard single-cell downlink precoding as follows:

1. Using IA, each individual BS performs precoding to its user of interest through pre-
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multiplying the transmitted signals by a precoding matrix. In this case all the inter-

ference is aligned within a reduced subspace of the received signal space. However

for single-cell downlink precoding and under the same usage of frequency and time

resources, only one BS can perform precoding and therefore no alignment of the

interference takes place.

2. In standard downlink precoding, the single-antenna MTs do not need to use an inter-

ference suppression filter. However, in the case of IA, each user is able to null out the

inter-cell interference through postmultiplying its received signal by an interference

suppression filter.

3. In downlink precoding each BS only needs to know the CSI for its own MTs, how-

ever in the case of IA, each BS should have access to the CSI of all MTs in nearby

cells as well.

4. In single-cell downlink precoding each BS uses different frequency or time re-

sources and therefore there is no need for BSs to perform coordinated beamforming.

However in the case of the interference channel, IA relies on coordinated precoding

transmissions from all BSs.

Now the importance of IA in wireless interference networks can be more pronounced with

the help of DoF. By assuming that there are K cells each possessing a single-antenna BS,

while TDMA and FDMA achieve only one DoF, with IA, the achievable DoF can now

be linearly scaled up with K. More precisely, in this case, IA is able to achieve d = K
2

DoF [17]. In other words, in this K-cell scenario, while with TDMA or FDMA we can

only send one data stream to one specific user, with IA, K
2

independent data streams can

be send throughout the network. Therefore, IA enables us to more efficiently use the

available spectrum by transmitting higher sum rates while using the same time and fre-

quency resources compared to standard interference management techniques like TDMA

and FDMA.

IA is a broad area of research and it mainly falls within two separate fields. The

first one includes information theoretic studies like the achievable DoF [17–19], and the

second one includes the signal processing aspects like assessing the feasibility condi-

tions [20, 21], or designing different algorithms meant for particular scenarios based on

different optimization criteria. Designing IA algorithms can split into distinct directions.

For example, while some IA schemes have been designed based on symbol extension

across time or frequency [17, 19, 22], some other IA techniques have been proposed by

relying on the signal space alignment using multiple antennas [23–34] to cancel the inter-
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ference. These IA schemes, which have been set upon the spatial dimensions, are mostly

iterative but dissolve the need of symbol extension across time or frequency, and there-

fore they are more practical and appealing. Of such schemes, minimum weighted leakage

interference (Min-WLI) [23], alternating minimization (Alt-Min) [34], Max-SINR [23],

weighted MMSE [24], and rank constrained rank minimization (RCRM) [26] are the most

representative IA algorithms. Consequently, in this thesis, we place our focus on both

information theoretic and signal prossing aspects of IA by addressing the achievable sum

rates and DoF under imperfect CSI, feasibility conditions of IA in partially coordinated

networks and also designing new iterative IA techniques based on the concept of signal

space alignment using multiple antennas.

2.6 Limitations of the State of the Art

With respect to the above discussions, we can conclude that due to the scarcity of radio re-

sources and incessant requests for higher QoS, new interference management techniques

are needed to be addressed in order to support the excessively huge amount of data de-

mand in future cellular networks. Note that all the aforementioned standard and future

techniques including CI, RCI and IA have been mainly designed and analyzed based on

the availability of perfect CSI. However, from the practical point of view and also due to

deployment challenges, only partial CSI may be accessible, and this can adversely affect

the achievable bounds which are predicted by the information theoretic studies. For ex-

ample, it has been shown that CI can achieve the same asymptotic sum capacity as that of

DPC, as the number of users goes to infinity [35], provided that perfect CSI is available.

Also as mentioned earlier, although IA can achieve K
2

DoF, this can be attained under the

availability of perfect CSI [17]. Consequently, performance analysis of these standard and

future wireless communication techniques under imperfect CSI is vital and is thus going

to be addressed in this thesis.

More specifically, first we introduce a generalized CSI mismatch model where the

variance of the channel estimation error is a function of SNR and covers the CSI feedback

and reciprocal channels as special scenarios. Then, unlike most of the literature wherein

the proposed schemes have been set upon the knowledge of perfect CSI, we aim to design

adaptive precoders and interference alignment techniques such that the design criteria are

based on the availability of imperfect CSI and the knowledge of error variance in advance.

This provides a versatile design since these adaptive schemes can accommodate the case
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2.6. Limitations of the State of the Art

of perfect CSI as a spacial scenario when the variance of the channel estimation error is set

to zero. We will show that these adaptive designs outperform standard techniques in more

realistic scenarios where due to the channel dynamics and channel estimation schemes

only imperfect CSI is accessible. Apart from designing adaptive interference management

techniques, we also consider the power-efficient design of wireless networks towards the

aims of “green communications” [36].
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Chapter 3

Channel Inversion and Regularization

3.1 Introduction

Deploying multiple antennas at BS can significantly improve the achievable throughput in

broadcast channels [5] where DPC is capable of achieving the downlink capacity [6]. Nev-

ertheless, due to its high complexity, some less complex nonlinear precoders like vector

perturbation [7–9] and Tomlinson-Harashima [10, 11] are also of particular interest.

Although achieving less throughput, linear precoders are more practical due to reduced

possessing complexity compared to their nonlinear counterparts. The least complex of the

available techniques named CI [12] is a linear precoding technique which yields reason-

able performance in downlink; in other words, although CI achieves less sum rates than

DPC, the former is linear whereas the latter is nonlinear with high complexity. Nonethe-

less, it has been shown that CI precoding, while generally suboptimal, can achieve the

same asymptotic sum capacity as that of DPC, as the number of users goes to infinity [35].

However, in a downlink scenario where the number of antennas at BS is equal to the total

number of single-antenna users and both are finite, it has been shown that with increas-

ing the number of antennas at BS (and increasing the number of users accordingly), the

symbol error rate (SER) of each user, due to deploying CI, deteriorates. Also in this case,

while the sum capacity linearly increases with the number of transmit antennas, the sum

rate of CI does not. This inferior performance of CI is related to the erratic behavior of the

largest eigenvalue of the inverse of the covariance matrix of the channel. One approach to

alleviate this malfunction is to employ the concept of regularization by adding a multiple

of the identity matrix to the covariance matrix of the channel before inverting. This pre-

coding, which has been dubbed RCI in [13], improves the performance of CI, such that
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with increasing the number of antennas, the SER of each user remains fixed at low-to-

intermediate SNRs, and slightly improves at high SNRs. Also, by using RCI, the sum rate

has now a linear growth with the number of transmit antennas. Plus, for a fixed number of

antennas at BS, RCI achieves higher throughput than CI at low-to-intermediate SNRs.

However, this comparative improvements of standard RCI to CI can mainly be gleaned

when perfect CSI is available at BS, which is a very stringent requirement in practice.

Hence, performance analysis of CI and RCI under CSI mismatch becomes more important,

and is thus going to be addressed in this chapter.

First, we quantify the performance of CI and RCI under a generalized CSI mismatch

model where the variance of the channel estimation error depends on the SNR. In this case,

we derive novel bounds regarding the asymptotic mean loss in sum rate and the achievable

DoF as a function of error variance. For instance, it will be shown that when the variance

of the channel estimation error scales with the inverse of SNR, full DoF is achievable and

therefore the asymptotic mean loss in sum rate is a nonzero bounded value.

Although the performance analysis of standard RCI under imperfect CSI has been

addressed in [37], it has been assumed that the actual channel matrix (i.e., the perfect CSI)

depends on the channel estimation error and the variance of the channel estimation error

is constant. Meanwhile, only the bit error rate (BER) performance analysis of RCI under

this imperfect CSI model has been considered in [37].

However, in this chapter (as well as the subsequent chapters), we assume that the actual

channel matrix is independent of the channel estimation error, which is more pragmatic.

Also as mentioned earlier, we consider an SNR-dependent model for error variance which

automatically accommodates the case of constant variance as a special scenario. Then un-

der this imperfect CSI model, we analyze the achievable sum rates of CI and RCI by deriv-

ing the output SINR of each user. Moreover, based on the knowledge of the error variance

in advance, we propose an adaptive RCI precoding by deriving an appropriate regulariza-

tion parameter. Simulation results verify that with the presence of CSI mismatch, while

the performance improvement of standard RCI compared to CI becomes negligible, the

proposed adaptive RCI compensates this degraded performance of the standard RCI.

We present the system model under perfect and imperfect CSI in Section 3.2. In Sec-

tion 3.3, we quantify novel bounds on the asymptotic performance of CI. Section 3.4 deals

with the performance analysis of standard RCI under imperfect CSI by deriving the output

SINR of each user. In Section 3.5, an adaptive RCI technique is proposed. In Section

3.6, we use simulations to corroborate the undergone analyses in this chapter, and finally

Section 3.7 contains a summary of the presented materials within this chapter.
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Figure 3.1: Single-cell broadcast channel where dash red arrows represent intra-cell interference
while solid green arrows denote desired links. Ψ designates the precoding matrix, g is the scaling

factor, and hk,j denotes the time-variant channel response between the jth transmit antenna of BS

and the kth MT. While c = (c1, . . . , cM )
⊤

is the transmitted data stream from BS, ĉk is the decoded

data at the kth user.

3.2 Preliminaries

3.2.1 System Model

We consider a multiuser downlink scenario where an N-antenna transmitter communicates

with MTs with M receive antennas in total. More specifically, we assume that the total

number of receive antennas is equal to or less than the total number of transmit antennas,

i.e., M ≤ N . Since no signal processing treatment is going to be considered at each

MT, the system configuration is irrespective to whether the receive antennas cooperate or

not, therefore the total number of receive antennas can belong to one user or be shared

by several users; however, as purely transmitter-based precoders are most useful with

single antenna receivers, we consider single-antenna MTs, i.e., MISO downlink. A simple

downlink communication scenario has been illustrated in Fig. 3.1.

Without loss of generality and analogous to [13,37], we assume that all single-antenna

users are homogeneous and experience independent fading. The received signals of all

users can be expressed by

y =
√
PHs+ z (3.1)

where y ∈ CM×1, H ∈ CM×N denotes the channel from N-antenna transmitter to M

single-antenna users such that the magnitude of channel coefficients is bounded away

from zero and infinity. We also consider block fading model where channel coefficients
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are static for the duration of a transmission but may change between successive transmis-

sion. We further assume that elements of H can be modeled by independent and identi-

cally distributed (i.i.d.) Gaussian random variables with zero mean and unit variance, i.e.,

vec (H) ∼ NC (0, I), s ∈ CN×1 is the transmitted signal from BS, and z ∈ CM×1 is the

circularly symmetric additive white Gaussian noise with zero mean and variance σ2, i.e.,

z ∼ NC (0, σ
2I). We further assume that the transmitted signal s in (3.1) can be expressed

as s = gΨc. Similar to [13, 38], we consider g as the scaling factor that ensures trans-

mit power constraint i.e., E {‖s‖22} = 1. Ψ is the precoding matrix and c represents the

vector containing the symbols chosen from a desired constellation and since we assume

i.i.d. Gaussian input signaling, we have E
{
ccH
}
= I. We also define the nominal SNR as

γ = P/σ2 where P is the transmit power. Note that although the concept of regularization

is most beneficial for the case of equal number of transmit and receive antennas [13, 37],

without loss of generality, we assume M ≤ N .

3.2.2 Imperfect CSI Model

Unlike [37], where the perfect CSI, viz. H, depends on the channel estimation error, here

we model the imperfect CSI as

Ĥ = H+ E (3.2)

where the actual channel matrix H is thought to be independent of channel measurement

error E. Similar to [8], we further consider E as a Gaussian matrix consisting of i.i.d.

elements with mean zero and variance τ , i.e.,

vec (E) ∼ NC (0, τI) with τ , βγ−α, β > 0, α ≥ 0 (3.3)

In this case, the error variance can depend on SNR (α 6= 0) or be independent of that

(α = 0). Notice the variance model in (3.3) is versatile since it is potentially able to

accommodate a variety of distinct scenarios. In particular, perfect CSI is regained when

α → ∞. Three representative cases of (3.3), which will be widely referred throughout

this thesis, are

• Reciprocal Channels: This case represents the reciprocal systems like time division

duplex where uplink and downlink channel are identical. The downlink channel

can thus be estimated through pilots sent over the uplink channel and the channel

measurement error E depends on the noise level at BS as well as the pilot power. If
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the pilot power proportionally increases with P , the channel estimation error scales

inversely with increasing γ. This case is modeled by (3.3) with α = 1.

• Mismatched Reciprocal Channels: This may be the case where the mobile and BS

powers are not in the same range (or of the same order). This scenario can be

represented by 0 < α < 1 where there is a significant power imbalance between

the transmitters and receivers, i.e., the feedback power is much smaller than the

feedforward power.

• CSI Feedback: Here, the channel matrix can be estimated by pilot transmissions in

the downlink. Then, a quantized version of this channel estimate is sent back to

BS through a dedicated feedback link. This way, the imperfect CSI will be mostly

dominated by the errors caused through quantization and feedback delay, which can

eventually result in outdated CSI at BS if the channel coherence time is smaller than

the feedback delay. Since channel coherence time and the resolution of quantizer do

not depend on γ, the channel estimation error variance τ becomes independent of γ

as well. This case is captured by (3.3) with α = 0.

More specifically, τ can be interpreted as a parameter that captures the quality of the

channel estimation which is possible to be known a priori, depending on the channel dy-

namics and channel estimation schemes (see [39] and references therein). For example:

• For the CSI feedback scenario where each single-antenna MT sends the index of the

estimated channel matrix back to BS by using a codebook of size 2b, it has been

shown that τ = 2−
b
N [37].

• In a block Rayleigh fading channel of coherence time T and by using orthogonal

training signals (which are optimum for spatially white inputs) with training interval

length of T ′, τ =
1

1 + T ′

N
P ′ where P ′ is the transmit power of the training symbols

[40].

• In a continuously time-varying Rayleigh-fading channel with a bandlimited low-

pass spectrum with the cutoff frequency fc , using pilot symbols with sampling rate

1/L ≥ 2fc yields τ =
1

1 + 1
2fcL

P ′ [41].

Fig 3.2 depicts the performance trend of τ as a function of γ for different values of α and

β.

To facilitate the performance analysis of CI and RCI under CSI mismatch model in

(3.2), it is more appropriate to have the statistical properties of H conditioned on Ĥ by

using following lemma [42]:
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Figure 3.2: Channel estimation error variance as a function of SNR for different values of α and
β.

Lemma 3.1: Conditioned on Ĥ, H has a Gaussian distribution with mean Ĥ/ (1 + τ)

and statistically independent elements of variance τ/ (1 + τ), i.e.,

H =
1

1 + τ
Ĥ+ H̆ (3.4)

where vec
(
H̆
)
∼ NC

(
0,

τ

1 + τ
I

)
is statistically independent of Ĥ.

3.3 Asymptotic Performance of Channel Inversion

In this section, we first derive the output SINR of each user when CI is deployed at BS. We

then derive novel bounds on the asymptotic mean loss in sum rate and the achievable DoF

when BS is in possession of imperfect CSI. Consequently, we assume that the channel

estimate Ĥ is only available at BS, and the signal preprocessing at BS is thus going to be

done upon the knowledge of Ĥ.
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3.3.1 Channel Inversion under Perfect CSI

When the perfect channel state information is available at BS, the transmitted signal can

be represented as

sCI = gCIΨCIc (3.5)

where the precoding matrix is ΨCI = HH
(
HHH

)−1
and the scaling factor can be defined

as [13]

gCI =
1√

Tr
[
(HHH)

−1
] (3.6)

In this case, the received signal can be shown as

yCI =
√
PgCIHHH

(
HHH

)−1
c+ z =

√
PgCIc+ z (3.7)

and consequently the unified output SINR of each user is equal to

ηCI =
Pg2CI
σ2

(3.8)

With respect to the fact that Tr
[(
HHH

)−1
]
=

M∑

ℓ=1

[(
HHH

)−1
]
ℓ,ℓ

, the output SINR of

the ℓth user can be shown as [35]

η̇CI =
P

Mσ2
[
(HHH)

−1
]
ℓ,ℓ

(3.9)

where [·]ℓ,ℓ denotes the ℓth diagonal element.

Without loss of generality and to avoid cumbersome formulation, and also to simplify

the analysis within this subsection and also the next one, we employ the unified output

SINR in lieu of the output SINR of the ℓth user, since this interchangeability does not

compromise the validity of the asymptotic performance analysis as SNR goes to infinity.

The achievable sum rate under perfect CSI by considering the unified output SINR can

thus be expressed as [13]

RPerfect CSI = M log2 (1 + ηCI) = M log2

(
1 +

Pg2CI
σ2

)
(3.10)
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and the achievable DoF is defined as [43]

DPerfect CSI = lim
P→∞

EH {RPerfect CSI}
log2 P

= lim
P→∞

EH

{
M log2

(
1 +

Pg2CI
σ2

)}

log2 P
= M

(3.11)

Note that in (3.11), both g2CI and σ2 are finite while the transmit power P goes to infinity.

3.3.2 Channel Inversion under Imperfect CSI

With the presence of imperfect CSI at BS, the precoding matrix can now be defined as

Ψ̂CI = ĤH
(
ĤĤH

)−1

. Consequently, in this case, the transmitted signal in (3.1) can be

shown as

ŝCI = ĝCIΨ̂CIc (3.12)

where the scaling factor is equal to

ĝCI =
1√

Tr

[(
ĤĤH

)−1
] (3.13)

Therefore the received signal in (3.1) can be represented by

ŷCI =
√
P ĝCIHĤH

(
ĤĤH

)−1

c+ z

➀
=

√
P ĝCI

(
1

1 + τ
Ĥ+ H̆

)
ĤH
(
ĤĤH

)−1

c+ z

=

√
P ĝCI
1 + τ

c

︸ ︷︷ ︸
desired term

+
√
P ĝCIH̆ĤH

(
ĤĤH

)−1

c+ z
︸ ︷︷ ︸
interference plus noise term

(3.14)

where ➀ follows from (3.4). To further proceed, we consider the following lemmas:

Lemma 3.2: If A ∈ CM×N represents a Gaussian matrix with i.i.d. elements of mean

zero and variance a, then E
{
AAH

}
= aN I.

Proof: Since A is a Gaussian matrix, we have vec (A) ∼ NC (0, aI). In other words,

if a represents an arbitrary column of A, then E
{
aaH

}
= a I [3]. However, since A has

N independent columns, the claim follows.

Lemma 3.3: Throughout this chapter (as well as the subsequent chapters), we assume
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that the noise and data vectors are independent of each other and are also independent of

the actual channel matrix H which is consistent with [13]. Since due to lemma 3.1, H

depends on both Ĥ and H̆, the data and noise are likewise considered to be independent of

Ĥ and H̆. However, to make the SINR of each user dependent only on the channel estimate

Ĥ, we additionally take the expectation over H̆. This is also consistent with [37, 44]

wherein the expectation was taken over the redundant channel measurement error.

Therefore based on lemma 3.2 and lemma 3.3 and by considering (3.13), we have

EH̆,c

{∥∥∥∥
√
P ĝCIH̆ĤH

(
ĤĤH

)−1

c

∥∥∥∥
2

2

}
=

PMτ

1 + τ
, and consequently for a given realization

of Ĥ, the unified output SINR of each user can be given by

η̂CI =
P ĝ2CI

Pτ (1 + τ) + σ2 (1 + τ)2
(3.15)

With respect to the fact that Tr

[(
ĤĤH

)−1
]
=

M∑

ℓ=1

[(
ĤĤH

)−1
]

ℓ,ℓ

and by consider-

ing (3.8)–(3.9), the output SINR of the ℓth user can be shown as

η̈CI =
P

M
(
Pτ (1 + τ) + σ2 (1 + τ)2

) [(
ĤĤH

)−1
]

ℓ,ℓ

(3.16)

Note that by setting τ = 0, η̈CI boils down to η̇CI in (3.9) which is the output SINR of the

ℓth user under perfect CSI.

Consequently and by considering the unified output SINR in (3.15), the achievable

sum rate of CI under imperfect CSI can be represented by

RImperfect CSI = M log2 (1 + η̂CI) = M log2

(
1 +

P ĝ2CI
Pτ (1 + τ) + σ2 (1 + τ)2

)
(3.17)

3.3.3 Mean Loss in Sum Rate and Achievable DoF

In this subsection, we derive novel bounds regarding the asymptotic mean loss in sum rate

and the achievable DoF of CI. We do so with respect to the unified output SINRs of each

user when CI is deployed at BS with the presence of imperfect CSI.

With respect to (3.10) and (3.17), the mean loss in sum rate can be defined as

∆R=EH {RPerfect CSI} − E
H|Ĥ {RImperfect CSI}
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=EH

{
M log2

(
1 +

Pg2CI
σ2

)}
− E

H|Ĥ

{
M log2

(
1 +

P ĝ2CI
Pτ (1 + τ) + σ2 (1 + τ)2

)}

=E
H,Ĥ

{
M log2

(
(Pg2CI + σ2)

(
Pτ (1 + τ) + σ2 (1 + τ)2

)

σ2
(
P ĝ2CI + Pτ (1 + τ) + σ2 (1 + τ)2

)
)}

➁
=E

H,Ĥ



M log2



(Pg2CI+σ2)

(
βP 1−ασ2α (1+βP−ασ2α)+σ2 (1+βP−ασ2α)

2
)

σ2
(
P ĝ2CI+βP 1−ασ2α (1+βP−ασ2α)+σ2 (1+βP−ασ2α)2

)







(3.18)

where ➁ is due to the fact that in (3.3), τ = βγ−α. Thus, with respect to the fact that

lim
P→∞

βP−ασ2α =




0 α > 0

βσ2α α = 0
(3.19)

the asymptotic mean loss in sum rate can be evaluated as follows

lim
P→∞

∆R =





∞ 0 ≤ α < 1

C α = 1

0 1 < α

(3.20)

where 0 < C < ∞ is a constant which its value is given in the following theorem:

Theorem 3.1: When the error variance scales with the inverse of SNR, i.e., when

α = 1, the asymptotic mean loss in sum rate is equal to C = M log2 (1 + β).

Proof: By considering (3.18), we have

lim
α=1
P→∞

∆R = E
H,Ĥ

{
M log2

(
(1 + β) g2CI

ĝ2CI

)}

= E
H,Ĥ




M log2



(1 + β)Tr

[(
ĤĤH

)−1
]

Tr
[
(HHH)−1

]








(3.21)

Due to the fact that lim
α=1
P→∞

τ = lim
P→∞

β
(
P/σ2

)−1
= 0, and with respect to (3.2), we have

lim
α=1
P→∞

Tr

[(
ĤĤH

)−1
]
= Tr

[(
HHH

)−1
]

(3.22)
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and consequently

C = lim
α=1
P→∞

∆R = M log2 (1 + β) bits per channel use (3.23)

Since each of the sum-rate curves has a slope of M/3 in units of bits per channel use

per dB, this rate offset C (i.e., the vertical offset between the curve representing the perfect

CSI and the one denoting the imperfect CSI case of α = 1) can be translated into a power

offset (i.e., a horizontal offset) as follows:

∆γ
∣∣∣
α=1
P→∞

=
3

M
∆R
∣∣∣
α=1
P→∞

= 3 log2 (1 + β) dB (3.24)

In other words, the power offset in (3.24) implies that for the case of α = 1, we should

increase the transmit power by ∆γ dB to achieve the same sum rate as the perfect CSI.

Now that we established bounds on asymptotic mean loss in sum rate, in the sequel, it

is revealed that when 0 ≤ α < 1, an α fraction of the total DoF, i.e., αDPerfect CSI DoF, is

achievable, where DPerfect CSI is defined in (3.11).

The total DoF subject to imperfect CSI can be quantified as follows:

DImperfect CSI = lim
P→∞

E
H|Ĥ {RImperfect CSI}

log2 P

= lim
P→∞

E
H|Ĥ

{
M log2

(
1 +

ĝ2CIP

Pτ (1 + τ) + σ2 (1 + τ)2

)}

log2 P

= lim
P→∞

E
H|Ĥ

{
M log2

(
ĝ2CIP + Pτ (1 + τ) + σ2 (1 + τ)2

)}

log2 P

− lim
P→∞

E
H|Ĥ

{
M log2

(
Pτ (1 + τ) + σ2 (1 + τ)2

)}

log2 P

≥ lim
P→∞

E
H|Ĥ {M log2 (ĝ

2
CIP )}

log2 P

− lim
P→∞

E
H|Ĥ

{
M log2

(
Pτ (1 + τ) + σ2 (1 + τ)2

)}

log2 P

= M− lim
P→∞

E
H|Ĥ

{
M log2

(
Pτ (1 + τ) + σ2 (1 + τ)2

)}

log2 P
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3.4. Standard RCI

=




M 1 ≤ α

αM 0 ≤ α < 1
(3.25)

Notice 0 < α < 1 reflects the scenario in which feedback power is much smaller than

feedforward power. This may be the case where the mobile and BS powers are not in the

same range. Therefore, the BS can reciprocally learn the forward link, but instead of full

DoF, i.e., M , only an α fraction of that, i.e, αM , is achievable. Note that the results of

(3.25) are inherently related to those in (3.20). For example, for the case of α = 0, i.e.,

finite-rate feedback, while (3.25) implies that the achievable DoF is equal to zero, (3.20)

indicates that for this case and by increasing SNR, the asymptotic mean loss in sum rate is

unboundedly increasing. Also (3.25) implies that when α ≥ 1, full DoF is achievable, that

is, the asymptotic mean loss in sum rate is constant. In this case, (3.20) implies that when

α = 1, this asymptotic mean loss converges to a non-zero constant whereas for α > 1, it

tends to zero.

3.4 Standard RCI

In section 3.3, we evaluated the performance of CI under CSI mismatch. However, as

it is well-known, RCI precoding achieves better performance than CI precoding under

perfect CSI by adding a multiple of the identity matrix to HHH before inverting. This

is due to the fact that CI precoding inherently utilizes
(
HHH

)−1
, which is problematic

when H becomes ill-conditioned, and this becomes more pronounced when N = M . An

explanation for this poor behavior comes from looking at the eigenvalues of
(
HHH

)−1
for

the case M = N . As shown in [45], the smallest eigenvalue of HHH has an exponential

distribution as follows:

p (λs) = Me−Mλs (3.26)

Therefore, the largest eigenvalue of
(
HHH

)−1
has the distribution

p (λL) =

(
M

λ2
L

)
e
− M

λL (3.27)

which is also referred as inverse-gamma distribution with parameter one. This density is

zero at λL = 0 , but decays as 1
λ2

L

as λL → ∞ for any values of M . It is thus a long-

tailed distribution with infinite mean. Figs. 3.3–3.4 illustrate a numerical comparison

of the four largest eigenvalues of
(
HHH

)−1
for cases M = N − 1 and M = N , respec-
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Figure 3.3: Numerical results for the mean behavior of the four largest eigenvalues of
(
HH

H
)−1

as a function of N when M = N − 1.
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Figure 3.4: Numerical results for the mean behavior of the four largest eigenvalues of
(
HH

H
)−1

as a function of N when M = N .

tively. As seen in Fig. 3.3, when M = N − 1, all four largest eigenvalues (including

the largest one) have a relatively smooth behavior. However, for the case M = N and as

revealed in Fig. 3.4, except the largest eigenvalue, the others have much smoother plots.

Plus, the magnitude of the largest eigenvalue is much larger than that of the remaining
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Figure 3.5: Numerical results for the mean behavior of the four largest eigenvalues of(
HH

H + M
2
I
)−1

as a function of N when M = N .

eigenvalues. Consequently, the case of M = N is much more problematic than N > M

when the channel is ill-conditioned. With respect to the fact that the smallest eigenvalue of(
HHH

)−1
probabilistically concentrates around 1

4M
as M → ∞, any approach to improve

the performance of CI must seek to reduce the effects of the largest eigenvalue.

