273 research outputs found

    From Packet to Power Switching: Digital Direct Load Scheduling

    Full text link
    At present, the power grid has tight control over its dispatchable generation capacity but a very coarse control on the demand. Energy consumers are shielded from making price-aware decisions, which degrades the efficiency of the market. This state of affairs tends to favor fossil fuel generation over renewable sources. Because of the technological difficulties of storing electric energy, the quest for mechanisms that would make the demand for electricity controllable on a day-to-day basis is gaining prominence. The goal of this paper is to provide one such mechanisms, which we call Digital Direct Load Scheduling (DDLS). DDLS is a direct load control mechanism in which we unbundle individual requests for energy and digitize them so that they can be automatically scheduled in a cellular architecture. Specifically, rather than storing energy or interrupting the job of appliances, we choose to hold requests for energy in queues and optimize the service time of individual appliances belonging to a broad class which we refer to as "deferrable loads". The function of each neighborhood scheduler is to optimize the time at which these appliances start to function. This process is intended to shape the aggregate load profile of the neighborhood so as to optimize an objective function which incorporates the spot price of energy, and also allows distributed energy resources to supply part of the generation dynamically.Comment: Accepted by the IEEE journal of Selected Areas in Communications (JSAC): Smart Grid Communications series, to appea

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network

    Journal of Telecommunications and Information Technology, 2004, nr 2

    Get PDF
    kwartalni

    Optimizing the delivery of multimedia over mobile networks

    Get PDF
    Mención Internacional en el título de doctorThe consumption of multimedia content is moving from a residential environment to mobile phones. Mobile data traffic, driven mostly by video demand, is increasing rapidly and wireless spectrum is becoming a more and more scarce resource. This makes it highly important to operate mobile networks efficiently. To tackle this, recent developments in anticipatory networking schemes make it possible to to predict the future capacity of mobile devices and optimize the allocation of the limited wireless resources. Further, optimizing Quality of Experience—smooth, quick, and high quality playback—is more difficult in the mobile setting, due to the highly dynamic nature of wireless links. A key requirement for achieving, both anticipatory networking schemes and QoE optimization, is estimating the available bandwidth of mobile devices. Ideally, this should be done quickly and with low overhead. In summary, we propose a series of improvements to the delivery of multimedia over mobile networks. We do so, be identifying inefficiencies in the interconnection of mobile operators with the servers hosting content, propose an algorithm to opportunistically create frequent capacity estimations suitable for use in resource optimization solutions and finally propose another algorithm able to estimate the bandwidth class of a device based on minimal traffic in order to identify the ideal streaming quality its connection may support before commencing playback. The main body of this thesis proposes two lightweight algorithms designed to provide bandwidth estimations under the high constraints of the mobile environment, such as and most notably the usually very limited traffic quota. To do so, we begin with providing a thorough overview of the communication path between a content server and a mobile device. We continue with analysing how accurate smartphone measurements can be and also go in depth identifying the various artifacts adding noise to the fidelity of on device measurements. Then, we first propose a novel lightweight measurement technique that can be used as a basis for advanced resource optimization algorithms to be run on mobile phones. Our main idea leverages an original packet dispersion based technique to estimate per user capacity. This allows passive measurements by just sampling the existing mobile traffic. Our technique is able to efficiently filter outliers introduced by mobile network schedulers and phone hardware. In order to asses and verify our measurement technique, we apply it to a diverse dataset generated by both extensive simulations and a week-long measurement campaign spanning two cities in two countries, different radio technologies, and covering all times of the day. The results demonstrate that our technique is effective even if it is provided only with a small fraction of the exchanged packets of a flow. The only requirement for the input data is that it should consist of a few consecutive packets that are gathered periodically. This makes the measurement algorithm a good candidate for inclusion in OS libraries to allow for advanced resource optimization and application-level traffic scheduling, based on current and predicted future user capacity. We proceed with another algorithm that takes advantage of the traffic generated by short-lived TCP connections, which form the majority of the mobile connections, to passively estimate the currently available bandwidth class. Our algorithm is able to extract useful information even if the TCP connection never exits the slow start phase. To the best of our knowledge, no other solution can operate with such constrained input. Our estimation method is able to achieve good precision despite artifacts introduced by the slow start behavior of TCP, mobile scheduler and phone hardware. We evaluate our solution against traces collected in 4 European countries. Furthermore, the small footprint of our algorithm allows its deployment on resource limited devices. Finally, in an attempt to face the rapid traffic increase, mobile application developers outsource their cloud infrastructure deployment and content delivery to cloud computing services and content delivery networks. Studying how these services, which we collectively denote Cloud Service Providers (CSPs), perform over Mobile Network Operators (MNOs) is crucial to understanding some of the performance limitations of today’s mobile apps. To that end, we perform the first empirical study of the complex dynamics between applications, MNOs and CSPs. First, we use real mobile app traffic traces that we gathered through a global crowdsourcing campaign to identify the most prevalent CSPs supporting today’s mobile Internet. Then, we investigate how well these services interconnect with major European MNOs at a topological level, and measure their performance over European MNO networks through a month-long measurement campaign on the MONROE mobile broadband testbed. We discover that the top 6 most prevalent CSPs are used by 85% of apps, and observe significant differences in their performance across different MNOs due to the nature of their services, peering relationships with MNOs, and deployment strategies. We also find that CSP performance in MNOs is affected by inflated path length, roaming, and presence of middleboxes, but not influenced by the choice of DNS resolver. We also observe that the choice of operator’s Point of Presence (PoP) may inflate by at least 20% the delay towards popular websites.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ahmed Elmokashfi.- Secretario: Rubén Cuevas Rumín.- Vocal: Paolo Din

