143 research outputs found

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure

    Effects of Expanding Envelope Fluctuations on Consonant Perception in Hearing-Impaired Listeners

    Get PDF
    This study examined the perceptual consequences of three speech enhancement schemes based on multiband nonlinear expansion of temporal envelope fluctuations between 10 and 20 Hz: (a) “idealized” envelope expansion of the speech before the addition of stationary background noise, (b) envelope expansion of the noisy speech, and (c) envelope expansion of only those time-frequency segments of the noisy speech that exhibited signal-to-noise ratios (SNRs) above −10 dB. Linear processing was considered as a reference condition. The performance was evaluated by measuring consonant recognition and consonant confusions in normal-hearing and hearing-impaired listeners using consonant-vowel nonsense syllables presented in background noise. Envelope expansion of the noisy speech showed no significant effect on the overall consonant recognition performance relative to linear processing. In contrast, SNR-based envelope expansion of the noisy speech improved the overall consonant recognition performance equivalent to a 1- to 2-dB improvement in SNR, mainly by improving the recognition of some of the stop consonants. The effect of the SNR-based envelope expansion was similar to the effect of envelope-expanding the clean speech before the addition of noise

    Intelligibility model optimisation approaches for speech pre-enhancement

    Get PDF
    The goal of improving the intelligibility of broadcast speech is being met by a recent new direction in speech enhancement: near-end intelligibility enhancement. In contrast to the conventional speech enhancement approach that processes the corrupted speech at the receiver-side of the communication chain, the near-end intelligibility enhancement approach pre-processes the clean speech at the transmitter-side, i.e. before it is played into the environmental noise. In this work, we describe an optimisation-based approach to near-end intelligibility enhancement using models of speech intelligibility to improve the intelligibility of speech in noise. This thesis first presents a survey of speech intelligibility models and how the adverse acoustic conditions affect the intelligibility of speech. The purpose of this survey is to identify models that we can adopt in the design of the pre-enhancement system. Then, we investigate the strategies humans use to increase speech intelligibility in noise. We then relate human strategies to existing algorithms for near-end intelligibility enhancement. A closed-loop feedback approach to near-end intelligibility enhancement is then introduced. In this framework, speech modifications are guided by a model of intelligibility. For the closed-loop system to work, we develop a simple spectral modification strategy that modifies the first few coefficients of an auditory cepstral representation such as to maximise an intelligibility measure. We experiment with two contrasting measures of objective intelligibility. The first, as a baseline, is an audibility measure named 'glimpse proportion' that is computed as the proportion of the spectro-temporal representation of the speech signal that is free from masking. We then propose a discriminative intelligibility model, building on the principles of missing data speech recognition, to model the likelihood of specific phonetic confusions that may occur when speech is presented in noise. The discriminative intelligibility measure is computed using a statistical model of speech from the speaker that is to be enhanced. Interim results showed that, unlike the glimpse proportion based system, the discriminative based system did not improve intelligibility. We investigated the reason behind that and we found that the discriminative based system was not able to target the phonetic confusion with the fixed spectral shaping. To address that, we introduce a time-varying spectral modification. We also propose to perform the optimisation on a segment-by-segment basis which enables a robust solution against the fluctuating noise. We further combine our system with a noise-independent enhancement technique, i.e. dynamic range compression. We found significant improvement in non-stationary noise condition, but no significant differences to the state-of-the art system (spectral shaping and dynamic range compression) where found in stationary noise condition

    Closed-loop auditory-based representation for robust speech recognition

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Includes bibliographical references (p. 93-96).A closed-loop auditory based speech feature extraction algorithm is presented to address the problem of unseen noise for robust speech recognition. This closed-loop model is inspired by the possible role of the medial olivocochlear (MOC) efferent system of the human auditory periphery, which has been suggested in [6, 13, 42] to be important for human speech intelligibility in noisy environment. We propose that instead of using a fixed filter bank, the filters used in a feature extraction algorithm should be more flexible to adapt dynamically to different types of background noise. Therefore, in the closed-loop model, a feedback mechanism is designed to regulate the operating points of filters in the filter bank based on the background noise. The model is tested on a dataset created from TIDigits database. In this dataset, five kinds of noise are added to synthesize noisy speech. Compared with the standard MFCC extraction algorithm, the proposed closed-loop form of feature extraction algorithm provides 9.7%, 9.1% and 11.4% absolution word error rate reduction on average for three kinds of filter banks respectively.by Chia-ying Lee.S.M