It has been shown that one very effective and simple way to alleviate this erratic be-

havior of the largest eigenvalue of
(
HHH

)−1
is the regularization via adding a multiple of

the identity matrix to HHH before inverting [46, 47]. RCI precoding aims to do so such

that this multiplicative factor of the identity matrix is a function of M and γ [13]. It is

also worthwhile to mention that, although the benefits of regularization extend to the case

N > M , it is most beneficial when M = N . As shown in Fig. 3.5, by adding a multiple of

the identity matrix, e.g., M
2
I, to HHH before inverting, the behavior of the largest eigen-

value of
(
HHH + M

2
I
)−1

becomes regularized. In other words, now all the four largest

eigenvalues have the similarly monotonic behavior. This is opposed to the sans regulariza-

tion case (as denoted in Fig. 3.4), where the performance trend of the largest eigenvalue is

nonmonotonic.

In the remainder of this section, we evaluate the performance of standard RCI pre-

coding by deriving the output SINR of each user when RCI is deployed at BS with the

knowledge of imperfect CSI. Note that the SINR analysis of RCI has been addressed

in [13] where the derived formula is just meant for the perfect CSI and is also dependent

36



3.4. Standard RCI

on the eigenvalues of HHH. However, in this section, we derive the output SINR of each

user with a different approach, which makes the RCI precoding especially amenable to the

performance analysis subject to imperfect CSI.

Under the assumption of perfect CSI, the RCI precoder is defined as

ΨRCI = HH
(
HHH + εI

)−1
(3.28)

where ε = Mγ−1 is the regularization parameter which is optimal for large M but works

well for small M too [13]. The scaling factor is thus equal to:

gRCI =
1√

Tr
[
HHH (HHH + εI)

−2
] (3.29)

By considering the fact that only imperfect channel estimate Ĥ is available at BS, the

transmitted signal can be shown as

ŝRCI = ĝRCIΨ̂RCIc (3.30)

such that the precoding matrix is defined as

Ψ̂RCI = ĤH
(
ĤĤH + εI

)−1

(3.31)

and the scaling factor is equal to

ĝRCI =
1√

Tr

[
ĤĤH

(
ĤĤH + εI

)−2
] (3.32)

Accordingly, the received signal at all users can be represented as

ŷRCI =
√
P ĝRCIHĤH

(
ĤĤH + εI

)−1

c+ z

=
√
P ĝRCIH

(
ĤHĤ+ εI

)−1

ĤHc+ z (3.33)

Let ĥH

ℓ ∈ C1×N denote the ℓth row of Ĥ and Ĥℓ ∈ C(M−1)×N designate the submatrix

37



3.4. Standard RCI

obtained by striking ĥH

ℓ out of Ĥ. The received signal at the ℓth user is then given by

ŷ
[ℓ]
RCI =

√
P ĝRCIh

H

ℓ

(
ĤHĤ+ εI

)−1

ĤHc+ zℓ

=
√
P ĝRCIh

H

ℓ

(
ĤHĤ+ εI

)−1

ĥℓcℓ +
√
P ĝRCIh

H

ℓ

(
ĤHĤ+ εI

)−1

ĤH
ℓ cℓ + zℓ

➂
=

√
P

ĝRCI
1 + τ

ĥH

ℓ

(
ĤHĤ+ εI

)−1

ĥℓcℓ
︸ ︷︷ ︸

desired term

+
√
P

ĝRCI
1 + τ

ĥH

ℓ

(
ĤHĤ+ εI

)−1

ĤH
ℓ cℓ +

√
P ĝRCIh̆

H

ℓ

(
ĤHĤ+ εI

)−1

ĤHc+ zℓ
︸ ︷︷ ︸

interference plus noise term

(3.34)

where ➂ follows from (3.4) and we further considered cℓ as a subvector obtained by re-

moving cℓ from c. To further continue, we consider the following lemma [48]:

Lemma 3.4: If a is a column vector of an appropriate size, then

(
A+ aaH

)−1
a =

A−1a

1 + aHA−1a

Based on lemma 3.4, we have

(
ĤHĤ+ εI

)−1

ĥℓ =

(
ĤH

ℓ Ĥℓ + εI
)−1

ĥℓ

1 + ĥH

ℓ

(
ĤH

ℓ Ĥℓ + εI
)−1

ĥℓ

(3.35)

In this case, the desired signal energy is equal to

Edesired signal = P

[
ĝRCIAℓ

(1 + τ) (1 + Aℓ)

]2
(3.36)

where Aℓ = ĥH

ℓ

(
ĤH

ℓ Ĥℓ + εI
)−1

ĥℓ. With respect to lemmas 3.1, 3.2 and 3.3, and by

taking the expectation over c and H̆, the energy of the interference term can be written as

Einterference = P

[
ĝRCI

(1 + τ) (1 + Aℓ)

]2
Bℓ +G (3.37)

where

Bℓ = ĥH

ℓ

(
ĤH

ℓ Ĥℓ + εI
)−1

ĤH
ℓ Ĥℓ

(
ĤH

ℓ Ĥℓ + εI
)−1

ĥℓ
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and by considering (3.32), we have

G = P ĝ2RCI EH̆,c

{
h̆H

ℓ

(
ĤHĤ+ εI

)−1

ĤHccHĤ
(
ĤHĤ+ εI

)−1

h̆ℓ

}
=

Pτ

1 + τ

(3.38)

Consequently, the output SINR of the ℓth user can be shown as

η̂RCI =
Edesired signal

Einterference + σ2

=
ĝ2RCIA

2
ℓP

ĝ2RCIBℓP + Pτ (1 + τ) (1 + Aℓ)
2+ σ2 (1 + τ)2 (1 + Aℓ)

2

(3.39)

Note that the output SINR of each user due to the standard RCI with perfect CSI can

be easily obtained by setting τ = 0 and replacing Ĥ with H.

Remark 3.1: Note that although the derived bounds in (3.20)–(3.25) are based on

the output SINR of CI precoding, they likewise hold for RCI. This is due to the fact

that the output SINR of MMSE equalizers (conditioned on the channel realization) is

asymptotically equal to that of zero forcing (ZF) equalizers plus a gap [49]. Furthermore,

these aforementioned bounds will be numerically corroborated for standard RCI precoding

in section 3.6.

3.5 Adaptive RCI

Subject to perfect CSI, standard RCI outperforms CI; however with the presence of imper-

fect CSI, its comparative improvement to CI deteriorates. Therefore, in this section and by

deriving an appropriate regularization parameter, we propose an adaptive RCI which out-

performs the standard RCI under CSI mismatch. To do so, we further assume that the BS

knows the variance of the channel estimation error, i.e., τ , which is possible to be known

a priori, as discussed in subsection 3.2.2.

We obtain the adaptive RCI precoder by using the following optimization criterion:

arg min
Ψ̂

E

{∥∥∥
√
PHΨ̂c+ fz−

√
Pc

∥∥∥
2

2

}
(3.40)

where

f =
1 + τ

g
= (1 + τ)

√
Tr
[
Ψ̂HΨ̂

]
(3.41)
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and g is the scaling factor. The inclusion of f in (3.40) is due to the fact that in all precod-

ing schemes like CI and RCI, the power of noise is affected by the precoding matrix, and

consequently, this effect can be reflected through a multiplicative factor like f . This can

be perceived with respect to the fact that at transmit side, the transmitted signals get scaled

by g to meet the power constraints; consequently at receive side and by considering (3.34),

to have an unbiased detection, the received signals should be scaled back by (1 + τ) /g

which further appears as a multiplicative factor for the noise vector.

The objective function in (3.41) can be shown as

F = E

{
Tr

[(√
PHΨ̂c+ fz−

√
Pc
)(√

PHΨ̂c+ fz−
√
Pc
)H]}

= E

{
Tr
[
PHΨ̂ccHΨ̂HHH + f 2zzH − PHΨ̂ccH − PccHΨ̂HHH + PccH

+
√
P fHΨ̂czH +

√
PfzcHΨ̂HHH −

√
PfczH −

√
PfzcH

]}

➃
= P Tr

[
Ψ̂HHHHΨ̂

]
+Mσ2 (1 + τ)2Tr

[
Ψ̂HΨ̂

]
− P Tr

[
HΨ̂

]

− P Tr
[
Ψ̂HHH

]
+ PM (3.42)

where ➃ follows lemma 3.3. To obtain the sought precoder, we can differentiate F with

respect to Ψ̂ by first considering the following assumptions [50, 51]:

1. Ψ̂ and Ψ̂H are treated as independent variables.

2.
∂ Tr

[
AΨ̂

]

∂Ψ̂
=

∂ Tr
[
Ψ̂A

]

∂Ψ̂
= A.

Following the preceding assumptions, the differentiation of F with respect to Ψ̂ gives

∂F

∂Ψ̂
= P Ψ̂HHHH+Mσ2 (1 + τ)2 Ψ̂H − PH

➄
= P Ψ̂H

(
Ĥ

1 + τ
+ H̆

)H(
Ĥ

1 + τ
+ H̆

)
+Mσ2 (1 + τ)2 Ψ̂H

− P

(
Ĥ

1 + τ
+ H̆

)
(3.43)

where ➄ follows from (3.4). The adaptive precoder can then be found by setting
∂F

∂Ψ̂
equal

to zero and taking the expectation over H̆. Therefore with respect to the fact that due to
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lemma 3.1, Ĥ and H̆ are independent, we can represent the precoding matrix as

EH̆

{
∂F

∂Ψ̂

}
= 0 =⇒ Ψ̂ = ĤH

(
ĤĤH + ε̂ I

)−1

(3.44)

where the regularization parameter ε̂ can now be expressed as

ε̂ = M (1 + τ)
(
τ + γ−1 (1 + τ)3

)
(3.45)

Note that by setting τ = 0, ε̂ boils down to ε = Mγ−1 which is the appropriate regular-

ization parameter under perfect CSI.

Remark 3.2: From (3.43), it can be concluded that since the Hessian matrix (second

order derivative) of the objective function is positive definite, the expression in (3.44) is a

global minimizer, and therefore the regularization parameter ε̂ is optimum.

Therefore, for the proposed adaptive RCI, the transmitted signal from BS can be shown

as

ŝadaptive RCI = g̃Ψ̂c (3.46)

where Ψ̂ is defined in (3.44), and g̃ is the scaling factor which can be represented as

g̃ =
1√

Tr

[
ĤĤH

(
ĤĤH + ε̂ I

)−2
] (3.47)

Similar to the standard RCI, it is straightforward to show that the output SINR of the ℓth

user based on the proposed adaptive RCI can now be expressed as

η̃RCI =
g̃2Â2

ℓP

g̃2B̂ℓP + Pτ (1 + τ)
(
1 + Âℓ

)2
+ σ2 (1 + τ)2

(
1 + Âℓ

)2 (3.48)

where Âℓ = ĥH

ℓ

(
ĤH

ℓ Ĥℓ + ε̂ I
)−1

ĥℓ and

B̂ℓ = ĥH

ℓ

(
ĤH

ℓ Ĥℓ + ε̂ I
)−1

ĤH
ℓ Ĥℓ

(
ĤH

ℓ Ĥℓ + ε̂ I
)−1

ĥℓ

such that ε̂ is defined in (3.45).

Note that with respect to remark 3.1, the derived bounds in (3.20)–(3.25) are also valid

for the proposed adaptive RCI technique.
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3.6 Numerical Results

In this section, by using simulation results, we substantiate the analytically derived bounds

in (3.20)–(3.25). We also demonstrate the superior performance achieved by the proposed

adaptive RCI compared to the standard RCI. For the case of imperfect CSI, we assume

that the channel estimation error variance obeys (3.3), i.e., τ = βγ−α where γ is the SNR,

α is the SNR exponent and β is the SNR scaling factor.

We evaluate the sum capacity as [13]

log2 det
(
I+

γ

N
HHH

)
(3.49)

and the achievable sum rates as [13, 52]

M∑

ℓ=1

log2 (1 + SINRℓ) (3.50)

where SINRℓ denotes the output SINR of the ℓth user. For instance, for the proposed

adaptive RCI, SINRℓ = η̃RCI where η̃RCI is defined in (3.48).

Note that similar to standard RCI and CI, adaptive RCI is also independent of the con-

stellation, i.e., it is based on Gaussian input signaling. However, without loss of generality

and in the interest of verifying the accuracy of the derived SINRs, we utilize the following

formula within Fig. 3.6, which is a good criterion to analytically evaluate the SER of each

user when QPSK constellation is used [53]

SERQPSK = erfc

(√
SINRℓ

2

)[
1− 1

4
erfc

(√
SINRℓ

2

)]
(3.51)

wherein

erfc (x) =
2√
π

∫ ∞

x

e−t2dt (3.52)

is the complementary error function. In Fig. 3.6, we assume M = N = 10, and simulated

results are due to counting the number of occurred errors in received signals when the

transmitted signals are based on what is expressed in (3.46). As revealed, both analytical

and simulated results are in close agreement, which verify the validity of the derived output

SINR in (3.48). This can be similarly used to verify the validity of the derived SINRs of

CI and standard RCI as well, though the corresponding curves are omitted for the sake of

compactness.
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Figure 3.6: Comparison between analytical and simulated SER of adaptive RCI precoding under
QPSK signaling for M = N = 10 and for the cases β = 0.03, α = 0, and β = 10, α = 1.

As mentioned earlier, although the derived bounds in (3.20)–(3.25) are based on the

output SINR of CI precoding, they are likewise valid for both standard and adaptive RCI.

However, without loss of generality and to avoid congestion in Fig. 3.7, we just certify the

aforementioned bounds using standard RCI subject to different CSI qualities and for the

case M = N = 10, where the following performance trends are observed:

1. α > 1: While (3.20) indicates that the asymptotic mean loss in sum rate should be

equal to zero, (3.25) denotes that full DoF, i.e., 10 DoF, is achievable. All these

bounds are certified where the corresponding curve overlaps with the one represent-

ing the perfect CSI at high SNRs.

2. α = 1: While (3.20) indicates that the asymptotic mean loss in sum rate should be

equal to a nonzero finite constant, (3.25) denotes that full DoF, i.e., 10 DoF, should

be achievable. These bounds are also certified where the corresponding curve has

the same slope with that of the perfect CSI, and consequently there is a nonzero

constant gap between them.

3. For β = 10, α = 1 and based on (3.23), we expect that the asymptotic mean loss in

sum rate should be 35 bits per channel use which is verified by the depicted results

in Fig. 3.7. Plus, based on (3.24), we expect that in the case of β = 10, α = 1
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Figure 3.7: Sum rate of standard RCI precoding for M = N = 10 and under different CSI
qualities.

and to achieve the same sum rate as the perfect CSI, we should increase the transmit

power by 10.4 dB, which is again certified in Fig. 3.7.

4. 0 ≤ α < 1: In this case, equation (3.20) indicates that the asymptotic mean loss

in sum rate is unboundedly increasing with SNR. This is again certified in Fig. 3.7,

such that when SNR gets larger, the gap between the corresponding curves and that

of the perfect CSI becomes wider. Also based on (3.25), we expect that an α fraction

of the total DoF should be achievable. By considering the slope of the curves in the

same figure, while for α = 0.6 the achievable DoF is now 6, for the case α = 0, this

is equal to zero.

Note that the preceding performance trends can also be regarded as an approval for the

validity of the derived SINR of standard RCI in (3.39), since the depicted results in Fig.

3.7 are in line with the analytically derived bounds in equations (3.20)–(3.25).

Although the promised improvement of adaptive RCI over standard RCI and CI can

be gleaned for various values of α, in Figs. 3.8–3.13, we just focus on two representative

cases: α = 0 (which imitates the CSI feedback scenario), and α = 1 (which imitates the

reciprocal channels). More specifically and with respect to the error variance τ defined in

(3.3), we consider two cases: β = 10, α = 1 and β = 0.03, α = 0. We also assume that

M = N = 10 unless stated otherwise.
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Figure 3.8: SER under QPSK signaling for M = N = 10 and for the cases β = 0.03, α = 0, and

β = 10, α = 1.
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Figure 3.9: Sum rate for M = N = 10 and for the cases β = 0.03, α = 0, and β = 10, α = 1.

Fig. 3.8 illustrates the SER of CI and RCI under QPSK signaling. As demonstrated,

the proposed adaptive RCI achieves better SER than standard RCI. For example, when

α = 1, adaptive RCI achieves nearly 6 dB gain compared to standard RCI to achieve the

SER of 10−2.

In Fig. 3.9, sum rates of CI and RCI under perfect and imperfect CSI are depicted.
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Figure 3.10: SER of CI and adaptive RCI under QPSK signaling for M = N = 4, M = N = 10
and for the cases β = 0.03, α = 0, and β = 10, α = 1.

As shown, for different values of α, the proposed adaptive RCI achieves higher sum rates

than standard RCI, e.g., for the case α = 0, adaptive RCI achieves 13 bits per channel use

gain in sum rate compared to standard RCI at high SNRs. Note that for the case of α = 1,

we expect that the achievable DoF should be the same as that of the perfect CSI. This is

confirmed in Fig. 3.9 where it can be seen that the slope of the curves related to the case

α = 1 is the same as that of the perfect CSI at high SNRs.

By considering Figs. 3.8–3.9, one interesting observation is that when α = 0, while

the performance trend of the standard RCI is nonmonotonic, that of the proposed adaptive

RCI is monotonic.

Fig. 3.10 illustrates the SER of CI and adaptive RCI under QPSK signaling and for

M = N = 4 and M = N = 10 under β = 0.03, α = 0, and β = 10, α = 1.

As revealed, under different CSI qualities and by increasing M , while the SER due to

CI precoding deteriorates, that of the adaptive RCI remains fixed at low-to-intermediate

SNRs, and improves slightly at high SNRs.

Fig. 3.11 depicts the sum rate of linear precoders as a function of M and N , at γ = 10

dB and γ = 25 dB and in the case of α = 1. As revealed, with increasing M , while the

sum rate of CI does not linearly increase, those of standard and adaptive RCI do. Also

adaptive RCI outperforms standard RCI at both low and high SNRs such that the larger

the M and N , the more gain in sum rate can be gleaned by deploying adaptive RCI.
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Figure 3.11: Sum rate of adaptive and standard RCI compared to that of CI as a function of M

and N , at SNRs of 10 dB and 25 dB and for the case of β = 10, α = 1.

Fig. 3.12 demonstrates the average sum rate of linear precoders as a function of M

and N , at γ = 10 dB and γ = 25 dB when α = 0. In this case, at low SNRs and with

increasing M , the sum rate of adaptive RCI does not improve in comparison with that of

standard RCI. However, as SNR gets increased, the performance of adaptive RCI becomes

more prominent than that of standard RCI.

As mentioned earlier, the concept of regularization is most beneficial when there are

equal number of transmit and receive antennas. Nevertheless, in Fig. 3.13, we compare

the SER of adaptive RCI with standard RCI and CI when the number of antennas at BS is

more than the number of receive antennas in total. The results are depicted under QPSK

signaling, β = 10, α = 1 and β = 0.03, α = 0, when M = 8 and N = 10. As revealed,

even for nonsquare channels, the proposed adaptive RCI achieves better performance that

standard RCI and CI. For instance, when α = 1, while the SER of standard RCI is almost

the same as that of CI, adaptive RCI achieves 2dB gain to reach the same SER. It is also

worthwhile to point out that for the case of α = 0, SER curves get saturated at high SNRs

due to the fact that in this case, the system becomes interference limited.

Finally, it is worthwhile to point out why we reckon that the proposed adaptive RCI

compensates the degraded performance of the standard RCI compared to CI subject to

CSI mismatch. This can be clearly observed in Figs. 3.8, 3.9, and 3.13. For example, as

illustrated in Fig. 3.8, while under perfect CSI, standard RCI achieves nearly 10 dB gain
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Figure 3.12: Sum rate of adaptive and standard RCI compared to that of CI as a function of M

and N , at SNRs of 10 dB and 25 dB and for the case of β = 0.03, α = 0.
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Figure 3.13: SER under QPSK signaling for M = 8, N = 10 and for the cases β = 0.03, α = 0,
and β = 10, α = 1.

compared to CI to reach the SER of 10−2, under imperfect CSI, say α = 1, this gain is

nearly 4 dB. However, adaptive RCI compensates this 6 dB loss in performance such that

the achieved gain is now equal to 10 dB.
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3.7 Summary

In this chapter, we quantified the performance of linear precoders, namely CI and RCI, in

the MISO downlink under an imperfect CSI model where the variance of the CSI mea-

surement error depends on the SNR. We first analyzed the performance of CI precoding

and showed that when M = N , the largest eigenvalue of
(
HHH

)−1
has a highly erratic

behavior which results in a degraded performance for CI. In this case and by employ-

ing the concept of regularization, better performance can be gleaned. This way, the RCI

precoder now consists of
(
HHH + ε I

)−1
as opposed to the CI precoder which involves(

HHH
)−1

. We then derived novel bounds regarding the asymptotic mean loss in sum

rate and the achievable DoF of CI and RCI. For example, we showed that when this error

variance scales with the inverse of SNR, full DoF is achievable, and the asymptotic mean

loss in sum rate is therefore a nonzero finite value. More precisely, we showed that if

the intention is to keep the asymptotic mean loss in sum rate bounded, the error variance

must at least scales with the inverse of SNR. It was also shown that subject to imperfect

CSI, the comparative improvement of standard RCI to CI becomes negligible. Accord-

ingly, we proposed an adaptive RCI by deriving an appropriate regularization parameter

as a function of error variance. Simulation results showed that the proposed adaptive RCI

outperforms standard RCI under CSI mismatch such that it compensates the degraded

performance of standard RCI compared to CI.
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Chapter 4

Transmit-Power Efficient Linear

Precoding

4.1 Introduction

In chapter 3, we analyzed the performance of linear precoders, namely CI and RCI, with

the presence of perfect and imperfect CSI at BS. In this chapter, we propose alternative

precoders which enable us to glean more benefits compared to CI and RCI in downlink

cellular communications. These enhanced precoders are likewise linear which can be

readily implemented alongside CI and RCI.

In line with the aim of linear precoders to achieve reduced complexity compared to

nonlinear precoders, [54] proposed a precoding technique based on phase rotation (which

hereafter we call it PA) for multiantenna downlink communications, where instead of

removing the harmful symbol-to-symbol interference, it rotates the phases of the transmit-

ted symbols such that the destructive interference becomes constructive, and eventually

leading to more output SINRs for a fixed transmit power at BS. Further, the superior per-

formance of PA precoding compared to standard linear precoders has been investigated

in [55, 56] for cognitive radio networks.

As discussed in chapter 3, the aim of standard and adaptive RCI is to improve the SER

and the achievable sum rates compared to CI. Aside from improving the SER or through-

put in downlink cellular networks, designing power-efficient precoders has become impor-

tant in recent years. The idea is to minimize the transmit power while securing the same

QoS for each user. Accordingly, we focus on designing such precoders that enable us to

decrease the transmit power in order to achieve the same average output SINR for each
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4.1. Introduction

user. Due to their practical complexity, we focus on linear precoders.

First, we reformulate and enhance the performance analysis of PA precoding in [54] so

that, in line with the aims of green communications [36], the power efficiency (as opposed

to output SINR) can be optimized. In addition, we complete the performance analysis of

PA by analytically calculating the scaling factors, where in [54] only empirical scaling

factors were used for the theoretical results.

We also propose an enhanced PA technique, namely RPA, where based on the perfor-

mance analysis of PA, we derive the required regularization factor for RPA. We analyti-

cally derive the output SINR of the proposed RPA scheme. We also show that to achieve

the same average output SINR for each user, the transmit power reduction achieved by

RPA compared to RCI precoding is the same as that of PA to CI precoding.

It is also shown that the power gains of RPA compared to its counterparts PA, CI and

RCI magnify as the number of transmit antennas increases, which aligns the proposed

scheme with the aims of massive MIMO [57]. In particular, we observe up to more than

50 times savings in the transmit power for RPA (PA) compared to RCI (CI) for systems

with up to a hundred transmit antennas.

Since from the practical point of view, it is more pragmatic to assume that only partial

CSI is available at BS, we also consider the effect of channel estimation errors on the

performance of the proposed schemes. We show that with imperfect transmit-side channel

state information (CSIT), the performance trend of PA and RPA follows the one of the

standard CI and RCI precoders, which further implies that PA and RPA are as sensitive as

the others to erroneous CSIT. Moreover, we consider an adaptive design for the proposed

RPA precoding which achieves significantly better performance under the availability of

imperfect CSI. We do so by deriving an optimum regularization parameter which is a

function of error variance.

In Section 4.2, we reformulate and enhance the performance analysis of PA precoding.

In Section 4.3, we propose RPA precoding which improves the performance of PA. In this

case, we derive optimum regularization parameters under both perfect and imperfect CSI.

In Section 4.4, power efficiency of PA and RPA precoding is evaluated. In Section 4.5 and

by using numerical simulations, we show that RPA precoding outperforms CI, RCI and

PA precoding and enables us to save more power at transmit side for an averagely con-

stant output SINR at each user. Finally Section 4.6 contains a summary of the presented

materials within this chapter.
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4.2 Phase Alignment

In this section, we represent the basic idea of PA precoding in downlink cellular com-

munications. Analogous to the system model discussed in subsection 3.2.1, we consider

MISO downlink communications with block Rayleigh fading such that H ∈ CM×N has

zero-mean unit-variance elements, i.e., vec (H) ∼ NC (0, I). Without loss of generality,

we further assume that the total number of transmit antennas is equal to or more than the

total number of receive antennas, i.e., N ≥ M . We also define R as the covariance matrix

of the channel, i.e., R = HHH. To distinguish the nominal SNR from the output SNR

at each MT, throughout this chapter, we use the term “input SNR” in lieu of the nominal

SNR, i.e., γ = P/σ2.

Note that although the PA precoding was defined in [54], it needs to be redefined in

a relatively different way. This is due to the fact that there is no closed-form expression

for average output SNR of PA precoding. However, in this chapter, we derive a closed-

form expression for this average output SNR which eventually enables us to calculate

the amount of transmit-power reduction of PA precoding compared to CI precoding for

a constant output SNR at each user. This also facilitates the selection of an optimized

regularization parameter for the proposed RPA precoding.

We note that the concept of phase alignment is most beneficial in high interference

scenarios where more gains are to be gleaned by exploiting interference. In these scenarios

typically low order modulation is employed to secure low error rates. Therefore, while the

benefits of the proposed scheme extend to high order QAM modulations, here we focus

on low order PSK.

With PA precoding, instead of nulling out the destructive symbol-to-symbol (or co-

channel) interference (as being done by using R−1 for CI precoding in (3.7)), the knowl-

edge of the data’s and channels’ covariance matrices at transmit side can be used to make

the harmful interference constructive. Fig. 4.1 shows how PA precoding works under

QPSK signaling. If we consider the signal of interest as cℓ = (1+ j)/
√
2 and the interfer-

ing symbol as cx = (−1 + j)/
√
2, the symbol-to-symbol co-channel interference ρℓ,xcx

resulted from cx to cℓ through the (ℓ, x)th element of channel’s covariance matrix R, i.e.,

ρℓ,x, is denoted by the dashed red arrow in the figure. The phase of the interference ρℓ,xcx

with respect to the signal of interest cℓ is denoted by θℓ,x. For QPSK constellation the real

and imaginary axes are decision thresholds. It is clear that for the interfering symbol cx

the resulting interference ρℓ,xcx is harmful since its accumulation with the signal of inter-

est move the received symbol ÿℓ closer to the QPSK decision thresholds. The goal of the
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ẏℓ

1√
2

Re

cx cℓ

ρℓ,xcx
ρℓ,xcxθℓ,x

1√
2

ÿℓ
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Figure 4.1: Phase alignment for QPSK constellation. ÿℓ is the received symbol without phase
alignment while ẏℓ is the received symbol with phase alignment.

phase alignment precoding is to correct the phase of all transmitted symbols and rotating

the angle of correlation between them such that the resulting symbols after precoding are

aligned to the signal of interest cℓ. The desired symbol cℓ and the aligned interference

ρℓ,xcxθℓ,x, respectively, are shown by the solid green and red arrows in Fig. 4.1, which add

up to ẏℓ denoted by solid blue one. With respect to the fact that the magnitudes of cℓ and

cx are equal to one, i.e., |cℓ| = |cx| = 1, the relative phase θℓ,x can be expressed as

ρℓ,xcxθℓ,x ∝ cℓ =⇒ θℓ,x =
(ρℓ,xcx)

H

|ρℓ,x|
cℓ (4.1)

where ∝ means linear proportionality. From (4.1) it is evident that |θℓ,x| = 1 and therefore

the amplitude of the rotated correlations remains unchanged. Now the matrix Rθ which

contains the phase rotated correlation elements can be shown as

[Rθ]ℓ,x = ρℓ,xθℓ,x = ρℓ,x
(ρℓ,xcx)

H

|ρℓ,x|
cℓ = |ρℓ,x|cℓcH

x (4.2)

From the matrix algebra perspective, (4.2) is equivalent to

Rθ = |R| ⊙C (4.3)

where C = ccH is the covariance matrix of the input data vector c and⊙ denotes Hadamard

(element-wise) matrix product.
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Remark 4.1: By considering (4.3) and with respect to the fact that the Hadamard

product is a linear operator, it can be seen that PA precoding (and consequently the pro-

posed RPA precoding as being discussed later) is linear, as also stated in [54].