    Inferring hidden features in the Internet (PhD thesis)

    Full text link
    The Internet is a large-scale decentralized system that is composed of thousands of independent networks. In this system, there are two main components, interdomain routing and traffic, that are vital inputs for many tasks such as traffic engineering, security, and business intelligence. However, due to the decentralized structure of the Internet, global knowledge of both interdomain routing and traffic is hard to come by. In this dissertation, we address a set of statistical inference problems with the goal of extending the knowledge of the interdomain-level Internet. In the first part of this dissertation we investigate the relationship between the interdomain topology and an individual network’s inference ability. We first frame the questions through abstract analysis of idealized topologies, and then use actual routing measurements and topologies to study the ability of real networks to infer traffic flows. In the second part, we study the ability of networks to identify which paths flow through their network. We first discuss that answering this question is surprisingly hard due to the design of interdomain routing systems where each network can learn only a limited set of routes. Therefore, network operators have to rely on observed traffic. However, observed traffic can only identify that a particular route passes through its network but not that a route does not pass through its network. In order to solve the routing inference problem, we propose a nonparametric inference technique that works quite accurately. The key idea behind our technique is measuring the distances between destinations. In order to accomplish that, we define a metric called Routing State Distance (RSD) to measure distances in terms of routing similarity. Finally, in the third part, we study our new metric, RSD in detail. Using RSD we address an important and difficult problem of characterizing the set of paths between networks. The collection of the paths across networks is a great source to understand important phenomena in the Internet as path selections are driven by the economic and performance considerations of the networks. We show that RSD has a number of appealing properties that can discover these hidden phenomena

    The P-ART framework for placement of virtual network services in a multi-cloud environment

    Get PDF
    Carriers’ network services are distributed, dynamic, and investment intensive. Deploying them as virtual network services (VNS) brings the promise of low-cost agile deployments, which reduce time to market new services. If these virtual services are hosted dynamically over multiple clouds, greater flexibility in optimizing performance and cost can be achieved. On the flip side, when orchestrated over multiple clouds, the stringent performance norms for carrier services become difficult to meet, necessitating novel and innovative placement strategies. In selecting the appropriate combination of clouds for placement, it is important to look ahead and visualize the environment that will exist at the time a virtual network service is actually activated. This serves multiple purposes — clouds can be selected to optimize the cost, the chosen performance parameters can be kept within the defined limits, and the speed of placement can be increased. In this paper, we propose the P-ART (Predictive-Adaptive Real Time) framework that relies on predictive-deductive features to achieve these objectives. With so much riding on predictions, we include in our framework a novel concept-drift compensation technique to make the predictions closer to reality by taking care of long-term traffic variations. At the same time, near real-time update of the prediction models takes care of sudden short-term variations. These predictions are then used by a new randomized placement heuristic that carries out a fast cloud selection using a least-cost latency-constrained policy. An empirical analysis carried out using datasets from a queuing-theoretic model and also through implementation on CloudLab, proves the effectiveness of the P-ART framework. The placement system works fast, placing thousands of functions in a sub-minute time frame with a high acceptance ratio, making it suitable for dynamic placement. We expect the framework to be an important step in making the deployment of carrier-grade VNS on multi-cloud systems, using network function virtualization (NFV), a reality

    The P-ART framework for placement of virtual network services in a multi-cloud environment

    Get PDF
    Carriers network services are distributed, dynamic, and investment intensive. Deploying them as virtual network services (VNS) brings the promise of low-cost agile deployments, which reduce time to market new services. If these virtual services are hosted dynamically over multiple clouds, greater flexibility in optimizing performance and cost can be achieved. On the flip side, when orchestrated over multiple clouds, the stringent performance norms for carrier services become difficult to meet, necessitating novel and innovative placement strategies. In selecting the appropriate combination of clouds for placement, it is important to look ahead and visualize the environment that will exist at the time a virtual network service is actually activated. This serves multiple purposes clouds can be selected to optimize the cost, the chosen performance parameters can be kept within the defined limits, and the speed of placement can be increased. In this paper, we propose the P-ART (Predictive-Adaptive Real Time) framework that relies on predictive-deductive features to achieve these objectives. With so much riding on predictions, we include in our framework a novel concept-drift compensation technique to make the predictions closer to reality by taking care of long-term traffic variations. At the same time, near real-time update of the prediction models takes care of sudden short-term variations. These predictions are then used by a new randomized placement heuristic that carries out a fast cloud selection using a least-cost latency-constrained policy. An empirical analysis carried out using datasets from a queuing-theoretic model and also through implementation on CloudLab, proves the effectiveness of the P-ART framework. The placement system works fast, placing thousands of functions in a sub-minute time frame with a high acceptance ratio, making it suitable for dynamic placement. We expect the framework to be an important step in making the deployment of carrier-grade VNS on multi-cloud systems, using network function virtualization (NFV), a reality.This publication was made possible by NPRP grant # 8-634-1-131 from the Qatar National Research Fund (a member of Qatar Foundation), National Science Foundation, USA � CNS-1718929 and National Science Foundation, USA � CNS-1547380 .Scopu

    The Role of Caching in Future Communication Systems and Networks

    Get PDF
    This paper has the following ambitious goal: to convince the reader that content caching is an exciting research topic for the future communication systems and networks. Caching has been studied for more than 40 years, and has recently received increased attention from industry and academia. Novel caching techniques promise to push the network performance to unprecedented limits, but also pose significant technical challenges. This tutorial provides a brief overview of existing caching solutions, discusses seminal papers that open new directions in caching, and presents the contributions of this special issue. We analyze the challenges that caching needs to address today, also considering an industry perspective, and identify bottleneck issues that must be resolved to unleash the full potential of this promising technique
    corecore