    Modeling speech intelligibility based on the signal-to-noise envelope power ratio

    Get PDF

    Auf einem menschlichen Gehörmodell basierende Elektrodenstimulationsstrategie fĂŒr Cochleaimplantate

    Get PDF
    ï»żCochleaimplantate (CI), verbunden mit einer professionellen Rehabilitation, haben mehreren hunderttausenden HörgeschĂ€digten die verbale Kommunikation wieder ermöglicht. Betrachtet man jedoch die Rehabilitationserfolge, so haben CI-Systeme inzwischen ihre Grenzen erreicht. Die Tatsache, dass die meisten CI-TrĂ€ger nicht in der Lage sind, Musik zu genießen oder einer Konversation in gerĂ€uschvoller Umgebung zu folgen, zeigt, dass es noch Raum fĂŒr Verbesserungen gibt.Diese Dissertation stellt die neue CI-Signalverarbeitungsstrategie Stimulation based on Auditory Modeling (SAM) vor, die vollstĂ€ndig auf einem Computermodell des menschlichen peripheren Hörsystems beruht.Im Rahmen der vorliegenden Arbeit wurde die SAM Strategie dreifach evaluiert: mit vereinfachten Wahrnehmungsmodellen von CI-Nutzern, mit fĂŒnf CI-Nutzern, und mit 27 Normalhörenden mittels eines akustischen Modells der CI-Wahrnehmung. Die Evaluationsergebnisse wurden stets mit Ergebnissen, die durch die Verwendung der Advanced Combination Encoder (ACE) Strategie ermittelt wurden, verglichen. ACE stellt die zurzeit verbreitetste Strategie dar. Erste Simulationen zeigten, dass die SprachverstĂ€ndlichkeit mit SAM genauso gut wie mit ACE ist. Weiterhin lieferte SAM genauere binaurale Merkmale, was potentiell zu einer Verbesserung der SchallquellenlokalisierungfĂ€higkeit fĂŒhren kann. Die Simulationen zeigten ebenfalls einen erhöhten Anteil an zeitlichen Pitchinformationen, welche von SAM bereitgestellt wurden. Die Ergebnisse der nachfolgenden Pilotstudie mit fĂŒnf CI-Nutzern zeigten mehrere Vorteile von SAM auf. Erstens war eine signifikante Verbesserung der Tonhöhenunterscheidung bei Sinustönen und gesungenen Vokalen zu erkennen. Zweitens bestĂ€tigten CI-Nutzer, die kontralateral mit einem HörgerĂ€t versorgt waren, eine natĂŒrlicheren Klangeindruck. Als ein sehr bedeutender Vorteil stellte sich drittens heraus, dass sich alle Testpersonen in sehr kurzer Zeit (ca. 10 bis 30 Minuten) an SAM gewöhnen konnten. Dies ist besonders wichtig, da typischerweise Wochen oder Monate nötig sind. Tests mit Normalhörenden lieferten weitere Nachweise fĂŒr die verbesserte Tonhöhenunterscheidung mit SAM.Obwohl SAM noch keine marktreife Alternative ist, versucht sie den Weg fĂŒr zukĂŒnftige Strategien, die auf Gehörmodellen beruhen, zu ebnen und ist somit ein erfolgversprechender Kandidat fĂŒr weitere Forschungsarbeiten.Cochlear implants (CIs) combined with professional rehabilitation have enabled several hundreds of thousands of hearing-impaired individuals to re-enter the world of verbal communication. Though very successful, current CI systems seem to have reached their peak potential. The fact that most recipients claim not to enjoy listening to music and are not capable of carrying on a conversation in noisy or reverberative environments shows that there is still room for improvement.This dissertation presents a new cochlear implant signal processing strategy called Stimulation based on Auditory Modeling (SAM), which is completely based on a computational model of the human peripheral auditory system.SAM has been evaluated through simplified models of CI listeners, with five cochlear implant users, and with 27 normal-hearing subjects using an acoustic model of CI perception. Results have always been compared to those acquired using Advanced Combination Encoder (ACE), which is today’s most prevalent CI strategy. First simulations showed that speech intelligibility of CI users fitted with SAM should be just as good as that of CI listeners fitted with ACE. Furthermore, it has been shown that SAM provides more accurate binaural cues, which can potentially enhance the sound source localization ability of bilaterally fitted implantees. Simulations have also revealed an increased amount of temporal pitch information provided by SAM. The subsequent pilot study, which ran smoothly, revealed several benefits of using SAM. First, there was a significant improvement in pitch discrimination of pure tones and sung vowels. Second, CI users fitted with a contralateral hearing aid reported a more natural sound of both speech and music. Third, all subjects were accustomed to SAM in a very short period of time (in the order of 10 to 30 minutes), which is particularly important given that a successful CI strategy change typically takes weeks to months. An additional test with 27 normal-hearing listeners using an acoustic model of CI perception delivered further evidence for improved pitch discrimination ability with SAM as compared to ACE.Although SAM is not yet a market-ready alternative, it strives to pave the way for future strategies based on auditory models and it is a promising candidate for further research and investigation