Remark 4.2: As denoted in (4.3), PA precoding is only dependant on the amplitudes

of the elements of the channel’s covariance matrix as well as the covariance matrix of the

transmitted data which are known at BS prior to downlink transmission. Therefore similar

to CI and RCI precoding, the signal processing enhancement of PA precoding is going to

be done at BS and consequently no overhead is introduced to MTs.

With respect to (3.1), the receive signal can now be shown as

yPA =
√
PHsPA + z (4.4)

where

sPA = gPAΨPAc (4.5)

is the transmitted signal, and the precoding matrix can be defined as

ΨPA = HHR−1Rθ (4.6)

and the scaling factor is equal to [54]

gPA =
1√

Tr [R2
θR

−1]
(4.7)

4.2.1 Instantaneous Output SNR

In this subsection and by assuming PA precoding, the instantaneous output SNR of each

user is derived. After going through the channel, the received signal related to the ℓth user

(ℓ = 1, . . . ,M) can be shown as

y
[ℓ]
PA =

√
PgPA [Rθ]ℓ⋆ c+ zℓ =

√
PgPA

M∑

x=1

|ρℓ,x|cℓcH
xcx + zℓ

=
√
PgPAcℓ

M∑

x=1

|ρℓ,x|+ zℓ

=
√
PgPAcℓ|ρℓ,ℓ|︸ ︷︷ ︸

desired signal

+
√
PgPAcℓ

M∑

x=1
x 6=ℓ

|ρℓ,x|

︸ ︷︷ ︸
constructive interference

+zℓ (4.8)
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Type of Random Variable E {|ρℓ,x|} E {|ρℓ,x|2}
ℓ 6= x Rayleigh σ2

h

√
Nπ/2 σ4

hN

ℓ = x χ-square σ2
hN σ4

hN (N + 1)

Table 4.1: Statistical properties of |ρℓ,x|, where ρℓ,x is the (ℓ, x)th element of R = HH
H and

vec (H) ∼ NC

(
0, σ2

hI
)

(Appendix A).

where [Rθ]ℓ⋆ denotes the ℓth row of matrix Rθ in (4.3), and zℓ is the ℓ-th element of the

noise vector z which is the circularly symmetric additive white Gaussian noise with zero

mean and variance σ2, i.e., zℓ ∼ NC (0, σ
2). From (4.8), it can be seen that the received

signal, due to the phase alignment of the co-stream interference, is a factor of only the

desired symbol cℓ and not the interfering symbol cx, as depicted in Fig. 4.1. Since this

interference contributes to the signal power, the effective SINR instead of the standard

form (η̌ = S
I+σ2 ) can be expressed as η̂ = S+I

σ2 where S denotes the desired signal’s power,

I is the additional signal power due to the constructive interference and σ2 denotes the

noise variance of each user. Therefore, it is basically a case of signal-plus-noise at the

receiver and consequently for the case of PA precoding, we present an SNR calculation as

opposed to SINR. Hence, similar to CI precoding, the output SNR of ℓth user based on PA

precoding can be shown as

ηPA =
Pg2PA
σ2

(
M∑

x=1

|ρℓ,x|
)2

(4.9)

4.2.2 Average Output SNR

Since no closed-form expression for average output SNR of PA precoding is presented

in [54], in this subsection, we calculate this value. In order to compare the power effi-

ciency of PA precoding to that of CI precoding and also to find an optimized regularization

parameter for our proposed scheme in the following section, we should represent the out-

put SNR of PA precoding similar to that of CI precoding in (3.9). To do so, by considering

some simplifying steps and by taking the expectation over ηPA in (4.9), we can represent

the average output SNR of each user as
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η′PA =

P E





(
gPA

M∑

x=1

|ρℓ,x|
)2




σ2
=

P E {g2PA}E





(
M∑

x=1

|ρℓ,x|
)2




σ2
(4.10)

Here we have assumed that gPA is statistically independent of the data and the channel’s

covariance coefficients. While (4.7) contradicts this assumption, this is an affordable and

common simplification to attain a closed form approximation of the average output SNR

[58]. Moreover, for large M this becomes more justifiable, as derived by the law of large

numbers. To further proceed, we should derive the statistical properties of random variable

|ρℓ,x| which is presented in Table 4.1 (for a proof consult Appendix A). In the sequel

and for the perfect CSI case, we assume that vec (H) ∼ NC (0, I) and consequently the

statistical properties of |ρℓ,x| can be obtained by setting σ2
h equal to one. Therefore after

some straightforward manipulations, (4.10) can be expressed as

η′PA =
P E {g2PA}

σ2
N
[
(N + 1) + (M − 1)

(
1 +

√
Nπ + (M − 2)

π

4

)]
(4.11)

To calculate η′PA in (4.11), we first consider the following theorem:

Theorem 4.1: E {g2PA} can be represented as

E
{
g2PA
}
=

1

N (M +N) Tr [R−1]
(4.12)

Proof: Based on (4.7), we have

g2PA =
1

Tr [R2
θR

−1]
(4.13)

Therefore to calculate E {g2PA}, we should find the value of E {Tr [R2
θR

−1]}−1
. Since both

R2
θ and R−1 are Hermitian matrices, by using eigen-decomposition we have

R2
θ = UθΛθU

H
θ (4.14)

R−1 = UrΛrU
H
r (4.15)

where Uθ and Ur are unitary matrices containing the eigenvectors of R2
θ and R−1, re-

spectively, and Λθ and Λr are diagonal matrices consisting of eigenvalues of R2
θ and R−1,
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respectively. Note that since we assumed i.i.d. input signaling, R2
θ is a random matrix, so

is Uθ. Therefore E {Tr [R2
θR

−1]} can be written as

E
{
Tr
[
R2

θR
−1
]}

=E
{
Tr
[
UθΛθU

H
θUrΛrU

H
r

]}

=E
{
Tr
[
UH

rUθΛθU
H
θUrΛr

]}
(4.16)

Now if we define U , UH
rUθ, (4.16) can be shown by

E
{
Tr
[
R2

θR
−1
]}

=E
{
Tr
[
UΛθU

HΛr

]}

=E

{
M∑

i=1

M∑

k=1

λr,iλθ,k |ui,k|2
}

(4.17)

where λr,i and λθ,k are the ith and the kth diagonal elements of matrices Λr and Λθ,

respectively, and ui,k denotes the (i, k)th element of unitary matrix U.

To continue, we consider the following lemma [3]:

Lemma 4.1: If the Hermitian unitary invariant1 random matrix W can be eigen-

decomposed as W = UΛUH, then the unitary matrix U, which is a Haar2 matrix, is

independent of the diagonal matrix Λ.

Since both Uθ and Ur are random matrices, so is U, hence E
{
|ui,k|2

}
=

1

M
[3], and

based on lemma 4.1, we can write (4.17) as

E
{
Tr
[
R2

θR
−1
]}

=
M∑

i=1

M∑

k=1

λr,i E {λθ,k}E
{
|ui,k|2

}

=
1

M
E
{
Tr
[
R2

θ

]}
Tr
[
R−1

]
(4.18)

Note that since R−1 is a square matrix, E {Tr [R−1]} does not exist [3], therefore we

continue with Tr [R−1]. To further proceed, we consider the following lemma:

Lemma 4.2: Tr [R2
θ] = Tr [R2]

Proof: To continue with proof we just need to show that the ℓth diagonal elements of

R2
θ and R2 are the same. Since matrix Rθ is Hermitian, we have R2

θ = RθR
H
θ . Hence we

1A Hermitian random matrix W is called unitary invariant if the joint distribution of its entries equals

that of VWV
H for any unitary matrix V independent of W.

2A M ×M random matrix U is a Haar matrix (also called isotropic in the multiantenna literature) if it

is uniformly distributed on the set of M ×M unitary matrices.
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can write

ṙℓ,ℓ =
M∑

i=1

rℓ,ir
H
ℓ,i (4.19)

where ṙℓ,ℓ is the ℓth diagonal element of R2
θ, and rℓ,i is the (ℓ, i)th element of Rθ. Based

on (4.3), rℓ,i = |ρℓ,i| cℓcH
i where cℓ is the ℓth element of the data vector c. Therefore we

can rewrite (4.19) as

ṙℓ,ℓ=
M∑

i=1

|ρℓ,i| cℓcH
i

(
|ρℓ,i| cℓcH

i

)H
=

M∑

i=1

|ρℓ,i| cℓcH
i cic

H
ℓ |ρℓ,i|H

=

M∑

i=1

|ρℓ,i|2 =
M∑

i=1

ρℓ,iρ
H
ℓ,i (4.20)

So from (4.20), we can deduce that the ℓth diagonal element of R2
θ, i.e., ṙℓ,ℓ, is equal to

that of R2 = RRH which is denoted by

M∑

i=1

ρℓ,iρ
H
ℓ,i

Therefore we have

E
{
g2PA
}
=

M

E {Tr [R2]}Tr [R−1]
(4.21)

and since E {Tr [R2]} = MN (M +N) [3], E {g2PA} can be shown as

E
{
g2PA
}
=

1

N (M +N) Tr [R−1]
(4.22)

Therefore by considering theorem 4.1, (4.11) can now be written as

η′PA =
P
[
(N + 1) + (M − 1)

(
1 +

√
Nπ + (M − 2)

π

4

)]

(M +N) σ2Tr [R−1]
(4.23)

Analogous to the same procedures of CI precoding in equations (3.8)–(3.9), and with

respect to equation (4.23) and by considering Tr [R−1] =

M∑

ℓ=1

[
R−1

]
ℓ,ℓ

, the average output

SNR of PA precoding for the ℓth user can be represented by

η′PA =
snrPA

[R−1]ℓ,ℓ
1 ≤ ℓ ≤ M (4.24)
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where

snrPA =
P
[
(N + 1) + (M − 1)

(
1 +

√
Nπ + (M − 2)

π

4

)]

M (M +N) σ2
(4.25)

Now, the output SNR of PA precoding in (4.24) is of similar form to that of CI pre-

coding in (3.9) in the sense that both of these equations have the same denominator. As

mentioned before, this treatment of output SNR of PA precoding will help us compare the

power efficiency of PA precoding to that of CI precoding and also facilitates the selection

of a regularization parameter for the proposed RPA precoding in the following section.

4.3 Regularized Phase Alignment

In the previous section, we showed that PA precoding aims to rotate the phases of the

transmitted symbols such that for each MT, the interferences of remaining M − 1 streams

add up coherently and consequently we can glean higher output SNRs for all MTs; how-

ever, since PA inherently uses channel inversion (see (4.6)), it is still problematic when the

channel is ill-conditioned. To overcome this deficiency, we propose to use the concept of

RCI precoding by adding a multiple of the identity matrix (i.e., εI) to R before inverting.

Since ε controls the amount of interference introduced to each user, the most important

point is how to choose ε to get the optimum performance since ε can take on any positive

value. In section 3.4, we mentioned that under perfect CSI and for RCI precoding, this

amount of ε is equal to ε = Mγ−1 which is optimal when M is large and works well

even with small M , as also discussed in [13]. Moreover, under imperfect CSI, we derived

an appropriate regularization parameter described in (3.45). Now in this section, we sim-

ilarly derive optimum regularization parameters for the proposed RPA precoding under

both perfect and imperfect CSI.

4.3.1 Precoder Design under Perfect CSI

In this subsection, we derive a regularization parameter for RPA precoding under perfect

CSI, and the corresponding output SINR at each user is derived. Since there is a one-to-one

mapping from PA to RPA precoding which is similar to that of CI to RCI precoding and

since all these four precoders are linear, comparison can be used to seek a regularization

parameter.

Since the output SNRs of CI and PA precoding resemble each other (see (3.9) and

(4.24)); analogous to RCI precoding, and by comparing (4.24) with (3.9), it turns out that
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4.3. Regularized Phase Alignment

one good choice of ε for the proposed RPA precoding can now be obtained via the inverse

of (4.25), i.e.,
1

snrPA
. In subsection 4.3.2, we will show that this regularization parameter

is optimum under perfect CSI. In this case, the transmitted signal is given by

sRPA = gRPAΨRPAc (4.26)

where

ΨRPA = HH

(
R+

1

snrPA
I

)−1

Rθ (4.27)

is the precoding matrix and the scaling factor can be shown as

gRPA =
1√√√√Tr

[
R

(
R+

1

snrPA
I

)−1

R2
θ

(
R+

1

snrPA
I

)−1
] (4.28)

Therefore the received signal can now be represented as

yRPA =
√
P gRPAHHH

(
R+

1

snrPA
I

)−1

Rθc+ z

=
√
P gRPAH

(
HHH+

1

snrPA
I

)−1

HHRθc+ z

(4.29)

Since Rθ = |R| ⊙C, we define

c , Rθc =

(
c1

M∑

x=1

|ρ1,x| , . . . , cM
M∑

x=1

|ρM,x|
)⊤

(4.30)

Let hH

ℓ ∈ C1×N denote the ℓth row of H and Hℓ ∈ C(M−1)×N designate the submatrix

obtained by striking hH

ℓ out of H. We also assume that cℓ denotes the ℓth element of c and

cℓ stands for the subvector obtained by removing cℓ from c. Then, the received signal at

the ℓth user can be shown as

y
[ℓ]
RPA =

√
PgRPAh

H

ℓ

(
HHH+

1

snrPA
I

)−1

HHc+ zℓ

=
√
PgRPAh

H

ℓ

(
HHH+

1

snrPA
I

)−1

hℓcℓ
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+
M∑

x 6=ℓ

√
PgRPAh

H

ℓ

(
HHH+

1

snrPA
I

)−1

hxcx + zℓ

=
√
PgRPAh

H

ℓ

(
HHH+

1

snrPA
I

)−1

hℓcℓ
︸ ︷︷ ︸

desired signal

+
√
PgRPAh

H

ℓ

(
HHH+

1

snrPA
I

)−1

HH
ℓ cℓ

︸ ︷︷ ︸
interference

+zℓ (4.31)

Based on the matrix inverse lemma 3.4 on page 38, we have

(
HHH+

1

snrPA
I

)−1

hℓ =

(
HH

ℓ Hℓ +
1

snrPA
I

)−1

hℓ

1 + hH

ℓ

(
HH

ℓ Hℓ +
1

snrPA
I

)−1

hℓ

(4.32)

by considering i.i.d. input signaling and with respect to lemma 3.3 on page 30, the output

SINR of the ℓth user based on RPA precoding is equal to

ηRPA =
P g2RPAG

2
ℓFℓ

P g2RPADℓ + (1 +Gℓ)
2 σ2

(4.33)

where Fℓ =

(
M∑

x=1

|ρℓ,x|
)2

, Gℓ = hH

ℓ

(
HH

ℓ Hℓ +
1

snrPA
I

)−1

hℓ,

Dℓ = hH

ℓ

(
HH

ℓ Hℓ +
1

snrPA
I

)−1

HH
ℓ ΥℓHℓ

(
HH

ℓ Hℓ +
1

snrPA
I

)−1

hℓ

such that Υℓ = diag {F1, . . . , Fℓ−1, Fℓ+1, . . . , FM} and diag {·} is the diagonal operator.

4.3.2 Precoder Design under Imperfect CSI

Since in practice, acquiring perfect CSI is not pragmatic and only partial CSI may be

accessible, in this subsection, we propose an adaptive RPA precoding which outperforms

the original RPA precoding (defined in subsection 4.3.1) in the case of CSI mismatch.

In this case, we derive an appropriate regularization parameter for the proposed adaptive

RPA precoding. In this case, we assume that instead of perfect CSI, i.e., H, only imperfect

CSI Ĥ is available at BS, where Ĥ and H are related to each other through (3.2) and (3.4).
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Moreover, we assume that the BS is in possession of the variance of the channel estimation

error, i.e., τ , which is possible to be known in advance, as discussed in subsection 3.2.2.

With respect to (4.27) and by considering the availability of imperfect CSI at BS, we

define

Ψ̂RPA = Ψ̈R̂θ (4.34)

such that

R̂θ =
∣∣∣R̂
∣∣∣⊙C where R̂ = ĤĤH (4.35)

and the scaling factor is equal to

ĝRPA =
1√

Tr
[
Ψ̂H

RPAΨ̂RPA

] (4.36)

The precoder under imperfect CSI can be found by using the following optimization cri-

terion:

arg min
Ψ̈

E

{∥∥∥
√
PHΨ̈ĉ+ f̈z−

√
P ĉ

∥∥∥
2

2

}
(4.37)

where

ĉ = R̂θc (4.38)

and

f̈ =
1 + τ

ĝRPA
= (1 + τ)

√
Tr
[
Ψ̂H

RPAΨ̂RPA

]
= (1 + τ)

√
Tr
[
R̂H

θ Ψ̈
HΨ̈R̂θ

]
(4.39)

Note that the inclusion of f̈ in (4.37) is due to the fact that in all precoding schemes, the

power of noise is affected by the precoding matrix, and consequently, this effect can be

reflected through a multiplicative factor like f̈ . This can be perceived with respect to the

fact that at transmit side, the transmitted signals get scaled by g to meet the power con-

straints; consequently at receive side, to have an unbiased detection, the received signals

should be scaled back by (1 + τ) /g which further appears as a multiplicative factor for

the noise vector.

To further proceed, we consider the following two lemma:

Lemma 4.3: E
{
ĉĉH
}
= ̺I where

̺ = N (1 + τ)2
[
(N + 1) + (M − 1)

(
1 +

√
Nπ + (M − 2)

π

4

)]
(4.40)
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Proof: Note that (4.38) can be rewritten as

ĉ =

(
c1

M∑

x=1

|ρ̂1,x| , . . . , cM
M∑

x=1

|ρ̂M,x|
)⊤

(4.41)

Also by considering (3.2), we have vec
(
Ĥ
)

∼ NC (0, (1 + τ) I). Therefore, the sta-

tistical properties of |ρ̂ℓ,x|, which is the (ℓ, x)th element of R̂ in (4.35) can be obtained

by setting σ2
h = 1 + τ in the values of Table 4.1. Therefore, after some straightforward

manipulations and by considering the fact that E
{
ccH
}
= I, the claim follows.

Lemma 4.4: E

{
R̂2

θ

}
= κ I where

κ = N (1 + τ)2 (M +N) (4.42)

Proof: Based on (4.35), we have

E

{
R̂2

θ

}
= diag

(
E

{[
R̂2
]
1,1

}
, . . . ,E

{[
R̂2
]
M,M

})
(4.43)

With respect to the fact that R̂ is a Hermitian matrix, we have

[
R̂2
]
ℓ,ℓ

=

M∑

i=1

|ρ̂ℓ,i|2 (4.44)

Thus, based on Table 4.1 and by considering the fact that in this case we set σ2
h = 1 + τ ,

E

{[
R̂2
]
ℓ,ℓ

}
= N (1 + τ)2 (M +N). Thus, the claim follows.

Due to lemma 4.3 and lemma 4.4, the objective function in (4.37) can be shown as

F̈ = E

{
Tr

[(√
PHΨ̈ĉ+ f̈z−

√
P ĉ
)(√

PHΨ̈ĉ+ f̈z−
√
P ĉ
)H]}

= E

{
Tr
[
PHΨ̈ĉĉHΨ̈HHH + f̈ 2zzH − PHΨ̈ĉĉH − P ĉĉHΨ̈HHH + P ĉĉH

+
√
P f̈HΨ̈ĉzH +

√
P f̈zĉHΨ̈HHH −

√
P f̈ ĉzH −

√
P f̈zĉH

]}

➀
= P̺Tr

[
Ψ̈HHHHΨ̈

]
+Mσ2 (1 + τ)2 κTr

[
Ψ̈HΨ̈

]
− P̺Tr

[
HΨ̈

]

− P̺Tr
[
Ψ̈HHH

]
+ PM̺ (4.45)

where ➀ follows lemma 3.3 on page 30. To obtain the sought precoder, we can differenti-
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ate F̈ with respect to Ψ̈ by first considering the following assumptions [50, 51]:

1. Ψ̈ and Ψ̈H are treated as independent variables.

2.
∂ Tr

[
AΨ̈

]

∂Ψ̈
=

∂ Tr
[
Ψ̈A

]

∂Ψ̈
= A.

Following the preceding assumptions, the differentiation of F̈ with respect to Ψ̈ gives

∂F̈

∂Ψ̈
= P̺Ψ̈HHHH+Mσ2 (1 + τ)2 κΨ̈H − P̺H

➁
= P̺Ψ̈H

(
Ĥ

1 + τ
+ H̆

)H(
Ĥ

1 + τ
+ H̆

)
+Mσ2 (1 + τ)2 κΨ̈H

− P̺

(
Ĥ

1 + τ
+ H̆

)
(4.46)

where ➁ follows from (3.4). The adaptive precoder can then be found by setting
∂F̈

∂Ψ̈
equal

to zero and taking the expectation over H̆. Therefore with respect to the fact that due to

lemma 3.1 on page 28, Ĥ and H̆ are independent, we can represent the precoding matrix

as

EH̆

{
∂F̈

∂Ψ̈

}
= 0 =⇒ Ψ̈ = ĤH

(
ĤĤH + ε̈ I

)−1

(4.47)

where the regularization parameter ε̈ can now be expressed as

ε̈ = M (1 + τ)

(
τ+

γ−1 (1 + τ)3 κ

̺

)

= M (1 + τ)



τ +

γ−1 (1 + τ)3 (M +N)

(N + 1) + (M − 1)

(
1+

√
Nπ + (M − 2)

π

4

)




(4.48)

Remark 4.3: Note that by setting τ = 0, ε̈ boils down to
1

snrPA
which is the appropri-

ate regularization parameter for RPA precoding under perfect CSI, where snrPA is defined
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in (4.25). This verifies that the derived regularization parameter
1

snrPA
in subsection 4.3.1

is optimal under perfect CSI. Moreover, this implies that the proposed adaptive design of

RPA precoding is a generalized version of the original RPA such that it accommodates the

perfect CSI as a special scenario.

Therefore, for the proposed adaptive RPA, the transmitted signal from BS can be

shown as

ŝadaptive RPA = g̈Ψ̈R̂θc (4.49)

where Ψ̈ is defined in (4.47), and g̈ is the scaling factor which can be represented as

g̈ =
1√

Tr

[
R̂
(
R̂+ ε̈I

)−1

R̂2
θ

(
R̂+ ε̈I

)−1
] (4.50)

4.4 Power Efficiency

In this section, we investigate the ability of PA and RPA precoding techniques to save the

transmit power, which is more appropriate in the sense of green communications [36].

Moreover, we assume that only perfect CSI is available at BS, since evaluating the power

efficiency of linear precoders under imperfect CSI is generally inconclusive. We want to

investigate that for an averagely constant output SINR at each user, how much power sav-

ing RPA (PA) precoding achieves in comparison with RCI (CI) precoding. By considering

(4.24) and (3.9), if PPA and PCI, respectively, represent the deployed power for each user

by PA and CI precoding (via replacing P ), then for the same output SNR of PA and CI

precoding we have

η̇CI = η′PA=⇒
PCI

Mσ2 [R−1]ℓ,ℓ
=

PPA

[
(N + 1) + (M − 1)

(
1 +

√
Nπ + (M − 2)

π

4

)]

M (M +N) σ2 [R−1]ℓ,ℓ

=⇒ξ ,
PPA

PCI

=
M +N

(N + 1) + (M − 1)
(
1 +

√
Nπ + (M − 2)

π

4

) (4.51)

which means that with PA precoding, we can reduce the deployed power by a factor of

ξ, to preserve the same average output SNR as CI precoding, and this results in power

efficiency of

Power Efficiency = 10 log10
(
ξ−1
)

dB (4.52)
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for each user. We will show that this analytical result closely matches the simulations.

If we define PRPA and PRCI as the deployed power by RPA and RCI precoding, re-

spectively, by using the numerical simulations in the following section, we show that still

PRPA/PRCI ≈ ξ. Unfortunately due to the complexity of MMSE expressions, it is not

possible to prove it mathematically; however, conceptually we can say that since there

is a one-to-one mapping from PA to RPA precoding which is similar to that of CI to

RCI precoding and since all these four precoders are linear, therefore we can expect that

PRPA/PRCI ≈ ξ.

One interesting observation from (4.51) is that, the larger both M and N , the more

power we can save at transmit side. For example, in the following section we show that

when M = N = 16, we can decrease the transmit power of PA precoding by 9.8dB (a

nearly 10-fold reduction in transmit power) to deliver the same average output SNR to each

user compared to CI precoding. This 10-fold reduction is also valid for RPA precoding

compared to RCI precoding which makes the proposed RPA precoding very vital at low

input SNR ranges.

Also based on (4.51), one can conclude that for a fixed number of transmit antennas

at BS, i.e., N , the smaller the M , the less power efficiency can be gleaned. The most

power-efficient case is related to M = N . This implies that for a fixed number of trans-

mit antennas, i.e., N , the less number of users results in less power saving at BS. This

highlights the importance of multiuser diversity.

4.5 Numerical Results

In this section, we provide numerical results to show the superior performance of the

proposed RPA precoding compared to the other three precoders.

In simulations and without loss of generality, we assume that each user has one receive

antenna. Also we consider the same fading model as the one discussed in subsection 3.2.1.

Moreover, the output SINRs of CI, RCI, PA, and RPA precoding are related to equations

(3.9), (3.39), (4.9), and (4.33), respectively.

To verify the accuracy of the derived SINR in (4.33), we evaluated the SER based on

analytical and simulated results in Fig. 4.2 where it can be seen that the SER curves of

these two methods closely match. This confirms the accuracy of the derived formula of

the output SINR of RPA precoding.

Fig. 4.3 shows the comparison of the average SER based on CI, RCI, PA and RPA
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Figure 4.2: Comparison of the average SER of RPA precoding, based on analytical and simu-
lated results for M = N = 4 and M = N = 16 and QPSK constellation.

precoding, where by increasing the number of users (and increasing the number of transmit

antennas accordingly) from M = N = 4 to M = N = 16, the following behaviors are

observed:

1. CI Precoding: each user experiences inferior SER performance.

2. RCI Precoding: the SER performance of each user remains constant at low input

SNRs, and improves slightly at high input SNRs, as also shown in [13].

3. PA Precoding: the SER performance of each user remains almost constant for all

input SNR ranges.

4. RPA Precoding: each user experiences significantly better SER performance for all

input SNR ranges.

As seen, for M = N = 4 and to achieve a fixed SER, RPA yields 2.5dB gain compared to

the PA, and for M = N = 16 this gain is about 10dB at low input SNRs and 15dB at high

input SNRs.

Fig. 4.4 depicts the performance of CI, RCI, PA, and RPA precoding for M = 10,

N = 16, and under QPSK signaling. As revealed, the proposed RPA precoding is able

to achieve better performance even when the number of receive antennas is less than the

number of transmit antennas at BS. However, when N > M , the performance of the

non-regularized precoders becomes very close to that of the regularized ones.
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Figure 4.3: Comparison of the average SER of CI, RCI, PA and RPA precoding for M = N = 4
and M = N = 16 and QPSK constellation.
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Figure 4.4: Comparison of the average SER of CI, RCI, PA and RPA precoding for M = 10 and
N = 16 and QPSK constellation.

In Figs. 4.5–4.10, we assess the power-efficiency of PA and RPA precoding. Fig.

4.5 depicts the probability density of the output SINR of each user based on different

precoding schemes for the case M = N = 16. Based on our discussions in section 4.4

and with respect to equation (4.51), we expect that for M = N = 16 and for a fixed
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Figure 4.5: Probability density of output SINR of each user based on different precoding tech-
niques and for M = N = 16. For CI and RCI precoding, the input SNR is equal to −10dB while for

PA and RPA precoding the input SNR is equal to −19.8 dB.

average output SINR, PA and RPA precoding, respectively, achieve 9.8dB decrease in the

transmit power compared to CI and RCI precoding for each user. Fig. 4.5 verifies this

behavior. For example, as seen, the mean of the output SINR of each user based on RPA

precoding with input SNR −19.8dB is almost the same as that of RCI precoding with

input SNR −10dB.

In Fig. 4.6, we compare the complementary cumulative distributions (CCDs) of the

output SINR of each user for the case M = N = 16. As observed, the CCD of the output

SNR of PA precoding with input SNR −19.8dB is almost the same as that of CI precoding

with input SNR −10dB. Also for 40% of channel realizations, the minimum output SINR

of each user based on RPA precoding with input SNR −19.8dB is the same as that of RCI

precoding with input SNR −10dB.

Fig. 4.7 depicts the probability density of the output SINR of each user based on

different precoding schemes for the case M = 10, N = 16. Based on our discussions

in section 4.4 and with respect to equation (4.51), we expect that for M = 10, N = 16

and for a fixed average output SINR, PA and RPA precoding, respectively, achieve 7.5dB

decrease in the transmit power compared to CI and RCI precoding for each user. Fig.

4.7 verifies this behavior. For example, as seen, the mean of the output SINR of each

user based on RPA precoding with input SNR −17.5dB is almost the same as that of RCI
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Figure 4.6: Complementary cumulative distributions of output SINR of each user based on dif-
ferent precoding techniques and for M = N = 16. For CI and RCI precoding, the input SNR is

equal to −10dB while for PA and RPA precoding the input SNR is equal to −19.8 dB.
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Figure 4.7: Probability density of output SINR of each user based on different precoding tech-
niques and for M = 10, N = 16. For CI and RCI precoding, the input SNR is equal to −10dB while

for PA and RPA precoding the input SNR is equal to −17.5 dB.

precoding with input SNR −10dB.

In Fig. 4.8, we compare the CCDs of the output SINR of each user for the case
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Figure 4.8: Complementary cumulative distributions of output SINR of each user based on dif-
ferent precoding techniques and for M = 10, N = 16. For CI and RCI precoding, the input SNR is

equal to −10dB while for PA and RPA precoding the input SNR is equal to −17.5 dB.

M = 10, N = 16. As observed, for 60% of channel realizations, the minimum output

SINR of each user based on PA precoding with input SNR −17.5dB is the same as that of

CI precoding with input SNR −10dB. Also for 40% of channel realizations, the minimum

output SINR of each user based on RPA precoding with input SNR −17.5dB is the same

as that of RCI precoding with input SNR −10dB.

Fig. 4.9 shows the power efficiency of RPA (PA) to RCI (CI) for the case M =

N . As depicted, the larger the M and N , the more power we can save at transmit side.

This demonstrates the importance of PA and RPA precoding in the context of massive

MIMO. For example with M = N = 100, the proposed RPA precoding enables us to save

nearly 17dB (a 50-fold reduction) transmit power compared to RCI precoding for each

user, which is significant at low input SNRs.

Fig. 4.10 shows the power efficiency of RPA (PA) to RCI (CI) as a function of N for

a fixed M , e.g., M = 4. As revealed, the larger the N , the less power we can save at

transmit side. This demonstrates the importance of PA and RPA precoding when M and

N increase proportionally.

The throughput of different linear precoding techniques are illustrated in Fig. 4.11 for

the case M = N = 16 and for both QPSK and 8-PSK constellations under perfect CSI. In
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Figure 4.9: Average power efficiency of RPA (PA) to RCI (CI) precoding for M = N .
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Figure 4.10: Average power efficiency of RPA (PA) to RCI (CI) precoding as a function of N

when M = 4.

the results depicted, the throughput is expressed as

(1− blkerr)M log2M bits per channel use (4.53)

where blkerr is the block error rate (here we considered each block consists of 128 sym-
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Figure 4.11: Average throughput for CI, RCI, PA and RPA precoding, for M = N = 16 and for
QPSK and 8-PSK constellations.

−10 0 10 20 30 40
10

−3

10
−2

10
−1

10
0

Input SNR [dB]

S
E

R

 

 

CI

PA

RCI

Adaptive RCI

Adaptive RPA

β=0.03, α=0

Perfect CSI

Figure 4.12: Average SER performance of CI, RCI, PA and RPA precoding, for M = N = 16
under QPSK signaling and for the input SNR-independent error model, i.e., β = 0.03, α = 0.

bols), M = 4 for QPSK and M = 8 for 8-PSK constellations. As seen, the proposed RPA

precoding achieves better throughput compared to the other three precoders. For example,

at input SNR 7.5dB and for QPSK modulation, while CI, RCI and PA precoders give no

throughput, that is attained by RPA precoding is equal to 5 bits per channel use.
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Figure 4.13: Average SER performance of CI, RCI, PA and RPA precoding, for M = N = 16
under QPSK signaling and for the input SNR-dependent error model, i.e., β = 10, α = 1.

So far, we have assumed perfect CSIT is available at BS. However since practically

it is not easy to obtain perfect CSIT, we examine the performance (or sensitivity) of PA

and RPA under channel estimation errors in comparison with CI and RCI. Without loss of

generality we place our focus on merely SER performance analysis. Figs. 4.12–4.13 show

the average SER of different precoding schemes under QPSK signaling and for the case

M = N = 16, when only imperfect CSI is available at BS. The SER results of perfect

CSIT are also repeated for comparison. Note that under perfect CSI, adaptive RCI and

adaptive RPA boils down to standard RCI and RPA, respectively. We modeled the imper-

fect CSI based on the error variance τ = βγ−α as demonstrated in (3.3) within subsection

3.2.2. More specifically, the results of Fig. 4.12 and Fig. 4.13 are respectively related to

β = 0.03, α = 0 which represents the CSI feedback scenario (which is independent of in-

put SNR), and β = 10, α = 1 which reflects the reciprocal channels (which is dependent

on input SNR).

As revealed, even under imperfect CSI, the SER performance of PA is better than (for

α = 0) or equal to (for α = 1) that of CI. Also the proposed adaptive RPA described

in subsection 4.3.2 notably outperforms standard RCI in [13] subject to CSI mismatch.

However, the proposed adaptive RCI described in section 3.5 achieves slightly better per-

formance than adaptive RPA for the case α = 1. Nevertheless, the proposed adaptive RPA

achieves better performance than adaptive RCI at low input SNRs for the case α = 0.
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This nonmonotonic behavior of standard RCI in Fig. 4.12 and for the case of α = 0 is due

to the fact that at low-to-intermediate SNRs (i.e., the noise-limited regime), standard RCI

outperforms CI; however at high SNRs (i.e., the interference-limited regime), standard

RCI and CI become almost equivalent [49].

4.6 Summary

We considered linear precoders in multiantenna downlink communications. We reformu-

lated PA precoding which aims to rotate the phases of transmit symbols such that they

cause constructive interference. Unlike CI precoding where we null out the interference

completely, there is no need to remove the interference by using PA precoding. Conse-

quently and by considering a fixed transmit power, PA precoding delivers more output

SNR to each user compared to CI precoding. However, PA precoding is still problematic

when channel is ill-conditioned. Therefore, we proposed an enhanced version of PA pre-

coding (named RPA) by deriving an optimum regularization parameter, and showed that

it achieves better SER and throughput than CI, RCI and PA precoding specially when the

number of transmit and receive antennas becomes larger. It was also shown that PA and

RPA precoding enable us to decrease the deployed power at transmit side to achieve the

same average output SINR for each user, compared to CI and RCI precoding, respectively.

This transmit-power reduction is more significant when there is a large number of transmit

and receive antennas. We also illustrated that even with imperfect CSIT, the performance

trend of PA and RPA follows that of standard precoders. Additionally, we proposed an

adaptive RPA precoding, which with the knowledge of error variance in advance, is able

to notably outperform CI, standard RCI and PA precoding under CSI mismatch. We did so

by deriving an appropriate regularization parameter which is a function of error variance.
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Chapter 5

Interference Alignment under CSI

Mismatch

5.1 Introduction

In chapters 3 and 4, we analyzed the performance of linear precoders in the downlink

cellular communications restricted to merely one cell. In this chapter and also the subse-

quent ones, we consider a more complex scenario where several transmitters communicate

with their corresponding receivers at the same frequency and time slots. This scenario is

commonly referred as IC or wireless interference networks.

Capacity characterization of wireless interference networks has been a hot topic for

years since it provides a useful tool to analyze their performance limits. In spite of inten-

sive research on this subject, the capacity region of such networks is still unknown even

for small number of users. This prompted the researchers to derive various approximations

of the capacity region, for example, the achievable DoF.

One of the promising techniques to achieve more than one DoF in wireless interference

networks is IA. Unlike orthogonal medium access techniques, e.g., TDMA and FDMA,

IA is able to achieve significant throughput such that the achievable DoF can be linearly

scaled up with the number of users. In other words, it has been shown that in a K-user IC

with a single antenna at each node, and with time-varying or frequency-selective channel

coefficients, it is possible to achieve K
2

DoF by coding across sufficiently large symbol

extension of the channel [17]. This implies that the length of the symbol extension must

tend to infinity which is not pragmatic. Therefore in this chapter and also the subse-

quent ones, we quantify the performance of IA based on signal space alignment instead of
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aligning interfering signals in time. This can be done by deploying multiple antennas at

transmit/receive nodes which dissolve the need of symbol extension [23–34].

Nonetheless, for all IA techniques, the availability of perfect CSI is necessary to

achieve full DoF. Unfortunately due to the realistic communication scenarios and also

deployment challenges, only partial CSI may be accessible, which can adversely affect

the achievable throughput and the total DoF in the network. During the latest few years,

many researches have been done regarding the performance analysis of IA under CSI un-

certainties. Most of the relevant efforts placed their focus on quantized feedback strategies

with channel-aware receivers (see e.g., [59–64]). Interestingly, it has been shown that for

IA utilizing quantized feedback and for multi-tap single-input single-output (SISO) [59]

or MIMO IC [60], full DoF is achievable only if the number of fedback bits scales fast

enough with SNR. Aside from quantized feedback, performance analysis of IA under a

generalized imperfect CSI model is of particular interest. However, due to its relative

intractability, some simpler forms of CSI uncertainties have been investigated, e.g., the

performance of IA under transmit-side correlation with imperfect CSI has been investi-

gated in [65] followed by [66] wherein the performance of IA under analog feedback has

been evaluated. Also [67] derived upper and lower bounds on the sum mutual information

where the variance of CSI error has been considered as a constant.

In this chapter, we consider performance analysis of constant MIMO IA subject to CSI

mismatch. First, we analyze the performance of IA under a rather generalized imperfect

CSI model thereby we quantify new bounds. To do so, we treat the CSI error variance as

a function of SNR. We then show that when this error variance scales with the inverse of

SNR, full DoF can be attained, and an upper bound on asymptotic mean loss in sum rate

in comparison with the perfect CSI case is established. We likewise derive a bound on the

achievable DoF when the error variance depends on the inverse of SNR to a power of a

constant. Using numerical simulations, we substantiate the analytically derived bounds.

We also consider the performance improvement of Max-SINR algorithm described

in [23] under CSI mismatch. Max-SINR is an interesting algorithm since it tries to max-

imize the SINR on a stream-by-stream basis instead of explicitly minimizing the leaked

interference as being done by Min-WLI [23] and Alt-Min [24, 34] algorithms, and it thus

achieves better performance. Because of its importance, some literature particularly fo-

cused on performance analysis of Max-SINR. For example, it has been established that

Max-SINR is optimal within the class of linear beamformers at high SNRs [68], and it

has been further shown that Max-SINR averagely achieves better throughput than sum-

rate gradient algorithms at low-to-intermediate SNRs [30]. Its convergence has been also
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addressed in [69]. However, performance analysis and improvement of Max-SINR under

CSI mismatch has not been seriously considered so far. Therefore in this chapter, we addi-

tionally address this issue. First, it is shown that subject to CSI mismatch, the comparative

improvement of Max-SINR over interference leakage minimization algorithms becomes

negligible. We then propose an adaptive Max-SINR algorithm, which with the knowledge

of error variance in advance, can tangibly improve the performance of original Max-SINR

subject to CSI uncertainties.

Section 5.2 contains the basic concepts including the system model for standard IA,

imperfect CSI model, and signal detection. In Section 5.3, we derive novel bounds regard-

ing the asymptotic mean loss in sum rate and achievable DoF. In Section 5.4, we propose

an adaptive Max-SINR algorithm to improve the performance of original Max-SINR un-

der CSI mismatch. Section 5.5 contains numerical results wherein we substantiate the

undergone analyses in Sections 5.3–5.4. Finally, Section 5.6 contains a summary of the

analyses presented in this chapter.

5.2 Preliminaries

5.2.1 System Model and Standard IA

Consider a symmetric K-user MIMO interference channel consisting of 2K nodes, K of

which are denoted as transmitters while the other K are receivers. Each transmitter is

paired with a single receiver in a one-to-one mapping as denoted in Fig. 5.1. Specifically,

each N-antenna transmitter communicates with its corresponding M-antenna receiver by

sending d independent data streams. The channel output at receiver k is given by

yk = Hk,kxk +

K∑

j=1
j 6=k

Hk,jxj + zk (5.1)

where yk ∈ CM×1 is the received signal, xk ∈ CN×1 is the transmitted signal from

transmitter k and xj ∈ CN×1 is the interference received from transmitter j. Hk,j ∈
CM×N describes the channel from transmitter j to receiver k. The magnitude of fading

coefficients is assumed to be bounded away from zero and infinity. We also consider

block fading model where all links are static for the duration of a transmission but may

change between successive transmission, i.e., constant MIMO scenario. More specifically,

the elements of channel matrices between each transmitter and receiver can be modeled
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Figure 5.1: K-user interference channel where green solid arrows denote direct links and red
dash arrows represent interfering (cross) links. ck designates the input data of transmit node k

whereas ĉk indicates the recovered data at receive node k.

by i.i.d. Gaussian random variables with zero mean and unit variance, i.e., vec (Hk,j) ∼
NC (0, I). zk ∈ CM×1 is the circularly symmetric additive white Gaussian noise with

zero mean and variance σ2 per entry, i.e., zk ∼ NC (0, σ
2I). We also consider that each

transmitted signal xk is equal to Vkck, where {Vk}Kk=1 ∈ C
N×d are truncated unitary

transmit beamforming matrices (precoders), and ck ∈ Cd×1 is the data stream intended

for receiver k such that E
{
ckc

H
k

}
= P I. Without loss of generality, we assume uniform

power allocation across all users and DoF which is asymptotically optimal. In this case,

γ = P/σ2 is defined as the nominal SNR.

Considering a ZF receiver, the conditions for perfect interference alignment can be

described as [20, 23]

UH
kHk,jVj = 0 , ∀j 6= k (5.2)

rank
(
UH

kHk,kVk

)
= d (5.3)

where {Uj}Kj=1 are truncated unitary interference suppression matrices (combiners).

In other words, IA aims to design precoders Vk such that at each receive node, the

unwanted interferences are aligned within a reduced subspace of the received signal space

which is supposed to be independent of the desired signal subspace. This is shown in Fig.

5.1 wherein, for example, at the first receive node the interference subspaces H1,2V2 and

H1,KVK are aligned and are independent of the desired signal subspace H1,1V1. There-

fore, with respect to (5.2), the first receive nodes premultiplies its received signal with UH

1
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which nulls out the aligned interference subspaces without suppressing the desired signal

subspace.

5.2.2 Imperfect CSI Model

Similar to the same assumption as in [65–67] and regardless of distributed or central-

ized processing, we assume that all precoders and combiners are constructed with the

knowledge of unified CSI mismatch. Analogous to the same imperfect CSI model for the

broadcast channel discussed in subsection 3.2.2, we further model the CSI mismatch as

Ĥk,j = Hk,j + Ek,j (5.4)

where the channel measurement error Ek,j is thought to be independent of the actual chan-

nel matrix Hk,j, and we consider Ek,j as a Gaussian matrix consisting of i.i.d. elements

with mean zero and variance τ , i.e.,

vec (Ek,j) ∼ NC (0, τI) with τ , βγ−α, β > 0, α ≥ 0 (5.5)

With respect to lemma 3.1 on page 28, we can further write

Hk,j =
1

1 + τ
Ĥk,j + H̆k,j (5.6)

where vec
(
H̆k,j

)
∼ NC

(
0,

τ

1 + τ
I

)
is statistically independent of Ĥk,j.

5.2.3 Signal Postprocessing at Receive Nodes

In this subsection, we briefly address the data recovery at receive nodes. Without loss of

generality, we assume that each receive node uses a linear ZF equalizer. It is also worth

mentioning that the results of this subsection can be readily generalized to the case of

channel inversion, i.e., preprocessing the signals at transmit nodes instead of postprocess-

ing the signals at receive nodes.

We first assume that perfect CSI is available. In this case, if we define

V =




V1 · · · 0
...

. . .
...

0 · · · VK


 (5.7)
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U =




U1 · · · 0
...

. . .
...

0 · · · UK


 (5.8)

H =




H1,1 H1,2 · · · H1,K

H2,1 H2,2 · · · H2,K

...
...

. . .
...

HK,1 HK,2 · · · HK,K




(5.9)

with respect to (5.2), we have

UHHV =




H1,1 · · · 0
...

. . .
...

0 · · · HK,K


 (5.10)

where Hk,k = UH
kHk,kVk. More specifically, by premultiplying the received signal at

receiver k by UH
k we have

UH
kyk = UH

kHk,kxk +UH
k

K∑

j=1
j 6=k

Hk,jxj +UH
k zk

︸ ︷︷ ︸
zk

⇒ yk = Hk,kck + zk

(5.11)

where yk = UH
kyk, and following (5.2), at high enough SNRs we have zk = UH

k zk.

Therefore the transmitted symbol vector ck can be easily recovered through premultiplying

yk by (pseudo-) inverse of Hk,k, i.e., pinv
(
Hk,k

)
.

Now we assume that all precoders and combiners are constructed based on imperfect

CSI. Consequently, (5.2) can be written as

ÛH
k Ĥk,jV̂j = 0 , ∀j 6= k (5.12)

where all Ûk and V̂j are calculated based on the fact that only imperfect channel estima-

tions Ĥk,j are available. In this case the received signal at node k in (5.1) can be written

82



5.3. Achievable Sum Rates and DoF

as

ŷk = Hk,kV̂kck +
K∑

j=1
j 6=k

Hk,jV̂jcj + zk (5.13)

If the perfect direct link, i.e., Hk,k, is available at receive node k, recovering ck at the

corresponding node is rather straightforward; however, if we assume that the receive node

k has also access to imperfect direct link, i.e., Ĥk,k, data recovery becomes a bit tricky.

Therefore in the remainder of this subsection, we address this issue by considering the fact

that only imperfect direct link Ĥk,k is available at receive node k. Now at the kth receive

node, the received signal gets premultiplied by ÛH

k , and therefore we have

ÛH

k ŷk = ÛH

kHk,kV̂kck +
K∑

j=1
j 6=k

ÛH

kHk,jV̂jcj + ÛH

k zk

➀
= ÛH

k

(
1

1 + τ
Ĥk,k+H̆k,k

)
V̂kck+

K∑

j=1
j 6=k

ÛH

k

(
1

1 + τ
Ĥk,j+H̆k,j

)
V̂jcj+ÛH

k zk

➁
=

1

1 + τ
ÛH

k Ĥk,kV̂kck
︸ ︷︷ ︸

desired term

+
K∑

j=1

ÛH

k H̆k,jV̂jcj + ÛH

k zk

︸ ︷︷ ︸
interference plus noise term

(5.14)

where ➀ follows from (5.6), and ➁ is due to (5.12). Thus to recover ck, ÛH

k ŷk should be

premultiplied by (1 + τ) × pinv
(
ÛH

k Ĥk,kV̂k

)
. In other words, when the receive node

is in possession of imperfect direct link Ĥk,k, to have an unbiased detection, the received

signal should be scaled up by (1 + τ).

5.3 Achievable Sum Rates and DoF

In this section, we quantify the achievable sum rates and DoF of constant MIMO IA under

imperfect CSI model described in subsection 5.2.2. To do so, first sum rate and total DoF

achieved by perfect CSI are going to be considered since this will be helpful to go through

the imperfect CSI case in the forthcoming subsection.
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5.3.1 Achievable Sum Rate and DoF under Perfect CSI

By assuming diagonalized subchannels, the IA conditions in (5.2)–(5.3) can be respec-

tively restated as

uH
kℓHk,jvjm = 0 , ∀ (j,m) 6= (k, ℓ) (5.15)

∣∣uH
kℓHk,kvkℓ

∣∣ > 0 , ∀k, ℓ (5.16)

where ukℓ denotes the ℓth column of Uk and vjm refers to the mth column of Vj .

Now, with considering i.i.d. Gaussian input signaling, the sum rate achieved can be

expressed as

R =

K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣uH

kℓHk,kvkℓ

∣∣2

Jkℓ + σ2

)
(5.17)

where the leakage interference is treated as noise and

Jkℓ =
K∑

j=1
j 6=k

d∑

m=1

P
∣∣uH

kℓHk,jvjm

∣∣2 +
d∑

m=1
m6=ℓ

P
∣∣uH

kℓHk,kvkm

∣∣2 (5.18)

With the presence of perfect CSI, the IA condition in (5.15) is satisfied, and consequently

Jkℓ = 0. In this case the sum rate in (5.17) reads

RPerfect CSI =

K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣uH

kℓHk,kvkℓ

∣∣2

σ2

)
(5.19)

To further proceed, we consider the following lemma:

Lemma 5.1: uH
kℓHk,kvkℓ is a Gaussian random variable with mean zero and variance

one.

Proof: First, it should be noted that vkℓ are independent of Hk,k. This can be triv-

ially deduced since in IA solutions (e.g., interference leakage minimization algorithms

in [23, 34]), each Vk is only a function of interfering links Hk,j, j 6= k and not the direct

link Hk,k. Since all channel coefficients are i.i.d., vkℓ, ℓ = 1, . . . , d are independent of

Hk,k. Due to the truncated unitary precoders, it can be further assumed that Hk,kvk,ℓ is

independent of Hk,kvk,m, ∀m 6= ℓ. The interference subspace observed by the ℓth stream

of user k can be defined as

Vkℓ =
(
Hk,1V1, . . . ,Hk,k−1Vk−1,Hk,kV

[ℓ]
k ,Hk,k+1Vk+1, . . . ,Hk,KVK

)
(5.20)
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where V
[ℓ]
k is obtained by striking out the ℓth column of Vk, i.e., vkℓ. Having met the

feasibility conditions of IA [21] and with respect to (5.15), we can consider ukℓ as the null

space of VH

kℓ. Alternatively, we can calculate ukℓ as the least dominant left singular vector

of Vkℓ. Consequently ukℓ is independent of Hk,kvkℓ. Since Hk,k is a standard Gaussian

matrix, it is bi-unitarily invariant 1 [3]. Thus uH
kℓHk,kvkℓ ∼ NC (0, 1).

Corollary 5.1: Since uH
kℓHk,kvkℓ ∼ NC (0, 1),

∣∣uH
kℓHk,kvkℓ

∣∣2 is exponentially dis-

tributed with both mean and variance equal to one. Having met the feasibility conditions

of IA, we can represent the total achievable DoF as

DPerfect CSI = lim
P→∞

RPerfect CSI

log2 P
= Kd (5.21)

where RPerfect CSI is defined in (5.19).

5.3.2 Achievable Sum Rate and DoF under Imperfect CSI

In this subsection, first we derive bounds on the asymptotic mean loss in sum rate under

imperfect CSI compared to the perfect CSI, and then we establish a bound on achiev-

able DoF under CSI mismatch. Also as mentioned earlier, for the imperfect CSI case, we

assume that all precoders and combiners are obtained based on imperfect channel mea-

surements Ĥk,j, ∀k, j in (5.4). In this case the leaked interference is defined as

Ĵkℓ =

K∑

j=1
j 6=k

d∑

m=1

P
∣∣ûH

kℓHk,jv̂jm

∣∣2 +
d∑

m=1
m6=ℓ

P
∣∣ûH

kℓHk,kv̂km

∣∣2 (5.22)

and with respect to (5.12), we can write

ûH
kℓĤk,jv̂jm = 0 , ∀ (j,m) 6= (k, ℓ) (5.23)

To further proceed, the following lemma should be noticed:

Lemma 5.2: ûH
kℓHk,kv̂kℓ is a Gaussian random variable with mean zero and variance

one.

Proof: Notice the unit-norm vectors v̂kℓ are calculated based on Ĥk,j, ∀j 6= k and

are thus independent of Ĥk,k. Since due to equation (5.4), Ĥk,k is related to Hk,k, conse-

quently v̂kℓ are independent of Hk,k as well. Therefore, analogous to the same approach

1A rectangular random matrix H is called bi-unitarily invariant if the joint distribution of its entries

equals that of UH
HV for any unitary matrices U and V independent of H.
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as in the proof of lemma 5.1, it is easy to discuss that ûkℓ is independent of Hk,kv̂kℓ. Thus

ûH
kℓHk,kv̂kℓ ∼ NC (0, 1).

Corollary 5.2: Since ûH
kℓHk,kv̂kℓ ∼ NC (0, 1),

∣∣ûH
kℓHk,kv̂kℓ

∣∣2 is exponentially dis-

tributed with both mean and variance equal to one.

Now that we established both uH
kℓHk,kvkℓ and ûH

kℓHk,kv̂kℓ are standard Gaussian ran-

dom variables, we continue with the following theorem:

Theorem 5.1: Let ∆R denote the mean loss in sum rate. At asymptotically high SNRs

and for α > 1 and α < 1, ∆R tends to zero and infinity, respectively. However, for α = 1,

∆R is upper bounded as

∆R ≤ Kd log2 (1 + (Kd− 1)β) (5.24)

Proof: Considering RPerfect CSI as the achievable sum rate with perfect CSI described

in (5.19), we define the mean loss in sum rate as

∆R = EH {RPerfect CSI} − E
H|Ĥ {RImperfect CSI} (5.25)

which further yields the following upper bound

∆R = EH

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣uH

kℓHk,kvkℓ

∣∣2

σ2

)}

− E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣ûH

kℓHk,kv̂kℓ

∣∣2

Ĵkℓ + σ2

)}

= EH

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣uH

kℓHk,kvkℓ

∣∣2

σ2

)}

− E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

Ĵkℓ + P
∣∣ûH

kℓHk,kv̂kℓ

∣∣2

σ2

)}

+ E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

Ĵkℓ

σ2

)}

➂

≤ E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

Ĵkℓ

σ2

)}

➃

≤
K∑

k=1

d∑

ℓ=1

log2


1 +

E
H|Ĥ

{
Ĵkℓ

}

σ2


 (5.26)
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where ➂ is due to integrating lemma 5.1 and lemma 5.2 to the following inequality

E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

Ĵkℓ + P
∣∣ûH

kℓHk,kv̂kℓ

∣∣2

σ2

)}
≥

EH

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣uH

kℓHk,kvkℓ

∣∣2

σ2

)} (5.27)

and ➃ is a result of Jensen’s inequality. E
H|Ĥ

{
Ĵkℓ

}
can be further written as

E
H|Ĥ

{
Ĵkℓ

}
=

K∑

j=1
j 6=k

d∑

m=1

PE
H|Ĥ

{∣∣ûH
kℓHk,jv̂jm

∣∣2
}
+

d∑

m=1
m6=ℓ

PE
H|Ĥ

{∣∣ûH
kℓHk,kv̂km

∣∣2
}

➄
=

K∑

j=1
j 6=k

d∑

m=1

PE
Ĥ,H̆





∣∣∣∣∣û
H
kℓ

(
Ĥk,j

1 + τ
+ H̆k,j

)
v̂jm

∣∣∣∣∣

2




+

d∑

m=1
m6=ℓ

PE
Ĥ,H̆





∣∣∣∣∣û
H
kℓ

(
Ĥk,k

1 + τ
+ H̆k,k

)
v̂km

∣∣∣∣∣

2




➅
=

K∑

j=1
j 6=k

d∑

m=1

PEH̆

{∣∣∣ûH
kℓH̆k,jv̂jm

∣∣∣
2
}
+

d∑

m=1
m6=ℓ

PEH̆

{∣∣∣ûH
kℓH̆k,kv̂km

∣∣∣
2
}

➆
= P (Kd− 1)

τ

1 + τ
(5.28)

where ➄ follows from (5.6), and ➅ is due to (5.23). ➆ follows the fact that all ûkℓ and

v̂jm, ∀k, j, ℓ,m are calculated upon Ĥk,j which due to lemma 3.1 on page 28 are indepen-

dent of H̆k,j. Due to the fact that H̆k,j are bi-unitarily invariant, ûkℓH̆k,jv̂jm, ∀k, j, ℓ,m
are Gaussian random variables with mean zero and variance τ/ (1 + τ). Thus, following

(5.26) we have

∆R ≤
K∑

k=1

d∑

ℓ=1

log2

(
1 + γ (Kd− 1)

τ

1 + τ

)
= Kd log2

(
1 + (Kd− 1)

βγ1−α

1 + βγ−α

)

(5.29)
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which for asymptotically high SNRs yields

lim
γ→∞

∆R





= ∞ 0 ≤ α < 1

≤ Kd log2 (1 + (Kd− 1)β) α = 1

= 0 1 < α

(5.30)

Thus, theorem 5.1 states that if the error variance is proportional to the inverse of SNR,

the asymptotic mean loss in sum rate is bounded above by the right hand side (RHS) of

(5.24), and by using numerical results in section 5.5, we will further show that this upper

bound is not excessively loose.