    Features of hearing: applications of machine learning to uncover the building blocks of hearing

    Get PDF
    Recent advances in machine learning have instigated a renewed interest in using machine learning approaches to better understand human sensory processing. This line of research is particularly interesting for speech research since speech comprehension is uniquely human, which complicates obtaining detailed neural recordings. In this thesis, I explore how machine learning can be used to uncover new knowledge about the auditory system, with a focus on discovering robust auditory features. The resulting increased understanding of the noise robustness of human hearing may help to better assist those with hearing loss and improve Automatic Speech Recognition (ASR) systems. First, I show how computational neuroscience and machine learning can be combined to generate hypotheses about auditory features. I introduce a neural feature detection model with a modest number of parameters that is compatible with auditory physiology. By testing feature detector variants in a speech classification task, I confirm the importance of both well-studied and lesser-known auditory features. Second, I investigate whether ASR software is a good candidate model of the human auditory system. By comparing several state-of-the-art ASR systems to the results from humans on a range of psychometric experiments, I show that these ASR systems diverge markedly from humans in at least some psychometric tests. This implies that none of these systems act as a strong proxy for human speech recognition, although some may be useful when asking more narrowly defined questions. For neuroscientists, this thesis exemplifies how machine learning can be used to generate new hypotheses about human hearing, while also highlighting the caveats of investigating systems that may work fundamentally differently from the human brain. For machine learning engineers, I point to tangible directions for improving ASR systems. To motivate the continued cross-fertilization between these fields, a toolbox that allows researchers to assess new ASR systems has been released.Open Acces

    Binaural scene analysis : localization, detection and recognition of speakers in complex acoustic scenes

    Get PDF
    The human auditory system has the striking ability to robustly localize and recognize a specific target source in complex acoustic environments while ignoring interfering sources. Surprisingly, this remarkable capability, which is referred to as auditory scene analysis, is achieved by only analyzing the waveforms reaching the two ears. Computers, however, are presently not able to compete with the performance achieved by the human auditory system, even in the restricted paradigm of confronting a computer algorithm based on binaural signals with a highly constrained version of auditory scene analysis, such as localizing a sound source in a reverberant environment or recognizing a speaker in the presence of interfering noise. In particular, the problem of focusing on an individual speech source in the presence of competing speakers, termed the cocktail party problem, has been proven to be extremely challenging for computer algorithms. The primary objective of this thesis is the development of a binaural scene analyzer that is able to jointly localize, detect and recognize multiple speech sources in the presence of reverberation and interfering noise. The processing of the proposed system is divided into three main stages: localization stage, detection of speech sources, and recognition of speaker identities. The only information that is assumed to be known a priori is the number of target speech sources that are present in the acoustic mixture. Furthermore, the aim of this work is to reduce the performance gap between humans and machines by improving the performance of the individual building blocks of the binaural scene analyzer. First, a binaural front-end inspired by auditory processing is designed to robustly determine the azimuth of multiple, simultaneously active sound sources in the presence of reverberation. The localization model builds on the supervised learning of azimuthdependent binaural cues, namely interaural time and level differences. Multi-conditional training is performed to incorporate the uncertainty of these binaural cues resulting from reverberation and the presence of competing sound sources. Second, a speech detection module that exploits the distinct spectral characteristics of speech and noise signals is developed to automatically select azimuthal positions that are likely to correspond to speech sources. Due to the established link between the localization stage and the recognition stage, which is realized by the speech detection module, the proposed binaural scene analyzer is able to selectively focus on a predefined number of speech sources that are positioned at unknown spatial locations, while ignoring interfering noise sources emerging from other spatial directions. Third, the speaker identities of all detected speech sources are recognized in the final stage of the model. To reduce the impact of environmental noise on the speaker recognition performance, a missing data classifier is combined with the adaptation of speaker models using a universal background model. This combination is particularly beneficial in nonstationary background noise
    • 

    corecore