In the following theorem, a novel bound on achievable DoF is derived:

Theorem 5.2: For a constant MIMO IA, when the variance of the CSI error is equal

to τ = βγ−α, 0 ≤ α < 1, the achievability of an α-fraction of the total DoF, i.e.,

αDPerfect CSI DoF, is guaranteed.

Proof:

DImperfect CSI = lim
P→∞

E
H|Ĥ {RImperfect CSI}

log2 P

= lim
P→∞

E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
1 +

P
∣∣ûH

kℓHk,kv̂kℓ

∣∣2

Ĵkℓ + σ2

)}

log2 P

= lim
P→∞

E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
P
∣∣ûH

kℓHk,kv̂kℓ

∣∣2 + Ĵkℓ + σ2
)}

log2 P

− lim
P→∞

E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
Ĵkℓ + σ2

)}

log2 P

➇

≥ lim
P→∞

E
H|Ĥ

{
K∑

k=1

d∑

ℓ=1

log2

(
P
∣∣ûH

kℓHk,kv̂kℓ

∣∣2
)}

log2 P

− lim
P→∞

K∑

k=1

d∑

ℓ=1

log2

(
E
H|Ĥ

{
Ĵkℓ

}
+ σ2

)

log2 P
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➈
= Kd− lim

P→∞

K∑

k=1

d∑

ℓ=1

log2

(
βP 1−ασ2α

1 + βP−ασ2α
(Kd− 1) + σ2

)

log2 P

=




Kd 1 ≤ α

αKd 0 ≤ α < 1
(5.31)

where ➇ is due to discarding interference plus noise in the first term and applying Jensen’s

inequality to the second one. ➈ is also due to integrating lemma 5.2 to the first term and

inserting the last term of equation (5.28) to the second one.

Remark 5.1: Note that the results of (5.31) are inherently related to those in (5.30).

For example, for the case of α < 1, while (5.31) implies that the achievable DoF is αKd,

(5.30) indicates that for this case and by increasing SNR, the asymptotic mean loss in

sum rate is unboundedly increasing. Also (5.31) implies that when α ≥ 1, full DoF

is achievable, that is, the asymptotic mean loss in sum rate is a bounded value. In this

case, (5.30) implies that when α = 1, this asymptotic mean loss converges to a non-zero

constant which is upper bounded by (5.24) whereas for α > 1, it tends to zero.

5.4 Adaptive Max-SINR

In section 5.3, we derived general bounds regarding the mean loss in sum rate and achiev-

able DoF of IA subject to CSI mismatch. In this section, we specifically place our focus on

performance analysis and improvement of one particular IA technique, namely Max-SINR

defined in [23]. It is shown that while with the presence of perfect CSI, Max-SINR outper-

forms interference leakage minimization algorithms, this promised improvement becomes

negligible especially at high SNRs subject to imperfect CSI. Accordingly, we propose an

adaptive Max-SINR, which with the knowledge of error variance in advance, can improve

the performance of original Max-SINR under CSI mismatch.

Notice due to the coupled nature of the problem and regardless of what algorithm is

being used, there are no closed form solutions for IA except for a very few particular cases,

see e.g., [17, 70]. Consequently, finding precoders and combiners requests an iterative

procedure in general. Therefore, first we fix the precoders and seek the combiners, and

then we fix the combiners and seek the precoders. Given randomly initialized precoders

and with respect to the fact that only imperfect channel estimations Ĥk,j are available,

the interference plus noise covariance matrix associated with the ℓth stream of user k can
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Qℓ
k =

K∑

j=1
j 6=k

d∑

m=1

PHk,jv̂jmv̂
H
jmH

H
k,j +

d∑

m=1
m6=ℓ

PHk,kv̂kmv̂
H
kmH

H
k,k + σ2I

➉
=

K∑

j=1
j 6=k

d∑

m=1

P

(
1

1 + τ
Ĥk,j + H̆k,j

)
v̂jmv̂

H
jm

(
1

1 + τ
Ĥk,j + H̆k,j

)H

+

d∑

m=1
m6=ℓ

P

(
1

1 + τ
Ĥk,k + H̆k,k

)
v̂kmv̂

H
km

(
1

1 + τ
Ĥk,k + H̆k,k

)H

+ σ2I

=
K∑

j=1
j 6=k

d∑

m=1

P

(1 + τ)2
Ĥk,jv̂jmv̂

H
jmĤ

H
k,j +

d∑

m=1
m6=ℓ

P

(1 + τ)2
Ĥk,kv̂kmv̂

H
kmĤ

H
k,k

+
K∑

j=1
j 6=k

d∑

m=1

P

1 + τ

(
Ĥk,jv̂jmv̂

H
jmH̆

H
k,j + H̆k,jv̂jmv̂

H
jmĤ

H
k,j

)

︸ ︷︷ ︸
J1

+

d∑

m=1
m6=ℓ

P

1 + τ

(
Ĥk,kv̂kmv̂

H
kmH̆

H
k,k + H̆k,kv̂kmv̂

H
kmĤ

H
k,k

)

︸ ︷︷ ︸
J2

+
K∑

j=1
j 6=k

d∑

m=1

P H̆k,jv̂jmv̂
H
jmH̆

H
k,j +

d∑

m=1
m6=ℓ

P H̆k,kv̂kmv̂
H
kmH̆

H
k,k

︸ ︷︷ ︸
J3

+σ2I (5.32)

be shown as (5.32) wherein ➉ follows from (5.6). To further proceed, we consider the

following lemmas:

Lemma 5.3: E
Ĥ,H̆

{
Ĥk,jv̂jmv̂

H
jmH̆

H
k,j

}
= E

Ĥ,H̆

{
H̆k,jv̂jmv̂

H
jmĤ

H
k,j

}
= 0 ∀k, j,m

Proof: All precoders and combiners are constructed upon channel estimations Ĥk,j

which based on lemma 3.1 on page 28 are independent of H̆k,j.

Lemma 5.4: If A ∈ CM×N represents a Gaussian matrix with i.i.d. elements of mean

zero and variance a, and b ∈ CN×1 refers to a unit-norm vector independent of A, then

EA

{
AbbHAH

}
= aI.

Proof: Since A is a Gaussian matrix, it is bi-unitarily invariant, and consequently the
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5.4. Adaptive Max-SINR

joint distribution of its entries equals that of Ab for any unit-norm vector b independent

of A. Therefore Ab is a zero-mean Gaussian vector with covariance matrix aI.

Following lemma 5.3 and lemma 5.4, we substitute those parts of (5.32) including

H̆j,k ∀j, k with their expected values, i.e,

E
Ĥ,H̆

{J1} = E
Ĥ,H̆

{J2} = 0

and

EH̆ {J3} = P (Kd− 1)
τ

1 + τ
I

This way, we can approximate Qℓ
k in (5.32) with a simpler form, i.e., Q̂ℓ

k, as follows:

Q̂ℓ
k =

K∑

j=1
j 6=k

d∑

m=1

P

(1 + τ)2
Ĥk,jv̂jmv̂

H
jmĤ

H
k,j +

d∑

m=1
m6=ℓ

P

(1 + τ)2
Ĥk,kv̂kmv̂

H
kmĤ

H
k,k

+

(
P (Kd− 1)

τ

1 + τ
+ σ2

)
I (5.33)

With respect to Q̂ℓ
k in (5.33), the SINR maximizing receive filter ûkℓ is thus given by

ûkℓ =

(
Q̂ℓ

k

)−1

Ĥk,kv̂kℓ

∥∥∥∥
(
Q̂ℓ

k

)−1

Ĥk,kv̂kℓ

∥∥∥∥
2

(5.34)

which yields the unit-norm combiner of the ℓth stream of user k.

As mentioned earlier, due to the coupled nature of the problem, finding precoders and

combiners requests an iterative algorithm in general. Plus, with respect to the fact that

only imperfect channel estimations Ĥk,j are available, and with the knowledge of error

variance τ in advance, the proposed algorithm is concisely presented in the following.
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5.4. Adaptive Max-SINR

Adaptive Max-SINR

1. Set ε := γ−1 (1 + τ)2 + τ (τ + 1) (Kd− 1)

2. Initialize random unit-norm vectors v̂kℓ, ∀ k, ℓ

3. Qℓ
k =

K∑

j=1
j 6=k

d∑

m=1

Ĥk,jv̂jmv̂
H
jmĤ

H
k,j +

d∑

m=1
m6=ℓ

Ĥk,kv̂kmv̂
H
kmĤ

H
k,k+ε I

4. ûkℓ =

(
Qℓ

k

)−1
Ĥk,kv̂kℓ∥∥∥

(
Qℓ

k

)−1
Ĥk,kv̂kℓ

∥∥∥
2

5. Ûk ⇐= orth
(
Ûk

)

6. Rℓ
k =

K∑

j=1
j 6=k

d∑

m=1

ĤH
j,kûjmû

H
jmĤj,k +

d∑

m=1
m6=ℓ

ĤH
k,kûkmû

H
kmĤk,k+ε I

7. v̂kℓ =

(
Rℓ

k

)−1
ĤH

k,kûkℓ∥∥∥
(
Rℓ

k

)−1
ĤH

k,kûkℓ

∥∥∥
2

8. V̂k ⇐= orth
(
V̂k

)

9. Go to Step 3 and repeat

In algorithm above, “⇐=” denotes assignment through an in-place manner, and orth (A)

denotes an orthonormal basis for the range of A, e.g., the unitary part of the orthogonal-

triangular (QR) decomposition.

Remark 5.2: Note that similar to the original Max-SINR in [23], although the pre-

coders and combiners calculated by adaptive Max-SINR have unit-norm columns, they

are not unitary which may result in rank-deficient precoders and/or combiners for at least

one user and hence at high SNRs, they may not be able to achieve full multiplexing gain

and thus degrade the performance. Therefore if the goal is to attain full DoF, one trick to

make precoders and combiners unitary is to insert orthogonalization steps after obtaining

Uk and Vk, which ensure no performance degradation at high SNR ranges. This addi-

tional orthogonalization steps have been indicated in Steps 5 and 8 of algorithm above.

However, if the intention is performance evaluation at low-to-intermediate SNRs (which

does not include the achievable DoF), omitting the aforementioned orthogonalization steps

does not compromise the performance.

Remark 5.3: By setting τ = 0 in the first step of algorithm above and irrespective

of the orthogonalization steps, adaptive Max-SINR boils down to the original Max-SINR

in [23] subject to imperfect CSI. If we further replace Ĥk,j with Hk,j, the aforementioned
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algorithm becomes original Max-SINR under perfect CSI. In other words, while for the

original Max-SINR, the scaling factor of the identity matrix is γ−1, for the proposed adap-

tive Max-SINR, this scaling factor is equal to ε which is defined in Step 1 of adaptive

Max-SINR algorithm. Therefore, the proposed adaptive Max-SINR adds no extra com-

putational complexity compared to the original Max-SINR while achieving notably better

performance under CSI mismatch.

5.5 Numerical Results

In this section and by using numerical results, we corroborate the undergone analyses in

this chapter. More specifically, we substantiate the analytically derived bounds in equa-

tions (5.30) and (5.31) and manifest the improved performance achieved by adaptive Max-

SINR (discussed in section 5.4) compared to the original Max-SINR under CSI mismatch.

For the case of imperfect CSI, we assume that the channel estimation error variance obeys

(3.3), i.e., τ = βγ−α.

By considering i.i.d. Gaussian input signaling and uniform power allocation, we eval-

uate the achievable sum rates as [67]

R =
K∑

k=1

log2 det


I+

(
γ−1I+

K∑

j=1
j 6=k

Φk,j

)−1

Φk,k


 (5.35)

where Φk,j = UH
kHk,jVjV

H
j H

H
k,jUk and in the case of imperfect CSI, all precoders and

combiners are constructed based on erroneous channel estimations in (5.4).

To evaluate the performance of IA in this chapter and also the subsequent chapters,

it is more appropriate to recall some of the standard constant MIMO IA algorithms. Al-

though there are many iterative IA algorithms in the literature, see e.g., [23–34], the most

representative ones are Max-SINR [23], RCRM [26], Alt-Min [34], and Min-WLI [23].

Since Max-SINR in [23] is a spacial case of the proposed adaptive Max-SINR (by setting

τ = 0), the latter three are respectively represented in the following.

For RCRM the optimization criterion is based on maximizing the sum of interference

free dimensions as follows [26]:

min
{Vℓ}Kℓ=1

{Uℓ}Kℓ=1

K∑

k=1

rank (J k)
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s. t. : rank (Sk) = d, ∀k (5.36)

where

Sk , UH

kHk,kVk

J k , UH

k [Hk,1V1 . . . Hk,k−1Vk−1 Hk,k+1Vk+1 . . . Hk,KVK ] (5.37)

Note that in the above RCRM criterion, the orthogonality constraints on precoders and

combiners are omitted. However, since the aforementioned optimization is not readily

solvable, the following approximation is used which is based on relaxing the rank cost

function to a nuclear norm one:

IA via RCRM

1. Initialize Uk, ∀ k

2.





min
{Vℓ}Kℓ=1

K∑

k=1

‖J k‖∗

s. t. : Sk � 0

λmin (Sk) ≥ ǫ, ∀k

3.





min
{Uℓ}Kℓ=1

K∑

k=1

‖J k‖∗

s. t. : Sk � 0

λmin (Sk) ≥ ǫ, ∀k
4. Go to Step 2 and repeat

5. Vk = orth (Vk) ∀k
6. Uk = orth (Vk) ∀k

where � denotes positive semi-definiteness, λmin represents the smallest eigenvalue, ǫ is

an arbitrarily small positive real number, and ‖·‖∗ designates the nuclear norm, i.e., the

sum of the singular values.

For interference leakage minimization algorithms like Alt-Min [34] and Min-WLI

[23], the optimization criterion is based on minimizing the sum of the interference leakage

94



5.5. Numerical Results

which is defined as follows:

K∑

k=1

Tr


UH

k

K∑

ℓ=1
ℓ 6=k

Hk,ℓVℓV
H

ℓ H
H

k,ℓUk


 (5.38)

At each step of the above optimization, either the set of precoders or the set of combiners

is fixed, and minimization of (5.38) is performed over the free set of variables. This

interference leakage minimization can therefore be carried out by using the following two

algorithms through an iterative manner:

Alt-Min

1. Initialize random unitary matrices Vk, ∀ k

2. Qk =

K∑

j=1
j 6=k

Hk,jVjV
H
j H

H
k,j

3. Gk = eig (Qk)d+1:M

4. Uk = I−GkG
H
k

5. Rk =

K∑

j=1
j 6=k

HH
j,k

(
I−GjG

H
j

)
Hj,k

6. Vk = eig (Rk)1:d
7. Go to Step 2 and repeat

Min-WLI

1. Initialize random unitary matrices Vk, ∀ k

2. Qk =

K∑

j=1
j 6=k

Hk,jVjV
H
j H

H
k,j

3. Uk = eig (Qk)1:d

4. Rk =
K∑

j=1
j 6=k

HH
j,kUjU

H
j Hj,k

5. Vk = eig (Rk)1:d
6. Go to Step 2 and repeat

wherein algorithms above, eig (·)1:d represents the eigenvectors corresponding to the d

smallest eigenvalues, and eig (·)d+1:M represents the eigenvectors corresponding to the
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Figure 5.2: Average sum rates achieved by Min-WLI algorithm for K = 3, d = 4 and M = N = 8
under various CSI qualities.

M − d largest eigenvalues.

Remark 5.4: Note that although Alt-Min and Min-WLI have been set up based on

different design criteria, they achieve the same performance across all SNR ranges. Fur-

thermore, to evaluate the performance of Alt-Min and Min-WLI under imperfect CSI, all

perfect CSI links, i.e., Hk,j, are replaced by channel estimations Ĥk,j.

In the following, we verify the validity of the derived bounds in (5.30) and (5.31).

Although there are various IA algorithms, without loss of generality we use Min-WLI

algorithm to depict the results in Fig. 5.2.

Since the error variance depends on the inverse of SNR, i.e., τ = βγ−α, to have the

effect of CSI mismatch for a wider range of SNRs, it is assumed that the larger the α, the

much larger the β.

Fig. 5.2 depicts the average sum rates of Min-WLI algorithm under various CSI qual-

ities. We consider a symmetric constant MIMO IA with K = 3 and d = 4. To meet

the sufficient conditions of feasibility for IA, we set M = N = 8 [21]. The solid black

curve is related to the perfect CSI case where it can be seen that Kd = 12 DoF have been

achieved. The blue dash-dot curve refers to the case β = 10, α = 1. Based on (5.30), we

expect that in this case, the asymptotic mean loss in sum rate should be bounded above by

Kd log2 (1 + (Kd− 1)β) ≈ 81.5 bits per channel use (5.39)
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5.5. Numerical Results

As revealed in Fig. 5.2, this rate loss at γ = 50 dB is equal to 70 bits per channel use

which is close to the upper bound 81.5 obtained through theorem 5.1. This verifies that

the derived upper bound in (5.30) is not excessively loose.

The red dash curve denotes the case of β = 2, α = 2
3
. In this case and based on (5.31),

we expect that 2
3
Kd = 8 DoF should be achievable, which is verified in Fig. 5.2.

The solid curve with marker “×” denotes the case β = 20, α = 2. As expected by

the last term of equation (5.30), for this value of α, the asymptotic mean loss in sum rate

should be equal to zero. This is confirmed in Fig. 5.2 where the respective curve overlaps

with the one corresponding to the perfect CSI at SNRs of larger than 35 dB.

The dot curve with marker “+” refers to the case β = 0.1, α = 0. Based on the first

term of equation (5.30), we expect that for the case of α = 0, the asymptotic mean loss in

sum rate should be unboundedly increasing with SNR. Also based on equation (5.31), for

this value of α, the achievable DoF should be equal to zero. All these bounds match with

the depicted results in Fig. 5.2.

To evaluate the achievable sum rates of original Max-SINR, if the goal is to evaluate

the achievable DoF, with respect to remark 5.2, we consider Max-SINR with orthogonal-

ization steps. In this case and with respect to remark 5.3, we need to set τ = 0 in the first

step of the proposed adaptive Max-SINR algorithm. In Fig. 5.3, we illustrate the achiev-

able sum rate of Max-SINR with and without orthogonalization under perfect CSI and for

a symmetric constant MIMO IA with K = 4 and d = 2. To meet the sufficient condi-

tions of feasibility for IA, we set M = 4, N = 6 [21]. As shown, Max-SINR without

orthogonalization (as primarily proposed in [23]) is not able to achieve full DoF. However,

Max-SINR with orthogonalization rectify this degraded performance such that full DoF

is now achievable. Plus, at low-to-intermediate SNRs, Max-SINR with orthogonaliza-

tion achieves the same sum rate as the sans orthogonalization. This highlights the impact

of inserted orthogonalization steps for the proposed adaptive Max-SINR as discussed in

remark 5.2.

Fig. 5.4 depicts the achievable sum rates of Max-SINR with orthogonalization for the

case K = 4, d = 2, M = 4, and N = 6 under different CSI qualities. As revealed, for

the case α = 1.7, full DoF has been achieved, and the asymptotic mean loss in sum rate is

zero such that the corresponding curve overlaps with the one representing the perfect CSI

at SNR of 40 dB.

For the case α = 1, the corresponding curve has the same slope as the one denoting

the perfect CSI which implies that in this case full DoF have been achieved. In the case

of α = 1, β = 15 and according to (5.30), we expect that the asymptotic mean loss in
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Figure 5.3: Average sum rates achieved by Max-SINR algorithm with and without orthogonaliza-
tion for K = 4, d = 2 and M = 4, N = 6 under perfect CSI.
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Figure 5.4: Average sum rates achieved by Max-SINR algorithm with orthogonalization for K =
4, d = 2 and M = 4, N = 6 under various CSI qualities.

sum rate should be no more than 53.8 bits per channel use. As seen in simulated results,

at SNR of 50 dB, this gap is equal to 50 bits per channel use which is close enough to the

analytically derived upper bound.

For α < 1 and based on (5.31), it is expected that an α-fraction of the total DoF should
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Figure 5.5: Average sum rates achieved by Min-WLI algorithm for K = 9, d = 4 and M = N = 20
and related to α = 1 and α = 2

3
.

be achievable. For example, when α = 3/4, the achievable DoF should be equal to 6,

which is again certified by considering the slope of the corresponding curve compared to

the one denoting the perfect CSI. Also for both α = 0 and α = 3/4 and based on (5.30),

it is expected that as SNR tends to infinity, the asymptotic mean loss in sum rate goes to

infinity as well. This is again confirmed in Fig. 5.4, wherein the larger the SNR, the wider

the gap between the curve representing the perfect CSI and the one denoting α < 1.

Although Figs. 5.2–5.4 verify the derived bounds in theorem 5.1 and theorem 5.2,

the analysis introduced might suggest that the bounds may not be rigorous enough for

large K and/or d especially the upper bound of case α = 1 in theorem 5.1. Therefore in

Fig. 5.5, we depict the average sum rates under different CSI conditions for the case of

K = 9, d = 4 using Min-WLI algorithm. To meet the feasibility conditions of IA, we set

M = N = 20 [21]. The blue dash-dot curve refers to the case β = 20, α = 1. Based on

theorem 5.1, we expect that in this case, the asymptotic mean loss in sum rate should be

bounded above by

Kd log2 (1 + (Kd− 1) β) ≈ 340 bits per channel use (5.40)

As revealed in Fig. 5.5, this rate loss at ρ = 40 dB is equal to 320 which is very close to

the upper bound 340 obtained in (5.30). This verifies that for larger values of K, d and
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Figure 5.6: Mean loss in sum rate of Min-WLI algorithm as a function of α for K = 3, d = 2 and
M = N = 4.

even β, the derived upper bound of theorem 5.1 is not excessively loose. Also the red dash

curve denotes the case of β = 2, α = 2
3
. Again in this case and based on theorem 5.2, we

expect that 2
3
Kd = 24 DoF should be achievable, which is verified by Fig. 5.5.

Fig. 5.6 depicts the mean loss in sum rate of Min-WLI algorithm as a function of α

for K = 3, d = 2 and M = N = 4. We increased α from 0 to 3 with steps of length 0.1.

Accordingly, we changed β as β = 10α2 + 0.1. ∆R is also defined in (5.25). As shown,

the major mean loss in sum rate occurs at high SNRs and for α < 1.

Although the promised improvement of adaptive Max-SINR can be gleaned for var-

ious values of α, we focus on two representative cases: α = 0 (which mimics the CSI

feedback scenario), and α = 1 (which mimics the reciprocal channels). We also consider

a symmetric constant MIMO IA with K = 3 and d = 4 with M = N = 8.

Figs. 5.7 and 5.8, respectively, depict the average sum rate and SER for β = 0.1, α =

0 and β = 10, α = 1. The results due to perfect CSI are also depicted for comparison.

To assess the SER performance, we considered communications under QPSK signaling

where each transmitted block consists of 100 QPSK symbols. As observed, with the pres-

ence of perfect CSI, Max-SINR outperforms Alt-Min algorithm. However, subject to

CSI mismatch, while the achieved improvement by Max-SINR is negligible compared to

Alt-Min algorithm especially at high SNRs, adaptive Max-SINR achieves notably better

performance. For example, adaptive Max-SINR achieves at least 18 dB gain compared to
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Figure 5.7: Average sum rate for K = 3, d = 4, M = N = 8 and for the cases β = 0.1, α = 0,
and β = 10, α = 1.
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Figure 5.8: SER for K = 3, d = 4, M = N = 8 and for the cases β = 0.1, α = 0, and
β = 10, α = 1. Each transmitted block consists of 100 QPSK symbols.

Max-SINR to achieve the same SER of 10−4 for the case α = 1. Also at high SNRs, adap-

tive Max-SINR achieves 10 bits per channel use gain in sum rate compared to Max-SINR

for the case α = 0. Another interesting observation is that for the case of α = 0, both

sum rate and SER curves of Max-SINR show a nonmonotonic behavior whereas those
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of the adaptive Max-SINR manifest a monotonic trend. This nonmonotonic behavior of

Max-SINR is due to the fact that at low-to-intermediate SNRs, Max-SINR outperforms

Alt-Min, but at high SNRs since the system becomes interference limited, Max-SINR and

Alt-Min almost achieve the same performance.

5.6 Summary

Interference alignment will be one of the most dominating interference management tech-

niques in future wireless networks since it enables us to increase the achievable sum rates

proportional to the number of served users. However, similar to the other major com-

munication techniques, full benefits of IA can be gleaned with perfect CSI, which its

availability is not possible in general. In this chapter, we quantified the performance of IA

under a generalized imperfect CSI model thereby we derived novel bounds regarding the

asymptotic mean loss in sum rate and achievable DoF, where it has been shown that if the

intention is to keep the asymptotic mean loss in sum rate bounded, the error variance must

at least scales with the inverse of SNR. We then considered performance analysis of Max-

SINR algorithm which maximizes the SINR of each stream of each user and therefore

achieves better performance than interference leakage minimization algorithms under per-

fect CSI. Subject to imperfect CSI, however, Max-SINR achieves negligible improvement

compared to interference leakage minimization algorithms, especially at high SNRs. We

thus proposed an adaptive Max-SINR, which with the knowledge of error variance in ad-

vance, can notably improve the performance of original Max-SINR under CSI mismatch,

without incurring extra computational complexity.
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Chapter 6

Interference Alignment in Coordinated

Networks

6.1 Introduction

In chapter 5, we represented the idea of interference alignment which aims to improve the

achievable throughput in wireless interference networks such that the achievable DoF can

be linearly scaled up with the number of users.

However, for a symmetric IC where each transmitter has N antennas and each receiver

has M antennas and each transceiver pair requests d DoF, to achieve IA using multiple

antennas instead of time extension, the necessary condition of feasibility is M + N ≥
d(K + 1) [20]. Moreover, it has been shown that if M and N divide d, the sufficient

conditions of feasibility are met, i.e., the lower bound is tight and therefore the minimum

required aggregate number of transmit and receive antennas per transceiver pair is exactly

equal to d(K + 1) [21].

Although for this symmetric system model, Kd DoF are achievable for K-user IC, all

standard IA methods are based on the fact that at least d(K + 1) antennas per transceiver

pair are required to achieve this number of DoF. In this chapter, we propose IA algorithms

such that Kd DoF are achievable even with less number of antennas per transceiver pair

than d(K + 1). The proposed approach relies on partially coordinated reception where

averagely half of the total decoded data (which can be erroneous) are needed to be shared

by receive nodes. It is worthwhile to point out that, from the practical point of view,

coordinated reception and/or transmission are supported scenarios in future wireless net-

works [71–73], which facilitate the implementation of the partially coordinated receivers
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6.2. IA in Partially Coordinated Receivers

being considered in this chapter. More importantly, most of these infrastructures are de-

signed to support full coordination among transmit/receive nodes whereas here, we just

consider half receive coordination which can introduce less burden to practical deploy-

ment.

We propose IA algorithms such that on average, half of the total cross CSI is needed

to be available at receive nodes, which leads the proposed schemes to be a compromise

between standard IA techniques. We show that for the proposed IA algorithms, the feasi-

bility condition can now be expressed as M+N ≥ d(K+4)
2

. This implies a reduced number

of antennas to achieve the same number of DoF compared to standard IA techniques like

the ones in [23,24]. More specifically, for asymptotically large K and to achieve the same

number of DoF, the required number of antennas of the proposed IA techniques can be half

of that of standard IA methods. Apart from achieving the same number of DoF, we show

that even with this reduced number of antennas, the achievable throughput of the proposed

IA schemes is still comparable to that of standard IA methods. We also consider the ef-

fect of both error propagations and channel estimation errors on the performance of the

proposed IA algorithms by proposing an adaptive algorithm, which with the knowledge of

error variance in advance, is able to achieve notably better performance. Simulation results

show that in this case, the proposed adaptive design enables us to glean better performance

when only imperfect CSI is available.

This chapter is organized as follows: Section 6.2 deals with the idea of IA in partially

coordinated receivers. We address the issue of the required amount of distributed CSI

and the convergence of the proposed algorithms in Section 6.3. In Section 6.4, we derive

the feasibility conditions of the proposed IA algorithms. We support the analysis of Sec-

tion 6.4 by using numerical simulations in Section 6.5, and finally Section 6.6 contains a

summary of the presented materials within this chapter.

6.2 IA in Partially Coordinated Receivers

6.2.1 Beamformer Design under Perfect CSI

By relying on the fact that coordinated transmission and/or reception are supported sce-

narios in future wireless networks and the corresponding infrastructures are provisioned

[71–73], we propose IA algorithms adjusted for this configuration such that first, they en-

able us to achieve the same number of DoF as standard IA techniques but with less number

of antennas; and second, even with this reduced number of antennas, the throughput of the
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Figure 6.1: 3-user MIMO interference channel with partially coordinated receivers where solid

green lines denote direct links and dashed red lines represent interfering (cross) links. ck desig-
nates the input data of the kth transmit node whereas ĉk indicates the decoded data at receive

node k.

proposed schemes is still comparable to that of standard IA methods. However, instead

of assuming full information exchange among nodes, we just consider partially coordi-

nated reception; that is, we arbitrarily index the receive nodes such that the K − k receive

nodes forward their decoded data to the kth receive node via high-bandwidth low-latency

backhaul links. This implies that on average, half of the total decoded data is needed

to be shared by receive nodes and consequently enables us to deploy successive inter-

ference cancelation (SIC). This imitates the case of Vertical-Bell Laboratories Layered

Space-Time (V-BLAST) architectures with SIC which result in significant throughput for

standard MIMO systems [74–76]. A simple description of the proposed scenario for the

special case of K = 3 is illustrated in Fig. 6.1 where the third receive node forwards

its decoded data to both the first and the second ones whereas the second receive node

forwards its decoded data only to the first one. In this case, to achieve the same number

of DoF per transceiver pair, the ZF constraint in (5.2) (meant for standard IA techniques)

can now be expressed as

UH
kHk,jVj = 0 , ∀j ∈ {1, . . . , k − 1} (6.1)

Similar to the standard IA algorithms, there are no closed form solutions for IA based

on coordinated reception, except for a very few particular cases. Therefore, beamformer

design requires an iterative procedure in general. With respect to this, we propose two

different IA algorithms adjusted for partially coordinated reception. The first algorithm

does not consider the effect of noise to design beamformers whereas the second one does
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6.2. IA in Partially Coordinated Receivers

so. By considering (6.1) and with respect to the fact that perfect CSI is available, the

proposed algorithms can be concisely described as follows:

Algorithm 1

1. Initialize random unitary matrices Vk, ∀ k

2. if k = 1

3. Uk = orth (Hk,kVk)

4. else

5. Qk =
k−1∑

j=1

Hk,jVjV
H
j H

H
k,j

6. Uk = eig (Qk)1:d
7. end

8. if k = K

9. Vk = orth
(
HH

k,kUk

)

10. else

11. Rk =
K∑

j=k+1

HH
j,kUjU

H
j Hj,k

12. Vk = eig (Rk)1:d
13. end

14. Go to Step 2 and repeat

Algorithm 2

1. Initialize random unit-norm vectors vkℓ, ∀ k, ℓ

2. Qℓ
k =

k−1∑

j=1

d∑

n=1

PHk,jvjnv
H
jnH

H
k,j +

ℓ−1∑

m=1

PHk,kvkmv
H
kmH

H
k,k+σ2I

3. ukℓ =

(
Qℓ

k

)−1
Hk,kvkℓ∥∥∥

(
Qℓ

k

)−1
Hk,kvkℓ

∥∥∥
2

4. Rℓ
k =

K∑

j=k+1

d∑

n=1

PHH
j,kujnu

H
jnHj,k +

d∑

m=ℓ+1

PHH
k,kukmu

H
kmHk,k+σ2I

5. vkℓ =

(
Rℓ

k

)−1
HH

k,kukℓ∥∥∥
(
Rℓ

k

)−1
HH

k,kukℓ

∥∥∥
2

6. Go to Step 2 and repeat
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A variational of Algorithm 1 based on alternating minimization can be described as fol-

lows:

Algorithm 3

1. Initialize random unitary matrices Vk, ∀ k

2. if k = 1

3. Ak = orth (Hk,kVk)

4. Uk = AkA
H
k

5. Gk = I−Uk

6. else

7. Qk =
k−1∑

j=1

Hk,jVjV
H
j H

H
k,j

8. Gk = eig (Qk)d+1:M

9. Uk = I−GkG
H
k

10. end

11. if k = K

12. Vk = orth
(
HH

k,kUk

)

13. else

14. Rk =

K∑

j=k+1

HH
j,k

(
I−GjG

H
j

)
Hj,k

15. Vk = eig (Rk)1:d
16. end

17. Go to Step 2 and repeat

Note that Algorithm 3 is analogous to Algorithm 1 in the sense that it does not consider the

effect of noise to design beamformers. Since Algorithm 3 achieves the same performance

as Algorithm 1, hereafter, we place our focus on Algorithm 1.

Remark 6.1: Algorithm 1 only considers the interfering subchannels for aligning in-

terference. In other words, for the kth user, Algorithm 1 does not consider neither the

effect of direct link, i.e., Hk,kVk, nor the noise power to design the appropriate combin-

ers. However, Algorithm 2 utilizes the knowledge of both direct link and the noise power

for beamformer design. Therefore, it is expected that Algorithm 2 should achieve better

performance than Algorithm 1.

Remark 6.2: While for Algorithm 1, Vj and Uj are unitary matrices, this does not

hold for Algorithm 2, which may result in rank-deficient precoders (receive combiners)
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for at least one user and hence at high SNRs, it may not be able to achieve full DoF and

thus reduces the throughput. However, one simple solution to make precoding and receive

combining matrices unitary is using orthogonalization steps after obtaining Uk and Vk,

which ensure unitary precoding and receive combining matrices without incurring any

performance degradation in total DoF and achievable throughput at high SNR ranges.

However, if the intention is performance analysis at low-to-intermediate SNRs, there is no

need for additional orthogonalization steps.

6.2.2 Beamformer Design under Imperfect CSI

In subsection 6.2.1, we proposed three algorithms under the assumption of the availability

of perfect CSI. However, since from the practical point of view, perfect CSI is not read-

ily accessible, it is desirable to consider an adaptive design to achieve better performance

under CSI mismatch. In this subsection, we propose an adaptive version of Algorithm 2,

which enables us to glean better performance subject to imperfect CSI. We consider the

imperfect CSI model as the one discussed in subsection 5.2.2. Similar to the standard IA

algorithms, we assume that all precoders and combiners are constructed with the knowl-

edge of unified CSI mismatch. In this case, by replacing Hk,j with the RHS of (5.6), the

covariance matrix Qℓ
k in Step 2 of Algorithm 2 can be rewritten as

Qℓ
k =

k−1∑

j=1

d∑

n=1

P

(
1

1 + τ
Ĥk,j + H̆k,j

)
v̂jnv̂

H
jn

(
1

1 + τ
Ĥk,j + H̆k,j

)H

+

ℓ−1∑

m=1

P

(
1

1 + τ
Ĥk,k + H̆k,k

)
v̂kmv̂

H
km

(
1

1 + τ
Ĥk,k + H̆k,k

)H

+σ2I (6.2)

Now by taking the expectation over the redundant channel measurement error H̆k,j and by

considering lemma 5.3 and lemma 5.4 on page 90, we can approximate Qℓ
k in (6.2) with a

simpler form, i.e., Q̂ℓ
k as follows:

Q̂ℓ
k =

k−1∑

j=1

d∑

n=1

P

(1 + τ)2
Ĥk,jv̂jnv̂

H
jnĤ

H
k,j +

ℓ−1∑

m=1

P

(1 + τ)2
Ĥk,kv̂kmv̂

H
kmĤ

H
k,k

+

(
P (kd+ ℓ− d− 1)

τ

1 + τ
+ σ2

)
I (6.3)
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Similarly, by replacing Hk,j with the RHS of (5.6), the covariance matrix Rℓ
k in Step 4 of

Algorithm 2 can be rewritten as

Rℓ
k =

K∑

j=k+1

d∑

n=1

P

(
1

1 + τ
Ĥj,k + H̆j,k

)H

ûjnû
H
jn

(
1

1 + τ
Ĥj,k + H̆j,k

)

+

d∑

m=ℓ+1

P

(
1

1 + τ
Ĥk,k + H̆k,k

)H

ûkmû
H
km

(
1

1 + τ
Ĥk,k + H̆k,k

)
+σ2I (6.4)

Now by taking the expectation over the redundant channel measurement error H̆k,j and by

considering lemma 5.3 and lemma 5.4 on page 90, we can approximate Rℓ
k in (6.4) with a

simpler form, i.e., R̂ℓ
k as follows:

R̂ℓ
k =

K∑

j=k+1

d∑

n=1

P

(1 + τ)2
ĤH

j,kûjnû
H
jnĤk,j +

d∑

m=ℓ+1

P

(1 + τ)2
ĤH

k,kûkmû
H
kmĤk,k

+

(
P
(
(K − k + 1) d− ℓ

) τ

1 + τ
+ σ2

)
I (6.5)

Therefore, by considering (6.3) and (6.5), the adaptive modification of Algorithm 2 (which

hereafter we call it Algorithm 4) is illustrated as follows:

Algorithm 4

1. Initialize random unit-norm vectors vkℓ, ∀ k, ℓ

2. Set ε := γ−1 (1 + τ)2 + τ (τ + 1) (kd+ ℓ− d− 1)

3. Qℓ
k =

k−1∑

j=1

d∑

n=1

Ĥk,jv̂jnv̂
H
jnĤ

H
k,j +

ℓ−1∑

m=1

Ĥk,kv̂kmv̂
H
kmĤ

H
k,k+ε I

4. ukℓ =

(
Qℓ

k

)−1
Ĥk,kv̂kℓ∥∥∥

(
Qℓ

k

)−1
Ĥk,kv̂kℓ

∥∥∥
2

5. Set µ := γ−1 (1 + τ)2 + τ (τ + 1)
(
(K − k + 1) d− ℓ

)

6. Rℓ
k =

K∑

j=k+1

d∑

n=1

ĤH
j,kûjnû

H
jnĤj,k +

d∑

m=ℓ+1

ĤH
k,kûkmû

H
kmĤk,k+µ I

7. vkℓ =

(
Rℓ

k

)−1
ĤH

k,kûkℓ∥∥∥
(
Rℓ

k

)−1
ĤH

k,kûkℓ

∥∥∥
2

8. Go to Step 2 and repeat

109



6.2. IA in Partially Coordinated Receivers

Remark 6.3: Analogous to the discussions in remark 6.2 regarding the orthonormal-

ity of the beamformers of Algorithm 2, Algorithm 4 does not yield unitary beamformers.

Therefore, to make precoding and receive combining matrices unitary, we can insert or-

thogonalization steps after obtaining Uk and Vk, which ensure unitary precoding and

receive combining matrices without incurring any performance degradation in total DoF

and achievable throughput at high SNR ranges. However, if the intention is performance

analysis at low-to-intermediate SNRs, there is no need for additional orthogonalization

steps.

Remark 6.4: Unlike Algorithm 2, Algorithm 4 is able to adaptively design beam-

formers based on the knowledge of the error variance in advance. As observed, by setting

τ = 0, Algorithm 4 boils down to Algorithm 2 under imperfect CSI. If we further replace

Ĥk,j with Hk,j, Algorithm 4 becomes Algorithm 2 under perfect CSI. In other words,

Algorithm 4 is a generalized version of Algorithm 2.

6.2.3 Signal Postprocessing at Receive Nodes

If we define V, U and H as (5.7)–(5.9), for standard IA, at high enough SNRs and with the

assumption of perfect CSI, UHHV yields a matrix in similar from as in (5.10). However,

if {Vj}Kj=1 and {Uj}Kj=1 are obtained by one of the proposed Algorithms 1 and 2, then by

considering (6.1), the effective channel can be described by

UHHV =




H1,1 H1,2 · · · H1,K

0 H2,2 · · · H2,K

...
...

. . .
...

0 · · · 0 HK,K




(6.6)

such that Hk,j = UH
kHk,jVj . Therefore, unlike standard IA algorithms wherein by pre-

multiplying the received signal at each receiver by the related receive combining matrix,

all the interferences are suppressed (as shown in (5.11)), for the proposed algorithms and

at the kth receive node, the interferences of just transmitters 1 to k − 1 are subject to

elimination, as can be deduced from (6.1). For example, for the kth node the received

signal can be expressed as (5.1). Then after premultiplying yk by UH
k obtained by one of
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Algorithms 1 and 2, we have

UH
kyk=UH

k

k−1∑

j=1

Hk,jxj

︸ ︷︷ ︸
0

+UH
kHk,kxk+UH

k

K∑

j=k+1

Hk,jxj+UH
k zk

=Hk,kck +

K∑

j=k+1

Hk,jcj + zk (6.7)

In this case, first the Kth receive node tries to recover the transmitted symbol vector cK ,

then the (K − 1)th node tries to recover cK−1 by first subtracting ĉK from its received

signal, and so on.

More specifically, first we arbitrarily index the nodes and obtain the precoding and

receive combining matrices accordingly. Then by this assumption that each receive node

uses LZF filtering to recover the transmitted data, the detection process can be summarized

as follows

ĉK = F
(
pinv

(
HK,K

)
yK

)

ĉK−1 = F
(
pinv

(
HK−1,K−1

) [
yK−1 −HK−1,K ĉK

])

...

ĉk = F
(
pinv

(
Hk,k

)
[
yk −

K∑

j=k+1

Hk,j ĉj

])
(6.8)

where yk = UH
kyk such that yk is defined in (5.1), pinv

(
Hk,k

)
=
(
H

H

k,kHk,k

)−1

H
H

k,k,

F(·) denotes a demodulating operator like QAM demodulator, and ĉk represents the de-

coded data at receive node k, which can be erroneous.

6.3 Discussions

6.3.1 CSI Availability

Depending on the algorithm, all IA schemes need certain amount of CSI to be available.

In a centralized processing, the total CSI is available at an access point (AP) whereas in a

distributed processing, each node must have access to certain amount of CSI. Without loss

of generality, we consider distributed processing. While some standard IA techniques like
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the ones in [17, 25] are based on the global channel knowledge at each node, some other

IA techniques like the ones in [23] require only local CSI at each node (each receiver only

needs to know the direct channel to its desired transmitter, i.e., Hk,k) and the covariance

matrix of the effective noise (consisting of the AWGN and the interferences from all re-

maining K − 1 transmitters). However, for the proposed IA techniques in this work, the

kth node requires the knowledge of direct link Hk,k, the cross CSI of K − k nodes, i.e.,

Hk,j, j = k+1, . . . , K, and the covariance matrix of the effective noise (consisting of the

AWGN and the interferences of just k − 1 transmit nodes). This implies that on average,

half of the total cross CSI is needed to be shared by receive nodes. Consequently, from

the CSI availability perspective, the proposed IA algorithms give a compromise between

the ones in [17, 25] and those of [23, 24].

6.3.2 Convergence of Algorithms

The methodology introduced above might suggest that the convergence of the proposed

algorithms is not guaranteed. Therefore, in this subsection and with respect to the fact that

the feasibility conditions are met, we address this issue.

The proof of convergence of Algorithm 1 is trivial since transmitters and receivers

take turns to adjust the beamforming vectors to reduce interference leakage under the

assumption of channel reciprocity. Therefore Algorithm 1 monotonically reduces the total

interference leakage and consequently converges. This causes Algorithm 1 to be similar to

Min-WLI. However for Algorithm 2, the situation is different. Note that Algorithm 2 and

Max-SINR are similar in the sense that both of these algorithms consider the effect of noise

for aligning interference. Although in simulation results of Algorithm 2 (and also Max-

SINR), the sum rate appears to converge, unfortunately due to the complexity of the sum

rate and MMSE expressions, it is not possible to prove the convergence mathematically.

However, it is easy to show that Algorithm 2 (Algorithm 1) converges faster than Max-

SINR (Min-WLI) since in Max-SINR (Min-WLI), both the upper and the lower triangular

parts of the equivalent channel matrix must be transformed into blocks of zeros, as shown

in (5.10), whereas for Algorithms 2 (Algorithm 1) just the lower triangular part is needed to

be made zero, as revealed in (6.6). Consequently Algorithm 2 (Algorithm 1) needs fewer

constraints to meet in comparison with Max-SINR (Min-WLI). Therefore if Max-SINR is

supposed to converge numerically, the situation for Algorithm 2 is more relaxed. In fact,

in numerical simulations, it has been observed that for the same number of iterations, the

percentage of the leaked interference of Algorithm 2 is less than that of Max-SINR, which
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validates the above discussion.

It is also worthwhile to mention that regardless of the convergence speed of IA algo-

rithms which can be affected by the initial point of precoders/combiners, they are able to

converge to a solution.

6.4 Feasibility Conditions

The feasibility condition of standard IA techniques has been first investigated in [20]

based on counting the number of variables (i.e., the number of nonsuperfluous elements of

subspaces spanned by precoders and combiners) and number of equations which satisfy

the ZF condition in (5.2). It has been shown that a symmetric system is proper if and

only if the number of equations is not larger than the number of variables which leads

to M + N ≥ d(K + 1). Later [21] solidified the condition in [20] where it has been

shown that if M and N divide d, the lower bound on the aggregate number of antennas is

tight, and the proper system becomes feasible, i.e., M +N = d(K +1) implies a feasible

system. However, since the configuration considered in this work is different from that

of the standard IA methods, therefore following the same approach of [21] to derive the

feasibility conditions of the proposed algorithms is not straightforward and is generally

inconclusive. Consequently, we use a similar approach to [20] to evaluate whether the

system is proper and obtain the necessary conditions of feasibility; that is, the total num-

ber of variables should not be less than the total number of equations. It is worthwhile to

note that this way of deriving the necessary conditions of feasibility based on counting the

number of variables and equations is popular in an IA-based context (e.g., [20, 77, 78]).

However, a proper system does not always guarantee IA feasibility. Since acquiring the

sufficient conditions of feasibility is not as trivial as the necessary conditions, analogous

to the same approach in [20,23], we further measure the percentage of the leaked interfer-

ence, i.e., the fraction of the interference power that is existent in the dimensions reserved

for the desired signal. If this percentage is equal to zero, the considered system becomes

plainly feasible and sufficient conditions of feasibility are met. Note that the interference

percentage at the kth receive node is directly related to

pk =

d∑

i=1

λi [Qk]

Tr [Qk]
(6.9)
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where λi is the ith smallest eigenvalue of Qk, and Qk represents the scaled interference

covariance matrix at receive node k which can be shown as

Qk =

k−1∑

j=1

Hk,jVjV
H
j H

H
k,j (6.10)

Hence, before meeting the sufficient conditions of feasibility by measuring the per-

centage of the leaked interference, we obtain the necessary conditions of feasibility by

counting the number of variables and equations. Let Nv and Ne, respectively, denote the

number of variables and the number of equations. The necessary condition for this system

to be underdetermined (and consequently proper) is that the number of equations does

not exceed the number of variables. This underlines the procedure being discussed in this

section.

We reexpress the condition of (6.1) as

uH
kmHk,jvjn = 0

s. t. : k = 1, . . . , K

j ∈ {1, · · · , k − 1}
m,n = 1, . . . , d (6.11)

Therefore, we can obtain Ne from (6.11) as

Ne =
K∑

k=1

k−1∑

j=1

d2 =
K (K − 1)

2
d2 (6.12)

Nevertheless, counting the number of variables is less straightforward, since there are

some superfluous variables that should not be taken into account. We consider the follow-

ing two criteria to calculate Nv:

1. As evident from Algorithm 1, in each iteration, to obtain receive combining matrices

(or precoding matrices in the reverse iteration), the number of variables is confined

to K − 1 receive combining (or precoding) matrices. For example, as seen in Steps

2–7 of Algorithm 1, we pick up U1 as an arbitrarily unitary matrix and the rest of

Uk, k = 2, . . . , K are computed based on the covariance of the interference in Step

5. Note that although we choose U1 = orth (H1,1V1), but this is just a desired

selection for U1 since as we mentioned, U1 can arbitrarily be selected and there is
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no constraint on U1 except being unitary. Therefore the number of variables related

to U1 (and also similarly VK in the reverse iteration) should not be considered.

2. Now we consider the number of variables confined to each precoding or receive

combining matrix. Let us first consider the precoding matrix Vk ∈ CN×d which

forms a basis for the transmitted signal space of transmitter k. If we postmultiply

Vk by an invertible matrix, this does not change the space spanned by the columns

of Vk. We partition matrix Vk as

Vk =

(
V̇k

V̈k

)
(6.13)

where V̇k ∈ Cd×d and V̈k ∈ C(N−d)×d. In this case, we have

span (Vk) = span
(
VkV̇

−1
k

)
(6.14)

where A = span (Vk) means that A spans the same space as the columns of Vk. If

we further define

Vk = VkV̇
−1
k =

(
Id×d

V̈kV̇
−1
k

)
(6.15)

where Id×d represents the identity matrix of size d × d, the transmit signal space is

now spanned by Vk. It is easy to argue that there is no other basis representation for

the kth transmitted signal space with fewer variables.

Consequently, by removing superfluous variables, the number of remaining variables

related to the kth precoding matrix Vk is equal to d (N − d). Similarly, the number of

nonsuperfluous variables that should be taken into account for receive combining matrix

Uk is d (M − d).

As a result of the aforementioned criteria, the total number of variables in the network

is equal to

Nv =

K−1∑

k=1

d (M +N − 2d) = d (K − 1) (M +N − 2d) (6.16)

Now we can discuss that the necessary condition of feasibility is Nv ≥ Ne, which

further results in

Nv ≥ Ne ⇒ d (K − 1) (M +N − 2d) ≥ K (K − 1)

2
d2

⇒ M +N ≥ d(K + 4)

2

(6.17)

115



6.5. Numerical Results

Corollary 6.1: For standard IA techniques, min (M +N) is equal to d (K + 1), while

for the proposed algorithms, this amount is equal to
d(K+4)

2
. This indicates that to achieve

the same number of DoF, the proposed IA algorithms require less number of antennas than

standard IA techniques. In other words, for asymptotically large K, the required number

of antennas for the proposed IA schemes can be half of that of standard IA techniques to

secure the same number of DoF.

6.5 Numerical Results

In this section and by using numerical results, we support the analysis related to the fea-

sibility conditions of the proposed algorithms in the previous section. Although there are

several well-known IA algorithms is the literature (see e.g., [23,24]), we compare the per-

formance of the proposed Algorithms 1, 2, and 4 with Min-WLI and Max-SINR. This

is because both Algorithm 1 and Min-WLI are based on just interference leakage mini-

mization without considering the effect of direct links and noise whereas Algorithms 2,

4, and Max-SINR consider the effect of direct links and noise for beamformer design. It

is also worth mentioning that under perfect CSI, Algorithm 4 boils down to Algorithm

2. Moreover, we do not consider other standard IA techniques since most of them are

closely related to Min-WLI or Max-SINR. For the case of imperfect CSI, we assume that

the channel estimation error variance obeys (3.3), i.e., τ = βγ−α.

In Figs. 6.2–6.3, we consider beamformer design under perfect CSI with no error

propagation at receive side whereas in Figs. 6.4–6.5, we assume beamformer design under

imperfect CSI and with error propagation at receive side.

In Fig. 6.2, we depict the average sum rate for the case K = 3 and d = 4 such

that each receive node uses optimum filtering to recover the transmitted data. For the

standard IA schemes and based on discussions in [20], the aggregate number of transmit

and receive antennas must satisfy M + N ≥ 16. Based on discussions in [21] indicating

that if M and N divide d, the lower bound is tight and the proper system becomes plainly

feasible, we choose M = N = 8. For the proposed Algorithms 1 and 2 and based on

(6.17), the aggregate number of transmit and receive antennas must satisfy M +N ≥ 14.

Consequently, we choose M = 6, N = 8 (or M = 8, N = 6). We also measured

the percentage of the leaked interference in the desired signal subspaces based on (6.9),

where with this choice of number of transmit and receive antennas, it turns out to be zero,

which further implies the feasibility of the proposed algorithms.
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Algorithm 2, M=6, N=8

Max−SINR, M=N=8

Algorithm 1, M=6, N=8

Min−WLI, M=N=8

Figure 6.2: Average sum rate for K = 3 and d = 4 with the assumption of perfect CSI and no
error propagation. Each receive node uses optimum filtering to recover the transmitted symbols.
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Algorithm 2, M=6, N=7

Max−SINR, M=N=10

Algorithm 1, M=6, N=7

Min−WLI, M=N=10

Figure 6.3: Average sum rate for K = 19 and d = 1 with the assumption of perfect CSI and no
error propagation. Each receive node uses optimum filtering to recover the transmitted symbols.

Fig. 6.2 reflects the two important features of the proposed IA schemes: first, by using

the proposed algorithms, we can decrease the number of transmit or receive antennas as-

sociated with each transceiver pair by two, to achieve the same number of DoF as standard

IA schemes; second, even with this reduced number of antennas, the proposed Algorithms
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1 and 2 achieve better throughput than Min-WLI and Max-SINR, respectively.

In Fig. 6.3, we illustrate the average sum rate for the case K = 19 and d = 1, and

with considering optimum filtering for each decoupled subchannel. For the standard IA

schemes and based on discussions in [21], the aggregate number of transmit and receive

antennas must satisfy M + N ≥ 20. Therefore, we choose M = N = 10. For the

proposed algorithms and based on (6.17), the aggregate number of transmit and receive

antennas must satisfy M + N ≥ 12. However, as we measured the percentage of leaked

interference in each desired signal subspace based on (6.9), it turns out that the percentage

of the leaked interference is not zero which further implies that the proposed algorithms

are not feasible when M + N = 12. However, with M = 6, N = 7 (or M = 7, N = 6)

implying that M +N = 13, this percentage is equal to zero and the proposed algorithms

become feasible.

Fig. 6.3 indicates that by using the proposed schemes for the case K = 19 and d =

1, we can decrease the number of transmit and receive antennas associated with each

transceiver pair by 20 − 13 = 7 to achieve the same number of DoF as standard IA

schemes. This means that since K = 19, we have a total decrease of 133 antennas in

the entire network compared to standard IA schemes. Moreover as shown, even with this

reduced number of antennas, the achievable throughput of the proposed Algorithms 1 and

2 is still comparable to that of Min-WLI and Max-SINR, respectively.

So far, in Figs 6.2–6.3, we evaluated the performance of Algorithms 1–2 under perfect

CSI and with no error propagation. It is however desirable to assess their performance

under imperfect CSI and with error propagation. In Fig. 6.4, we evaluate the performance

of Algorithms 1–2 and also the adaptive design in Algorithm 4 under the CSI mismatch

model discussed in section 5.2.2. Note that based on remark 6.4, under perfect CSI, Al-

gorithm 4 boils down to Algorithm 2. We consider two different cases for the imperfect

CSI: β = 10, α = 1 and β = 0.05, α = 0. We further assume that we have K = 4

pairs of users each communicating with its corresponding receiver with 2 DoF such that

each transmitted block consists of 100 QPSK symbols. For this case, and based on (6.17),

the minimum aggregate number of transmit and receive antennas is equal to M +N ≥ 8

whereas for the standard IA techniques the minimum aggregate number of transmit and

receive antennas is equal to 10. By setting M = N = 4, the interference leakage per-

centage in (6.9) becomes zero and the feasibility conditions are met. We further assume

that each receive node has access to perfect direct link, and the effect of error propagation

has been considered as well. As revealed, the proposed adaptive design, i.e., Algorithm 4,

enables us to glean more gains under imperfect CSI compared to Algorithms 1 and 2, e.g.,
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Figure 6.4: Average SER for K = 4, d = 2 and M = N = 4 under perfect and imperfect CSI
with error propagation. Each receive node uses LZF filtering to recover the transmitted symbols

and each transmitted block consists of 100 QPSK symbols
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Figure 6.5: Average SER for K = 4, d = 2. For Algorithm 4, M = N = 4 whereas for Max-SINR

and Min-WLI algorithms, M = 4, N = 6. The plots are depicted under perfect and imperfect CSI

while Algorithm 4 experiences error propagation. Each receive node uses LZF filtering to recover
the transmitted symbols and each transmitted block consists of 100 QPSK symbols.

to achieve the SER of 10−3, Algorithm 4 enables us to save 10 and 12 dB gains compared

to Algorithms 2 and 1, respectively.
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In Fig. 6.4, we showed that Algorithm 4 outperforms Algorithm 1 and Algorithm 2

under imperfect CSI. Fig. 6.5 illustrates the average SER of Algorithm 4 in comparison

with standard IA techniques, i.e., Min-WLI and Max-SINR, under imperfect CSI. With

respect to the fact that Algorithm 4 boils down to Algorithm 2 under perfect CSI, the

plots corresponding to this case are also depicted for comparison. Note that while for

Algorithm 4 we have M = N = 4, for Max-SINR and Min-WLI algorithms, we have

M = 4, N = 6. As revealed, although Algorithm 4 experiences error propagation, it

can still outperform Max-SINR and Min-WLI under imperfect CSI. For example, when

β = 10, α = 1, Algorithm 4 respectively achieves 11 dB and 15 dB gain compared to

Min-WLI and Max-SINR to reach the SER of 10−3. Also for the case β = 0.05, α = 0,

Algorithm 4 decreases the SER by a factor of nearly 1
10

compared to Min-WLI and Max-

SINR at SNRs of larger than 20 dB.

6.6 Summary

In wireless interference networks, to attain full DoF using IA, the aggregate number of

transmit and receive antennas at each transceiver pair must satisfy M + N ≥ d (K + 1).

In this chapter, by relying on partially coordinated reception where averagely half of the

total decoded data (which can be erroneous) are shared by receive nodes, we proposed IA

algorithms such that their feasibility condition can now be expressed as M+N ≥ d
(
K+4
2

)
.

This implies less required number of antennas to secure the same number of DoF com-

pared to standard IA techniques. Also by using numerical simulations, we showed that

even with this reduced number of antennas, the achievable throughput of the proposed

algorithms is still comparable to that of standard IA schemes. Moreover, we also pro-

posed an adaptive IA design under the availability of imperfect CSI. By relying on the

knowledge of error variance in advance, the proposed approach is able to notably improve

the achievable performance compared to standard IA techniques subject to CSI mismatch.

In a nutshell, even by considering imperfect CSI and error propagation, the proposed al-

gorithms are able to achieve comparable performance to standard IA techniques while

enabling us to decrease the aggregate number of transmit and receive antennas.
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Chapter 7

LS and MMSE based Beamformer

Design for IC

7.1 Introduction

In chapter 5, we analyzed the performance of constant MIMO IA under CSI mismatch

wherein we derived novel bounds regarding the asymptotic mean loss in sum rate and

achievable DoF which are generally applicable to any IA scheme. Also in chapter 6, we

employed the idea of partially coordinated reception to design IA algorithms which enable

us to decrease the number of deployed antennas at transmit and/or receive nodes in order

to secure the same number of DoF compared to standard IA techniques.

Although there are various IA algorithms in the literature [23–34], in this chapter, we

place our focus on designing two novel IA algorithms based on LS and MMSE criteria

which hereafter are referred as LS and MMSE based designs for multiuser MIMO IC.

Unlike standard IA methods which are primarily designed based on the availability of

perfect CSI, the optimization criteria of the proposed algorithms are set up based on the

availability of only imperfect channel estimation. This makes the proposed algorithms be

adaptive in a sense that we are allowed to design beamformers based on the knowledge of

channel estimation error variance. In this case, the beamformer design under perfect CSI

becomes a special scenario when the error variance is set to zero. This makes the proposed

schemes more general than standard IA techniques.

Most of the previously proposed IA algorithms are closely related to either Min-WLI

or Max-SINR algorithms. For example, the Alt-Min algorithm defined in [34] is algo-

rithmically identical to Min-WLI, or the joint signal and interference alignment algorithm
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in [28] is a modified version of Alt-Min algorithm in [34]. Also the MMSE IA in [29]

is a special case of Max-SINR and the weighted MMSE IA defined in [24]. Therefore,

without loss of generality, in this chapter we compare the performance of the proposed

algorithms with that of Min-WLI and Max-SINR algorithms.

It is shown that the proposed LS based design is able to outperform interference leak-

age minimization algorithms under both perfect and imperfect CSI. This is due to the fact

that unlike Min-WLI and Alt-Min algorithms which do not consider the direct links to

design the beamformers, the proposed LS based scheme does so.

MMSE IA was first introduced in [29] for single-stream-per-user transmission, and

then generalized to the case of multi-stream-per-user communication (see e.g., [24]). In

this chapter, however, we propose a novel MMSE based IA which yields unitary precoders

and combiners. Since the proposed approach is implicitly built on MMSE to design beam-

formers, it may be slightly suboptimal compared to the weighted MMSE IA techniques

like the ones in [24,29]. However, note that the precoders obtained by the weighted MMSE

IA are not unitary, and they further need an extra optimization step to meet the power con-

straint. Moreover, this power-constraint optimization step has no closed-form solution

and has to be done numerically within each iteration. Nevertheless, the beamformers ob-

tained by the proposed MMSE based scheme are unitary, and they do not require such

an extra power-constraint optimization step, which consequently results in much simpler

implementation.

Compared to Max-SINR, while the proposed MMSE based design is a user-by-user

approach, the former is a stream-by-stream approach. Consequently, the proposed MMSE

based IA needs less CSI to be available compared to Max-SINR in order to calculate

the beamformers. Plus, the former possesses less computational complexity compared

to the latter. We also prove that the proposed MMSE based design achieves the same

performance as Max-SINR under perfect CSI. Subject to imperfect CSI, however, the

former outperforms the latter. Using simulation results, we demonstrate the improved

performance achieved by the proposed algorithms compared to standard IA techniques.

Moreover, it is also shown that the proposed LS based design results in diagonalized

subchannels for all SNR ranges, under perfect CSI. In other words, after premultiplying

the received signal by the corresponding combiner, the interferences are first suppressed

and the desired subchannels are then diagonalized. This is in contrast to the previously

proposed IA schemes like interference leakage minimization algorithms wherein the re-

sulted subchannels are full matrices. In this case and in order to use waterfilling to achieve

higher sum rates, while standard IA schemes like Min-WLI and Alt-Min need to use sin-
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gular value decomposition (SVD), the proposed LS based design dissolve the need of such

decomposition since the decoupled subchannels have been already diagonalized. It is also

worthwhile to point out that since at sufficiently high SNRs, MMSE based IA boils down

to LS based IA, the resulted subchannels of MMSE based IA are also diagonalized at high

enough SNRs.

This chapter is organized as follows: in Sections 7.2 and 7.3, respectively, we propose

LS and MMSE based IA algorithms by setting up the optimization problem based on the

knowledge of imperfect CSI and channel estimation error variance. Section 7.4 contains

discussions regarding the proposed algorithms. In Section 7.5, we use numerical results

to show that the proposed schemes outperform standard IA techniques under both perfect

and imperfect CSI. Finally the chapter ends up with a summary in Section 7.6.

7.2 LS based IA

In this section, we propose an optimized beamformer design for MIMO IC based on LS

criterion and the knowledge of imperfect CSI. The system model under both perfect and

imperfect CSI is similar to those in subsections 5.2.1 and 5.2.2, respectively. Without loss

of generality, we consider a symmetric interference channel where there are K pairs of

transceivers such that each N-antenna transmitter communicates with its corresponding

M-antenna receiver by sending d independent data streams as illustrated in Fig. 5.1. In

this case, the received signal at receive node k can be expressed as

yk = Hk,kxk +
K∑

j=1
j 6=k

Hk,jxj + zk (7.1)

where the notations yk, xk = Vkck, E
{
ckc

H
k

}
= P I, vec (Hk,j) ∼ NC (0, I), and

zk ∼ NC (0, σ
2I) are consistent with those defined in subsection 5.2.1. γ = P/σ2 is

also considered as the nominal SNR. Therefore, the kth receive node premultiplies the

received signal by UH

k which yields

UH
kyk = UH

kHk,kxk +UH
k

K∑

j=1
j 6=k

Hk,jxj +UH
k zk

︸ ︷︷ ︸
zk

=⇒ yk = Hk,kck + zk

(7.2)

123



7.2. LS based IA

where yk = UH
kyk, Hk,k = UH

kHk,kVk, and Vk and Uk are unitary precoders and com-

biners, respectively. Due to (5.2), at high enough SNRs, we have zk = UH
k zk. Thus,

the data vector ck can be readily recovered via premultiplying yk by (pseudo-) inverse of

UH

kHk,kVk.

As discussed in earlier chapters, due to the coupled nature of the beamformer design

for multiuser MIMO IC, there are no closed form solutions for IA, except for a few partic-

ular cases. Consequently, finding precoders and combiners requests an iterative procedure

in general. Therefore, first the precoders get fixed and the combiners are sought, and then

the combiners get fixed and the precoders are sought through an iterative manner.

For the proposed LS based design and without loss of generality, we consider the

adaptive design under imperfect CSI as the major optimization problem, and as it will be

shown later, the standard design under perfect CSI is a special case of the adaptive design

by setting error variance equal to zero. In order to calculate the beamformers adaptively,

we assume that the variance of channel estimation error is known in advance. Given

randomly initialized precoders and with respect to (7.2), the optimization criterion based

on LS design can be considered as

arg min
Uk

E





∥∥∥∥∥U
H

k

K∑

j=1

Hk,jVjcj − ck

∥∥∥∥∥

2

2



 ∀k = 1, . . . , K (7.3)

Now the objective function of the optimization problem in (7.3) can be defined as

ḞLS = E



Tr



(
UH

k

K∑

j=1

Hk,jVjcj − ck

)(
UH

k

K∑

j=1

Hk,jVjcj − ck

)H




 (7.4)

To further continue, we consider the following lemma:

Lemma 7.1: We assume that the transmitted data vector ck consists of i.i.d. symbols,

i.e., E
{
ckc

H
j

}
= 0, j 6= k, and also the noise vector zk is independent of the data vector

ck as well as the channel matrices Hk,j.

With respect to lemma 7.1, ḞLS in (7.4) can be rewritten as

ḞLS = Tr

[
P UH

k

K∑

j=1

Hk,jVjV
H

j H
H

k,jUk − P VH

kH
H

k,kUk − P UH

kHk,kVk

]
+ Pd (7.5)

To obtain combiners based on minimizing the objective function in (7.5), we differen-

tiate ḞLS with respect to Uk by first considering the following assumptions [50, 51]:
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1. Uk and UH

k are treated as independent variables.

2.
∂ Tr [AUk]

∂Uk

=
∂ Tr [UkA]

∂Uk

= A.

Therefore, with respect to the two preceding assumptions, we have

∂ḞLS

∂Uk

= P UH

k

K∑

j=1

Hk,jVjV
H

j H
H

k,j − P VH

kH
H

k,k (7.6)

The imperfect CSI model, that is going to be considered throughout this chapter, is similar

to the one that has been discussed in subsection 5.2.2. Therefore, by considering (5.6),

equation (7.6) can be further rewritten as

∂ḞLS

∂Uk

=P UH

k

K∑

j=1

(
Ĥk,j

1 + τ
+ H̆k,j

)
VjV

H

j

(
Ĥk,j

1 + τ
+ H̆k,j

)H

− P VH

k

(
Ĥk,k

1 + τ
+ H̆k,k

)H

(7.7)

Note that
∂ḞLS

∂Uk

is now dependent on both Ĥk,j and H̆k,j . To make
∂ḞLS

∂Uk

dependent only

on Ĥk,j, we can take the expectation with respect to H̆k,j by noticing the following two

lemmas:

Lemma 7.2:

E
H̆|Ĥ

{
Ĥk,jVjV

H
j H̆

H
k,j

}
= E

H̆|Ĥ

{
H̆k,jVjV

H
j Ĥ

H
k,j

}
= 0 (7.8)

Proof: All precoders and combiners are constructed upon channel estimates Ĥk,j

which based on lemma 3.1 on page 28 are independent of H̆k,j .

Lemma 7.3: If A ∈ CM×N represents a Gaussian matrix with i.i.d. elements of mean

zero and variance a, and B ∈ C
N×d refers to a truncated unitary matrix independent of A,

then EA

{
ABBHAH

}
= ad I.

Proof: Since A is a Gaussian matrix, it is bi-unitarily invariant, and consequently the

joint distribution of its entries equals that of AB for any truncated unitary matrix B inde-

pendent of A [3]. Therefore AB is equivalent to a Gaussian matrix with i.i.d. elements

of mean zero and variance a. Since AB has d independent columns, EA

{
ABBHAH

}
=

ad I.

Following lemmas 7.2 and 7.3 and by taking the expectation of
∂ḞLS

∂Uk

over H̆k,j, we
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have

EH̆k,j

{
∂ḞLS

∂Uk

}
=P UH

k

(
1

(1 + τ)2

K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j +
Kdτ

1 + τ
I

)
− P

1 + τ
VH

k Ĥ
H

k,k

(7.9)

Now the sought combiner Uk can be obtained by setting EH̆k,j

{
∂ḞLS

∂Uk

}
equal to zero,

which yields

P UH

k

(
1

(1 + τ)2

K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j +
Kdτ

1 + τ
I

)
− P

1 + τ
VH

k Ĥ
H

k,k = 0

=⇒ Uk = (1 + τ)

(
K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j + εLS I

)−1

Ĥk,kVk (7.10)

such that εLS = τ (1 + τ)Kd.

Now we turn our focus to obtain the precoders. Given randomly initialized combiners,

the optimization criterion based on LS design can be considered as

arg min
Vk

E





∥∥∥∥∥V
H

k

K∑

j=1

HH

j,kUjcj − ck

∥∥∥∥∥

2

2



 ∀k = 1, . . . , K (7.11)

Now the objective function of the optimization problem in (7.11) can be defined as

F̈LS = E



Tr



(
VH

k

K∑

j=1

HH

j,kUjcj − ck

)(
VH

k

K∑

j=1

HH

j,kUjcj − ck

)H




 (7.12)

With respect to lemma 7.1, F̈LS in (7.12) can be rewritten as

F̈LS = Tr

[
P VH

k

K∑

j=1

HH

j,kUjU
H

j Hj,kVk − P UH

kHk,kVk − P VH

kH
H

k,kUk

]
+Pd (7.13)

To obtain precoders based on minimizing the objective function in (7.13), we differen-

tiate F̈LS with respect to Vk by first considering the following assumptions [50, 51]:

1. Vk and VH

k are treated as independent variables.
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2.
∂ Tr [AVk]

∂Vk

=
∂ Tr [VkA]

∂Vk

= A.

Therefore, with respect to the two preceding assumptions, we have

∂F̈LS

∂Vk

= P VH

k

K∑

j=1

HH

j,kUjU
H

j Hj,k − P UH

kHk,k (7.14)

Thus, by considering (5.6), equation (7.14) can be further rewritten as

∂F̈LS

∂Vk

=P VH

k

K∑

j=1

(
Ĥj,k

1 + τ
+ H̆j,k

)H

UjU
H

j

(
Ĥj,k

1 + τ
+ H̆j,k

)
− P UH

k

(
Ĥk,k

1 + τ
+ H̆k,k

)

(7.15)

Note that
∂F̈LS

∂Vk

is now dependent on both Ĥj,k and H̆j,k. To make
∂F̈LS

∂Vk

dependent only

on Ĥj,k, we can take the expectation with respect to H̆j,k. Consequently, following lemma

7.2 and lemma 7.3 and by taking the expectation of
∂F̈LS

∂Vk

over H̆j,k, we have

EH̆j,k

{
∂F̈LS

∂Vk

}
=P VH

k

(
1

(1 + τ)2

K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k +
Kdτ

1 + τ
I

)
− P

1 + τ
UH

k Ĥk,k

(7.16)

Now the sought combiner Vk can be obtained by setting EH̆j,k

{
∂F̈LS

∂Vk

}
equal to zero,

which yields

P VH

k

(
1

(1 + τ)2

K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k +
Kdτ

1 + τ
I

)
− P

1 + τ
UH

k Ĥk,k = 0

=⇒ Vk = (1 + τ)

(
K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k + εLS I

)−1

ĤH

k,kUk (7.17)

where εLS = τ (1 + τ)Kd.

Analogous to the standard IA techniques, due to the coupled nature of the problem,

finding precoders and combiners requires an iterative algorithm in general. Therefore,

with respect to the fact that the unitary precoders and combiners are more desirable, the

proposed algorithm can be concisely presented as follows:
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7.3. MMSE based IA

LS based IA

1. Set εLS := τ (1 + τ)Kd

2. Initialize random unitary matrices Vk, ∀ k

3. Uk =

(
K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j + εLS I

)−1

Ĥk,kVk

4. Uk ⇐= orth (Uk)

5. Vk =

(
K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k + εLS I

)−1

ĤH

k,kUk

6. Vk ⇐= orth (Vk)

7. Go to Step 3 and repeat

Remark 7.1: Although the above mentioned algorithm has been designed based on

the channel estimations Ĥk,j, it can be readily used for the perfect CSI. In this case, we

need to set τ = 0 in Step 1, and replace Ĥk,j with Hk,j.

Remark 7.2: As revealed in LS based IA, to design beamformers for user k, the

direct link, i.e., Hk,k, is taken into account. This is in contrast to interference leakage

minimization algorithms where Hk,k is not considered to design beamformers for user

k, as denoted in Min-WLI and Alt-Min algorithms. Therefore, it is expected that the

proposed approach should outperform interference leakage minimization methods under

both perfect and imperfect CSI.

7.3 MMSE based IA

In section 7.2, we proposed an LS based beamformer design for multiuser MIMO IC.

Nonetheless, as it is well-known, MMSE based designs outperform LS based schemes

since they further consider the effect of noise to design beamformers. Note that similar to

the approach in [79] for MIMO precoders, it may be possible to design weighted MMSE

based IA schemes which may achieve better performance than non-weighted MMSE based

techniques; however, since we are supposed to use orthogonalization steps for the pro-

posed MMSE based IA, we do not consider the case of weighted MMSE based IA. This

is due to the fact that weighted MMSE based IA schemes are more beneficial without

orthogonalization steps (see e.g., [24]). Therefore, in this section, we propose an MMSE

based IA which similar to Max-SINR algorithm, considers the noise power to calculate
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beamformers. Since we will largely compare the performance of the proposed MMSE

based IA with Max-SINR, it is appropriate to recall this algorithm. However, as noted in

remark 5.2, Max-SINR without orthogonalization can not achieve full DoF, since at least

one of its precoders and/or combiners may become rank-deficient, and this can further

result in reduced multiplexing gain. Therefore, when using Max-SINR, if the goal is to

preserve full DoF, the inclusion of orthogonalization steps is mandatory. Consequently,

in the sequel, we use Max-SINR with orthogonalization. Under perfect CSI and with re-

spect to remark 5.3, Max-SINR algorithm with orthogonalization steps is a spacial case

of the proposed adaptive Max-SINR algorithm in section 5.4 when τ is set to zero. Con-

sequently, we represent the Max-SINR algorithm in a different but more tractable form as

follows:

Max-SINR with Orthogonalization

1. Set εMax-SINR := γ−1

2. Initialize random unit-norm vectors vkℓ, ∀ k, ℓ

3. Tℓ
k =

K∑

j=1

Hk,jVjV
H
j H

H
k,j −Hk,kvkℓv

H
kℓH

H
k,k+εMax-SINR I

4. ukℓ =

(
Tℓ

k

)−1
Hk,kvkℓ∥∥∥

(
Tℓ

k

)−1
Hk,kvkℓ

∥∥∥
ℓ = 1, . . . , d

5. Uk ⇐= orth (Uk)

6. Rℓ
k =

K∑

j=1

HH
j,kUjU

H
j Hj,k −HH

k,kukℓu
H
kℓHk,k+εMax-SINR I

7. vkℓ =

(
Rℓ

k

)−1
HH

k,kukℓ∥∥∥
(
Rℓ

k

)−1
HH

k,kukℓ

∥∥∥
ℓ = 1, . . . , d

8. Vk ⇐= orth (Vk)

9. Go to Step 3 and repeat

Hereafter and for the sake of simplicity, we call Max-SINR in lieu of Max-SINR with

orthogonalization.

To derive the desired beamformers based on the MMSE criterion and similar to the

approach in section 7.2, we consider an adaptive design based on the knowledge of im-

perfect CSI as the major optimization problem, and as it will be shown later, the standard

design under perfect CSI is a special case of the adaptive design under imperfect CSI by

setting error variance equal to zero. Given randomly initialized precoders and with respect
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to (7.2), the optimization criterion based on MMSE design can be considered as

arg min
Uk

E

{∥∥UH

kyk − ck
∥∥2
2

}
∀k = 1, . . . , K (7.18)

where yk is defined in (7.1). In this case, the objective function in (7.18) can de shown as

ḞMMSE = E



Tr



(
UH

k

K∑

j=1

Hk,jVjcj +UH

k zk − ck

)

(
UH

k

K∑

j=1

Hk,jVjcj +UH

k zk − ck

)H






(7.19)

With respect to lemma 7.1, (7.19) reads

ḞMMSE = Tr

[
P UH

k

K∑

j=1

Hk,jVjV
H

j H
H

k,jUk + σ2UH

kUk

− P VH

kH
H

k,kUk − P UH

kHk,kVk

]
+ Pd (7.20)

Since minimizing the optimization problem in (7.20) requires differentiation, we have

∂ḞMMSE

∂Uk

= P UH

k

K∑

j=1

Hk,jVjV
H

j H
H

k,j + σ2UH

k − P VH

kH
H

k,k (7.21)

By considering (5.6), equation (7.21) can be further rewritten as

∂ḞMMSE

∂Uk

=P UH

k

K∑

j=1

(
Ĥk,j

1 + τ
+ H̆k,j

)
VjV

H

j

(
Ĥk,j

1 + τ
+ H̆k,j

)H

+σ2UH

k − P VH

k

(
Ĥk,k

1 + τ
+ H̆k,k

)H

(7.22)

Note that
∂ḞMMSE

∂Uk

is now dependent on both Ĥk,j and H̆k,j. To make
∂ḞMMSE

∂Uk

dependent

only on Ĥk,j, and with respect to lemma 7.2 and lemma 7.3, we take the expectation of
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∂ḞMMSE

∂Uk

over H̆k,j which yields

EH̆k,j

{
∂ḞMMSE

∂Uk

}
= P UH

k

(
1

(1 + τ)2

K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j +
Kdτ

1 + τ
I

)

+ σ2UH

k − P

1 + τ
VH

k Ĥ
H

k,k (7.23)

Now the sought combiner Uk can be obtained by setting EH̆k,j

{
∂ḞMMSE

∂Uk

}
equal to zero,

which yields

P UH

k

(
1

(1 + τ)2

K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j +
Kdτ

1 + τ
I

)
+ σ2UH

k − P

1 + τ
VH

k Ĥ
H

k,k = 0

=⇒ Uk = (1 + τ)

(
K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j + εMMSE I

)−1

Ĥk,kVk

(7.24)

where

εMMSE = γ−1 (1 + τ)2 + τ (1 + τ)Kd (7.25)

Now we turn our focus to obtain the precoders. Given randomly initialized combiners, the

optimization criterion based on MMSE design can be considered as

arg min
Vk

E

{∥∥VH

k ÿk − ck
∥∥2
2

}
∀k = 1, . . . , K (7.26)

where ÿk is defined as

ÿk =
K∑

j=1

HH

j,kUjcj + z̈k (7.27)

where z̈k ∼ NC (0, σ
2I).
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In this case, the objective function in (7.26) can de shown as

F̈MMSE = E



Tr



(
VH

k

K∑

j=1

HH

j,kUjcj +VH

k z̈k − ck

)

(
VH

k

K∑

j=1

HH

j,kUjcj +VH

k z̈k − ck

)H






(7.28)

With respect to lemma 7.1, (7.28) reads

F̈MMSE = Tr

[
P VH

k

K∑

j=1

HH

j,kUjU
H

j Hj,kVk + σ2VH

kVk

− P UH

kHk,kVk − P VH

kH
H

k,kUk

]
+ Pd (7.29)

Since minimizing the optimization problem in (7.29) requires differentiation, we have

∂F̈MMSE

∂Vk

= P VH

k

K∑

j=1

HH

j,kUjU
H

j Hj,k + σ2VH

k − P UH

kHk,k (7.30)

By considering (5.6), equation (7.30) can be further rewritten as

∂F̈MMSE

∂Vk

=P VH

k

K∑

j=1

(
Ĥj,k

1 + τ
+ H̆j,k

)H

UjU
H

j

(
Ĥj,k

1 + τ
+ H̆j,k

)

+σ2VH

k − P UH

k

(
Ĥk,k

1 + τ
+ H̆k,k

)
(7.31)

Note that
∂F̈MMSE

∂Vk

is now dependent on both Ĥj,k and H̆j,k. To make
∂F̈MMSE

∂Vk

dependent

only on Ĥj,k, and with respect to lemma 7.2 and lemma 7.3, we take the expectation of

∂F̈MMSE

∂Vk

over H̆j,k which yields

EH̆j,k

{
∂F̈MMSE

∂Vk

}
= P VH

k

(
1

(1 + τ)2

K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k +
Kdτ

1 + τ
I

)

+ σ2VH

k − P

1 + τ
UH

k Ĥk,k (7.32)
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Now the sought combiner Vk can be obtained by setting EH̆j,k

{
∂F̈MMSE

∂Vk

}
equal to zero,

which yields

P VH

k

(
1

(1 + τ)2

K∑

j=1

ĤH

j,kUjU
H

j Ĥ
H

j,k +
Kdτ

1 + τ
I

)
+ σ2VH

k − P

1 + τ
UH

k Ĥk,k = 0

=⇒ Vk = (1 + τ)

(
K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k + εMMSE I

)−1

ĤH

k,kUk

(7.33)

where

εMMSE = γ−1 (1 + τ)2 + τ (1 + τ)Kd (7.34)

With respect to the fact that the unitary precoders and combiners are more desirable,

and since only imperfect channel estimates Ĥk,j are available, the proposed algorithm,

which iteratively optimizes the precoders and combiners, can be concisely presented as

follows:

MMSE based IA

1. Set εMMSE := γ−1 (1 + τ)2 + τ (1 + τ)Kd

2. Initialize random unitary matrices Vk, ∀ k

3. Uk = (1 + τ)

(
K∑

j=1

Ĥk,jVjV
H

j Ĥ
H

k,j + εMMSE I

)−1

Ĥk,kVk

4. Uk ⇐= orth (Uk)

5. Vk = (1 + τ)

(
K∑

j=1

ĤH

j,kUjU
H

j Ĥj,k + εMMSE I

)−1

ĤH

k,kUk

6. Vk ⇐= orth (Vk)

7. Go to Step 3 and repeat

Remark 7.3: Similar to the discussions in remark 7.1, the proposed MMSE based

design can be applied to the case of perfect CSI by setting τ = 0 and replacing Ĥk,j with

Hk,j.
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7.4 Discussions

7.4.1 CSI Availability

By comparing Min-WLI with LS based IA, one can conclude that to calculate one specific

combiner, Min-WLI needs K − 1 covariance matrices whereas LS based IA requires K

covariance matrices. Therefore, the proposed LS based design needs slightly more CSI to

be available than Min-WLI.

Both Max-SINR and the proposed MMSE based IA consider the effect of noise to

derive precoders and combiners. However, while the former is based on a stream-by-

stream approach, the latter is based on a user-by-user approach. As seen in Step 3 of

Max-SINR and MMSE based IA algorithms, to calculate the kth combiner, Max-SINR

needs K + d − 1 covariance matrices whereas MMSE based IA requires K covariance

matrices. Therefore, the proposed MMSE based design needs less CSI to be available

than Max-SINR. This also makes sense since Max-SINR is a stream-by-stream approach

whereas MMSE based IA is a user-by-user approach, and as it is well-known the user-by-

user schemes need less CSI to be available.

7.4.2 Computational Complexity

In this subsection, we compare the computational complexity of the proposed IA algo-

rithms with that of standard IA schemes. Without loss of generality, we consider beam-

former design under perfect CSI.

Note that for both Min-WLI and LS based IA, the beamformers are designed indepen-

dent of the nominal SNR, i.e., the precoders and combiners are once calculated and then

can be used for any SNR. Therefore, the computational complexity of these two schemes

are comparable and none of them gives considerable advantage over the other in terms of

decreasing the computational complexity. However, this does not hold for the proposed

MMSE based IA and Max-SINR, since the beamformers obtained by either of these al-

gorithms are dependent on SNR. In other words, the beamformers are to be calculated

each time the nominal SNR changes. Therefore if any of these algorithms has a slight

advantage over the other for one specific nominal SNR, this can lead to a huge reduction

in computational complexity for a wide range of SNRs. To demonstrate this superior per-

formance of the proposed MMSE based IA over Max-SINR, we consider the calculations

involved in just one iteration of either of these two algorithms and for one specific com-

biner, i.e., the kth combiner. As demonstrated in Steps 3–4 of Max-SINR, to compute
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Uk, we need to calculate d matrix inverses whereas for the proposed MMSE based IA, we

have to calculate only one matrix inverse of the same size. The same is true to calculate

the kth precoder Vk. Therefore, within one iteration, the proposed MMSE based IA calcu-

lates 2 matrix inverses whereas Max-SINR calculates 2d matrix inverses. By considering

the fact that these algorithms need at least hundreds of iterations to efficiently calculate

the precoders and combiners, the proposed MMSE based IA results in much less computa-

tional complexity compared to Max-SINR, and this automatically translates to the reduced

running time for the proposed MMSE based IA.

7.4.3 The Equivalence of MMSE based IA and Max-SINR

In this subsection, it is shown that Max-SINR is equivalent to the proposed MMSE based

IA under perfect CSI, i.e., these two algorithms achieve exactly the same beamformers

under perfect CSI. To do so, we should demonstrate that in each iteration, the precoders

and combiners obtained by one of these algorithms are the same as the other’s. Therefore

and without loss of generality, we just show that the kth combiner in Step 5 of Max-SINR

is the same as the one in Step 4 of the proposed MMSE based IA. To do so, we assume

that τ in Step 1 of the proposed MMSE based IA has been set to zero and Ĥj,k has been

further replaced with Hj,k. To further proceed, we consider the following lemma [48]:

Lemma 7.4: If a ∈ CM×1 and A ∈ CM×M then

(
A− aaH

)−1
a =

A−1a

1− aHA−1a
(7.35)

With respect to lemma 7.4,
(
Tℓ

k

)−1
Hk,kvkℓ in Step 4 of Max-SINR algorithm can be

rewritten as

(
Tℓ

k

)−1
Hk,kvkℓ =

(
K∑

j=1

Hk,jVjV
H
j H

H
k,j + γ−1 I

)−1

Hk,kvkℓ

1− vH
kℓH

H
k,k

(
K∑

j=1

Hk,jVjV
H
j H

H
k,j + γ−1 I

)−1

Hk,kvkℓ

(7.36)

By considering the fact that the ℓth column of Uk is equal to

ukℓ =

(
Tℓ

k

)−1
Hk,kvkℓ∥∥∥

(
Tℓ

k

)−1
Hk,kvkℓ

∥∥∥
2

(7.37)
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and by horizontally concatenating the d columns of Uk, we have

Uk =

(
K∑

j=1

Hk,jVjV
H
j H

H
k,j + γ−1 I

)−1

Hk,kVk




t1 · · · 0
...

. . .
...

0 · · · td


 (7.38)

such that

tℓ =
1∥∥∥∥∥∥

(
K∑

j=1

Hk,jVjV
H
j H

H
k,j + γ−1 I

)−1

Hk,kvkℓ

∥∥∥∥∥∥
2

ℓ = 1, . . . , d (7.39)

Note that although Uk in (7.38) has unit-norm columns, it is not unitary, i.e., UH

kUk 6= I.

However, the orthogonalization in Step 5 of Max-SINR substitutes Uk with the unitary

part of its QR decomposition which is exactly the same as the one obtained in Step 4 of

the proposed MMSE based IA. Similarly, it can be readily proved that in each iteration,

the kth precoder of Max-SINR is the same as the one obtained through MMSE based

IA. Consequently, the two algorithms achieve the same precoders and combiners and thus

achieve the same performance under perfect CSI.

7.4.4 On Diagonalized Subchannels

In this part, it is shown that the proposed LS based design leads to diagonalized sub-

channels for all SNR ranges. In other words, using LS based IA, UH

kHk,kVk becomes a

diagonal matrix. This is in contrast to the previously proposed IA schemes wherein the

resulted subchannels are full matrices. This removes the need of SVD for the LS based

IA in order to employ waterfilling since the decoupled subchannels have been already di-

agonalized. Therefore, in the sequel, it is shown that UH

kHk,kVk is a diagonal matrix,

provided that Uk and Vk are obtained by LS based IA. Since, this condition is met under

the assumption of perfect CSI, we assume that in the proposed LS based IA, τ has been

set to zero and all imperfect CSI Ĥk,j have been replaced by the perfect CSI, i.e., Hk,j.

With respect to Step 3 of LS based IA algorithm, we have

(
K∑

j=1

Hk,jVjV
H

j H
H

k,j

)−1

Hk,kVk
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=




K∑

j=1
j 6=k

Hk,jVjV
H

j H
H

k,j +Hk,kVkV
H

kH
H

k,k




−1

Hk,kVk

=
(
V−kV

H

−k + VkV
H
k

)−1
Vk (7.40)

where Vk = Hk,kVk ∈ CM×d and

V−k = [Hk,1V1, . . . ,Hk,k−1Vk−1,Hk,k+1Vk+1, . . . ,Hk,KVK ] ∈ C
M×(K−1)d

By considering the fact that the feasibility conditions of IA have been met [20,21] and the

interferences have been aligned within the reduced subspace of the received signal space,

the components of the desired space Vk become linearly independent of the components

of the interference space V−k [17] such that

rank
(
VkV

H

k ∈ C
M×M

)
= d and rank

(
V−kV

H

−k ∈ C
M×M

)
= M − d

To further continue, we consider the following lemma:

Lemma 7.5: Let A be a horizontal concatenation of two submatrices, i.e., A =

[A1,A2] ∈ CM×M such that A1 ∈ CM×a and A2 ∈ CM×(M−a) have independent

columns. In this case, the ZF condition implies that

AH

1

(
AAH

)−1
A1 = AH

1

(
A1A

H

1 +A2A
H

2

)−1
A1 = Ia×a (7.41)

Hence, due to lemma 7.5 and with respect to the fact that the interferences have been

aligned within a (M − d)-dimensional subspace of the M-dimensional received signal

space, we have

V
H

k

(
V−kV

H

−k + VkV
H
k

)−1
Vk

= VH

kH
H

k,k




K∑

j=1
j 6=k

Hk,jVjV
H

j H
H

k,j +Hk,kVkV
H

kH
H

k,k




−1

Hk,kVk = Id×d (7.42)

We further consider the QR decomposition of
(
V−kV

H

−k + VkV
H
k

)−1
Vk as

(
V−kV

H

−k + VkV
H
k

)−1
Vk = UkRk (7.43)
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where Uk is the unitary part. Therefore with respect to (7.42), we have

UH

kVk = UH

kHk,kVk =
(
R

H

k

)−1
(7.44)

However, note that due to the properties of IA and LS criteria, Rk is now a diagonal matrix

instead of an upper triangular. Furthermore, since the diagonal elements of the triangular

part of the QR decomposition of any matrix are real numbers, this implies that UH

kHk,kVk

is a diagonal matrix consists of real numbers.

It is also worthwhile to point out that since at high enough SNRs, MMSE based IA

boils down to LS based IA, the resulted subchannels of MMSE based IA become diago-

nalized at sufficiently high SNRs.

7.5 Numerical Results

In this section and by using numerical results, we corroborate the improved performance

achieved by the proposed LS and MMSE based IA compared to standard IA techniques.

To have a fair comparison, we also consider the performance of Max-SINR and Min-WLI

algorithms.

Without loss of generality, we just consider a symmetric constant MIMO IA with

K = 4 and d = 2. To meet the sufficient conditions of feasibility for IA, we set M =

4, N = 6 [21].

For the case of imperfect CSI, we assume that the channel estimation error variance

obeys (3.3), i.e., τ = βγ−α. Regarding the performance analysis under CSI mismatch,

although the promised improvement of the proposed LS and MMSE based IA can be

gleaned for various values of α, we focus on two representative cases: α = 0 (which

imitates the CSI feedback scenario), and α = 1 (which imitates the reciprocal channels).

The performance trend of the proposed LS and MMSE based designs under perfect

CSI can be obtained with respect to remark 7.1 and remark 7.3, respectively.

Plus, by considering i.i.d. Gaussian input signaling and uniform power allocation, we

evaluate the achievable sum rates as [67]

R =
K∑

k=1

log2 det


I+

(
γ−1I+

K∑

j=1,j 6=k

Φk,j

)−1

Φk,k


 (7.45)

where Φk,j = UH
kHk,jVjV

H
j H

H
k,jUk, such that in the case of imperfect CSI, all precoders
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Figure 7.1: Probability density of the sum rate for the solutions obtained from different random
initialization for Min-WLI, LS and MMSE based IA for the case K = 4, d = 2, M = 4, N = 6 at

SNR of 20 dB and under perfect CSI.

and combiners are constructed based on erroneous channel estimations in (5.4), i.e., all

Hk,j are replaced by Ĥk,j

In Figs. 7.1–7.2, we consider a fixed random channel initialization for the case K =

4, d = 2, and a fixed SNR of 20 dB. For this scenario, we ran Min-WLI, LS and MMSE

based IA algorithms 100 times, each one starting from different random unitary precoders.

The number of iterations for each algorithm was 3000, which assures that the interferences

are almost perfectly aligned within a reduced subspace of each received signal space.

Fig. 7.1 depicts the probability density of the sum rate for three different IA algorithm.

As shown, although all algorithms have been initialized from the same unitary precoders,

the final sum rate of the proposed LS and MMSE based algorithms is more concentrated

around higher values, which implies that with the same initializations and under the same

channel realization, the mean sum rate achieved by LS and MMSE based IA is higher than

that of Min-WLI.

Fig. 7.2 illustrates the CCD of the sum rate for three different IA algorithms. As

revealed, although all algorithms have been initialized from the same unitary precoders,

the proposed algorithms achieve better performance than Min-WLI.

Fig. 7.3 shows the convergence of the sum rate of Min-WLI, LS and MMSE based IA

algorithms (averaged over 200 channel realizations) for the case K = 4, d = 2 at SNR of
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Figure 7.2: Complementary cumulative distribution of the sum rate for the solutions obtained
from different random initialization for Min-WLI, LS and MMSE based IA for the case K = 4, d = 2,

M = 4, N = 6 at SNR of 20 dB and under perfect CSI.
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Figure 7.3: Convergence of sum rate for Min-WLI, LS and MMSE based IA for the case K =
4, d = 2, M = 4, N = 6 at SNR of 20 dB and under perfect CSI.

20 dB. As revealed the proposed LS and MMSE based IA have the same convergence rate

as Min-WLI. Moreover, for any number of iterations, they achieve higher sum rates than

Min-WLI.
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Figure 7.4: Average sum rates for K = 4, d = 2, M = 4, N = 6 and under perfect CSI.

Fig. 7.4 illustrates the sum rate under perfect CSI. As revealed, with the presence

of perfect CSI, MMSE based IA achieves the same sum rate as Max-SINR while outper-

forming both LS based IA and Min-WLI. However, the proposed LS based IA outperforms

Min-WLI such that the achieved gain in sum rate is 3 bits per channel use.

Figs. 7.5 and 7.6, respectively, depict the average sum rate for β = 10, α = 1 and

β = 0.1, α = 0, respectively. As shown, while under perfect CSI, MMSE based design

achieves the same sum rate as Max-SINR, under imperfect CSI, MMSE based IA outper-

forms Max-SINR. Also the proposed LS based IA is able to achieve better performance

than Min-WLI. For example, for the case of β = 10, α = 1 and at SNR of 30 dB, LS

and MMSE based IA achieve 10 and 7 bits per channel use gain in sum rate compared to

Min-WLI and Max-SINR, respectively. Similarly, for the case of β = 0.1, α = 0, and at

SNR of 30 dB, LS and MMSE based IA achieve 9 and 7 bits per channel use gain in sum

rate compared to Min-WLI and Max-SINR algorithms, respectively.

As revealed in Figs. 7.5 and 7.6, the proposed LS based design is able to achieve

almost the same performance as the MMSE based design under imperfect CSI. Also, it

achieves better performance than Max-SINR for α = 1. However, for α = 0, while at low

SNRs, Max-SINR outperforms LS based design, the latter achieves better performance

than the former at high SNRs.

Fig. 7.7 illustrates the average SER of Min-WLI, Max-SINR and the proposed MMSE

based IA for K = 4, d = 2 under the imperfect CSI cases β = 10, α = 1 and β =

141



7.5. Numerical Results

−10 0 10 20 30 40
0

10

20

30

40

50

60

70

SNR [dB]

S
u

m
 R

a
te

 (
b

it
s
 /

 c
h

a
n

n
e

l 
u

s
e

)

 

 

MMSE based IA

Max−SINR

LS based IA

Min−WLI

Figure 7.5: Average sum rates for K = 4, d = 2, M = 4, N = 6 when β = 10, α = 1.
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Figure 7.6: Average sum rates for K = 4, d = 2, M = 4, N = 6 when β = 0.1, α = 0.

0.05, α = 0. We assumed that each transmitted block consists of 100 QPSK symbols.

As seen MMSE based IA outperforms both Min-WLI and Max-SINR. For example, when

β = 10, α = 1, MMSE based IA respectively achieves 18 dB and 14 dB gain compared

to Min-WLI and Max-SINR to reach the SER of 10−3. Also for the case β = 0.05, α = 0,

the MMSE based IA decreases the SER by a factor of at least 1
10

compared to Min-WLI
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Figure 7.7: Average SER for K = 4, d = 2, M = 4, N = 6 under the imperfect CSI β = 10, α = 1
and β = 0.05, α = 0. Each transmitted block consists of 100 QPSK symbols.

and Max-SINR at SNRs of larger than 20 dB.

From Figs. 7.6–7.7, one interesting observation is that, for α = 0, the performance

trend of Max-SINR is nonmonotonic whereas that of MMSE based IA is monotonic. Also

by considering the slope of the curves in both Figs. 7.5 and 7.7, another interesting point is

that when α = 1, i.e., the error variance scales with the inverse of SNR, full multiplexing

gain can be achieved. This is consistent with analytically derived bounds in chapter 5

and implies that the derived bounds in (5.30)–(5.31) are generally applicable to any IA

scheme.

7.6 Summary

With the presence of perfect CSI, interference alignment enables us to achieve full DoF.

However, when subject to imperfect CSI, the full benefits of IA may not be readily achiev-

able. In this chapter, we proposed two novel IA algorithms such that the optimization

criteria were set up based on the knowledge of imperfect CSI. While the LS based scheme

does not consider the effect of noise to design beamformers, the MMSE based method

does so. This causes the latter to outperform the former under both perfect and imperfect

CSI. We also compared the proposed algorithms with standard IA methods. It was shown

that the LS based algorithm outperforms interference leakage minimization algorithms un-
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der both perfect and imperfect CSI. However, while MMSE based IA achieves the same

performance as Max-SINR under perfect CSI, the former outperforms the latter subject to

imperfect CSI. We showed that even with this superior performance, the proposed MMSE

based IA needs less CSI to be available and has less computational complexity compared

to Max-SINR.
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Chapter 8

Conclusions

8.1 Summary and Conclusions

Future wireless networks will be dominated by the application of smart phones and tablets

which demand high data rate wireless communications. Due to the scarcity of radio re-

sources, spectrum and energy efficient design of such networks become very important.

Consequently and with respect to the fact that in almost all communication scenarios only

imperfect CSI may be accessible, advanced and optimized communication techniques are

inevitable means to satisfy such demands in future cellular networks. In this thesis, we ad-

dressed advanced interference management techniques which enable us to meet the afore-

mentioned design criteria by relying on a generalized imperfect CSI model.

Under the considered imperfect CSI model introduced in subsection 3.2.2, we derived

novel bounds on asymptotic mean loss in sum rate and achievable DoF for both multiuser

MIMO downlink and wireless interference networks with IA. For example, it has been

shown that if the intention is to keep the asymptotic mean loss in sum rate bounded (and

consequently maintain the full DoF), the error variance must at least scales with the inverse

of SNR.

While standard RCI outperforms CI under perfect CSI, the former is not able to signifi-

cantly outperform the latter under CSI mismatch. Therefore, we proposed an adaptive RCI

technique, which with the knowledge of error variance in advance, is able to outperform

CI. We also proposed an enhanced linear precoding technique, namely RPA. We showed

that the proposed RPA precoding is able to outperform standard linear precoders (i.e., CI,

RCI, and PA) under both perfect and imperfect CSI. Also it was shown that PA and RPA

precoding techniques enable us to decrease the deployed power to secure the same average
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output SINR for each user compared to CI and RCI precoding, respectively.

As it is well-known, Max-SINR outperforms interference leakage minimization algo-

rithms under the availability of perfect CSI. We showed that under imperfect CSI, how-

ever, the former fails to maintain the same comparable improvement. Therefore, we pro-

posed an adaptive Max-SINR algorithm, which with the knowledge of error variance in

advance, is able to significantly outperform interference leakage minimization algorithms.

Moreover, we proposed adaptive LS and MMSE based IA techniques which are able to

outperform standard IA schemes under perfect and imperfect CSI.

When the number of users or the number of DoF becomes increased, standard IA

techniques require large number of antennas. By relying on the concept of partially co-

ordinated reception in wireless interference networks, we proposed IA algorithms which

enable us to decrease the number of deployed antennas compared to standard IA schemes

to maintain the same achievable DoF. This requires that on average, half of the total de-

coded data is needed to be shared by receive nodes which consequently leads to SIC. It

was shown that even with reduced number of antennas, the proposed IA techniques are

able to outperform standard IA methods under perfect and imperfect CSI.

8.2 Limitations and Future Work

As earlier mentioned in chapter 4, the proposed PA and RPA precoding can achieve better

throughput and SER than standard linear precoders, i.e., CI and RCI. On the other hand,

they also enable us to save transmit power at BS in order to meet the same average output

SINR at each user compared to CI and RCI precoding, respectively. Nevertheless, while

both CI and RCI are based on Gaussian input signaling, PA and RPA precoding are merely

applicable when the utilized constellation is M-ary PSK. However, since the future cel-

lular networks are provisioned to support the high order constellations like QAM, one

appealing direction for future research is to extend the benefits of PA and RPA precoding

to rectangular constellations.

Also in chapter 4, although the SER performance of PA and RPA under both perfect

and imperfect CSI was evaluated, the transmit-power efficiency of PA and RPA precoding

was merely considered under the assumption of perfect CSIT. In other words, the derived

formula in (4.51) is just meant for the case when perfect CSIT is available at BS. Since

the availability of imperfect CSIT is more realistic, it is also desirable to evaluate the

capability of PA and RPA precoding to save transmit power subject to the availability of
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CSIT mismatch. In other words, it is more appealing to determine the amount of transmit-

power reduction to secure the same average output SINR for each user, when PA (RPA) is

used in lieu of CI (RCI), when only imperfect CSIT is available at BS.

In chapter 6, we proposed IA algorithms which enable us to decrease the number of

deployed antennas at transmit and/or receive nodes to secure the same number of DoF

compared to standard IA techniques. However, the proposed schemes require partial co-

ordination at receive side which implies that averagely half of the total decoded data are

needed to be shared by receive nodes. With respect to the fact that coordinated down-

link transmission is highly supported in future cellular networks, one interesting research

direction is to seek IA algorithms designed for transmit-side coordination instead of the

receive-side coordination, i.e., in the case of BS cooperation.

In chapter 5, we evaluated the asymptotic performance of IA under a generalized CSI

mismatch model. It is however more desirable to specifically assess the performance of

IA under digital feedback. Quantized feedback strategies are not only appealing in single-

cell broadcast channels but also has been received significant attention in interference

channels. Although there are some literature addressed the feedback topology design for

IA, see e.g., [61–63], the optimum feedback strategy in IC is still unknown. Therefore,

finding optimized feedback scenarios is of particular interest. This includes designing

codebooks optimized with respect to the quantization errors and feedback delays.

Regardless of digital feedback, analog feedback is also another potential approach to

provide access to some sort of CSI in interference channels. This type of feedback is more

relevant to the reciprocal channels where the downlink channel can be estimated through

pilots sent over the uplink channel and consequently the channel measurement error de-

pends on the noise level at BS as well as the pilot power. Therefore, in reciprocal channels,

the CSI quality depends on the training sequence. With respect to this, one approach to

provide higher CSI quality for IA in reciprocal channels is to seek an optimized channel

training scheme.

Irrespective of IA which has been proposed to achieve the maximum DoF in IC, an-

other interesting interference scenario is interference broadcast channel (IBC) wherein

each transmitter communicates with more than one receive node. This is denoted in Fig.

8.1 where each BS communicates with two MTs. This is a more generalized scenario of IC

wherein each transmitter communicates with merely one receiver as depicted in Fig. 2.5.

More specifically, while standard IA is able to provide interference free communications

for the proposed scenario in Fig. 2.5, it requires more sophisticated designs to handle the

case of Fig. 8.1, provided that all BSs transmitted at the same time and frequency slots.
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Cell #1 Cell #2

Cell #3

BS #3

BS #2
BS #1

Figure 8.1: 3-cell interference broadcast channel where all BSs transmit at the same time and

frequency slots. Each BS communicates to two corresponding MTs while causing interference

to the other MTs in adjacent cells. In this case, dash red arrows represent inter-cell interference
while solid green arrows denote desired links.

Therefore, IBC requests different approaches for beamformer design. Although there are

few schemes to communicate over IBC, see e.g., [80, 81], they were merely proposed

under the assumption of the availability of perfect CSI. However, as already mentioned,

since from the practical point of view, having access to perfect CSI is very optimistic,

new adaptive algorithms are needed to be designed for the case when only imperfect CSI

is available. This may include optimized digital and analog feedback topology designs

for IBC. Similar to the case of IC, optimization can be sought over codebooks regarding

digital feedback or channel training schemes in the case of analog feedback.

The imperfect CSI model that has been considered so far in this thesis is only related

to the instantaneous CSI, i.e., it has been assume that the current CSI has some errors.

Apart from current CSI mismatch, performance analysis of communication systems under

perfect delayed CSI is also of particular interest. This case represents the scenario wherein

the perfect CSI is available but is related to the previous time slots. In other words, in

delayed CSI it is assume that at time t, the only knowledge of the channel state is related

to the perfect CSI at time slot t−1 and/or the more outdated ones. However, so far and due
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8.2. Limitations and Future Work

to its intractability, the impact of delayed CSI on the performance of broadcast channels

has been mainly evaluated in the literature, see e.g., [82]. Therefore, it is likewise desirable

to evaluate the impact of perfect delayed CSI in IC and IBC.

Although the current CSI mismatch and the perfect delayed CSI models are able to

simulate many practical scenarios, performance evaluation of broadcast channels, IC and

IBC under both imperfect and delayed CSI is of particular interest. This case represents

the mixed CSI, where not only the available CSI is outdated but also it is not perfect. In this

case, adaptive and optimized beamformer design (even for the simple case of single-cell

broadcast channel) under mixed CSI is a promising future work.

Apart from availability of perfect or imperfect CSI, performance analysis of blind IA

has received lots of attention recently [83]. The idea is that the transmitters’ knowledge

of channel coherence intervals alone (without any knowledge of the values of channel

coefficients) can be surprisingly useful in a multiuser setting. Beyond the concept of IA,

we expect that there may be a variety of settings which give rise to opportunities for blind

schemes to be applicable in IBC. The search for such settings is an interesting direction

for future work.
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Appendix A

Statistical Properties of |ρℓ,x|

Consider H ∈ C
M×N and vec (H) ∼ NC (0, σ

2
hI). By expanding the complex multiplica-

tions of matrix R = HHH for the case ℓ 6= x, we have

|ρℓ,x|=



[

N∑

n=1

(
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

)
]2

+

[
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n=1

(
hi
ℓ,nh

r
x,n − hr

ℓ,nh
i
x,n

)
]2


1

2

(A.1)

where the notations hr
ℓ,n = ℜ (hℓ,n) , h

i
ℓ,n = ℑ (hℓ,n), are used for convenience, and hℓ,n is

used to denote the generic channel coefficient of the nth transmit antenna to the ℓth receive

antenna. Since we assumed that hr
ℓ,n, h

i
ℓ,n, h

r
x,n, h

i
x,n ∈ NC

(
0,

σ2

h

2

)
, we have

E
{
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}
= 0 and var

{
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}
=

σ4
h

4
(A.2)

The same applies to all combinations of real and imaginary coefficient that appear in (A.1).

Therefore

E
{
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}
= 0
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and

E

{
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n=1

(
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}

= 0
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var

{
N∑

n=1

(
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

)
}

=
Nσ4

h

2
, ϑ1 (A.4)

Due to the symmetry of the real and imaginary parts of the channel taps, the values of

(A.4) also apply to the second term on the right side of (A.1). Consequently |ρℓ,x| is a

Rayleigh variable with E {|ρℓ,x|} =
√
2ϑ1Γ

(
3
2

)
=

σ2

h

√
Nπ

2
and E {|ρℓ,x|2} = 2ϑ1Γ (2) =

Nσ4
h [53], where Γ (·) is the gamma function such that Γ (1) = 1, Γ

(
1
2

)
=

√
π, and

Γ (1 + t) = tΓ (t).

For the case of ℓ = x we have

|ρℓ,ℓ| =
N∑

n=1

|hℓ,n|2 =
N∑

n=1
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hr
ℓ,n

)2
+
(
hi
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Since hr
ℓ,n, h

i
ℓ,n ∈ NC

(
0,

σ2

h

2

)
, |ρℓ,ℓ| is a χ-square random variable with 2N degrees of

freedom, i.e., |ρℓ,ℓ| ∼ χ2
2N , and E {|ρℓ,ℓ|} = 2Nϑ2 = Nσ2

h and var {|ρℓ,ℓ|} = 4Nϑ2
2 =

Nσ4
h [53] where ϑ2 , var

{
hr
ℓ,n

}
=

σ2

h

2
; therefore E {|ρℓ,ℓ|2} = [E {|ρℓ,ℓ|}]2+var {|ρℓ,ℓ|} =

σ4
hN (N + 1).
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