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r̂ϕ Set of Â estimated sound source directions
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Ŝ Estimated number of speech sources

σj,d Variance of the jth Gaussian component at feature dimension d

Σj Covariance matrix of the jth Gaussian component

t Time frame index

T Number of time frames, number of observations

T60 Reverberation time in seconds

τ Time lag

τmax Maximum delay which is evaluated for the synchrony feature

τ̂f (t) Time lag corresponding to the maximum peak in the normalized

cross-correlation function at channel f and time frame t

θc Threshold on the height of the primary peak of the normalized

cross-correlation function

θe Entropy threshold

θh Histogram threshold

θϕ Absolute error threshold in degrees

u Unreliable feature component index

U Sub-vector containing unreliable feature components



xi

ϕ Sound source direction

ϕ̂T (t) Estimated sound source direction at time frame t

ϕ̂TF (t, f ) Estimated sound source direction at time frame t and

frequency channel f

V Number of Gaussian components

Vmin Minimum number of Gaussian components

Vmax Maximum number of Gaussian components

wj Weight of the jth Gaussian component

wH Hamming window

x (i) Noisy discrete time domain signal at time index i

~x D-dimensional feature vector

~xt,f D-dimensional feature vector at time frame t and

frequency channel f

xT Transpose of x

X (t, ω) Noisy signal spectrum at time frame t and frequency bin ω



xii



xiii

Contents

Glossary v
List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of symbols and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures xvii

List of Tables xxiii

1 General Introduction 1
1.1 Auditory scene analysis: Humans versus machines . . . . . . . . . . . . . 1

1.2 Common approaches to machine listening . . . . . . . . . . . . . . . . . 3

1.3 Monaural sound source segregation . . . . . . . . . . . . . . . . . . . . 5

1.4 Binaural approaches to sound source segregation . . . . . . . . . . . . . 8

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Probabilistic Model for Robust Localization based on a Binaural Auditory
Front-end 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Binaural cue extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Auditory front-end . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 ITD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 ILD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Multi-conditional training . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Binaural feature space . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Gaussian mixture modeling . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 GMM parameter estimation . . . . . . . . . . . . . . . . . . . . 25



xiv Contents

2.4 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Baseline systems . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 GMM settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Acoustic conditions . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Localization experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Experiment 1: Influence of GMM model complexity . . . . . . . . 31

2.5.2 Experiment 2: Selection of binaural cues . . . . . . . . . . . . . 32

2.5.3 Experiment 3: Dependency on source/receiver configuration . . . 34

2.5.4 Experiment 4: Effect of the number of active sources . . . . . . 37

2.5.5 Experiment 5: Blind estimation of the number of acoustic sources 40

2.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 The Effect of Spectro-Temporal Integration in a Probabilistic Model for
Robust Acoustic Localization 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Spatial log-likelihood map . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Grouping of consistent localization information across T-F units . 51

3.2.3 Spectro-temporal integration . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Acoustic conditions . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Noise-Robust Speaker Recognition Combining Missing Data Techniques and
Universal Background Modeling 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Automatic speaker recognition system . . . . . . . . . . . . . . . . . . . 64

4.2.1 Missing data recognition using adapted Gaussian mixture models 64

4.2.2 Spectral features . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Mask estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Acoustic mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents xv

4.3.2 GMM and UBM parameters . . . . . . . . . . . . . . . . . . . . 73

4.3.3 Baseline system . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Experiment 1: Effect of UBM using an IBM . . . . . . . . . . . . 74

4.4.2 Experiment 2: Influence of noise estimation algorithms . . . . . . 76

4.4.3 Experiment 3: Influence of speech estimation algorithms . . . . . 80

4.4.4 Experiment 4: Effect of UBM using an estimated binary mask . . 83

4.4.5 Experiment 5: MD recognition versus MFCCs . . . . . . . . . . . 86

4.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 A Binaural Scene Analyzer for Joint Localization and Recognition of Speak-
ers in the Presence of Interfering Noise Sources and Reverberation 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Binaural localization . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Detection of speech sources . . . . . . . . . . . . . . . . . . . . 98

5.2.3 Automatic speaker recognition . . . . . . . . . . . . . . . . . . . 104

5.3 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Acoustic mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Baseline systems . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.3 Ideal binary mask . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Experiment 1: Speaker localization performance . . . . . . . . . 111

5.4.2 Experiment 2: Evaluation of the IBM estimated by the binaural

front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Experiment 3: Speaker identification depending on the number of

interfering noise sources . . . . . . . . . . . . . . . . . . . . . . 117

5.4.4 Experiment 4: Multi-talker speaker identification . . . . . . . . . 119

5.4.5 Experiment 5: Joint localization and speaker recognition . . . . . 123

5.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.A Appendix: Speech detection module . . . . . . . . . . . . . . . . . . . . 127

5.A.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.A.2 Azimuth-weighted log-likelihood ratio . . . . . . . . . . . . . . . 129

5.A.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 129

6 General Conclusions 133
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



xvi Contents

6.2 Suggestions for future research . . . . . . . . . . . . . . . . . . . . . . . 136

Summary 141

Samenvatting 143

Zusammenfassung 145

Bibliography 147

Acknowledgments 169

Curriculum Vitae 171



xvii

List of Figures

2.1 Schematic diagram of the binaural sound source localization model based

on a GMM classifier. See Section 2.2 and Section 2.3 for details. . . . . 17

2.2 Binaural feature space computed for a target source at 0◦ azimuth at

different gammatone filter center frequencies under reverberation condition

(T60 = 0.5 s). The number of clusters increases along the ITD feature

dimension due to the ambiguous nature of the cross-correlation function

at high frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Diagram showing the room dimension with all receiver positions used

for training (circles) and for evaluation (diamonds). The triangles show

exemplarily the positioning of sound sources for one training and one

evaluation scenario. See Section 2.4.3 for details. . . . . . . . . . . . . . 29

2.4 Experiment 2: Effect of binaural cue selection on localization performance.

The percentage of anomalies is averaged across all 4 acoustic scenarios

(1, 2, 3 and 4 sources). Cues were extracted using either the gammatone-

based front-end (solid lines) or the FFT-based representation (dashed

lines). See Section 2.5.2 for details. . . . . . . . . . . . . . . . . . . . . 33

2.5 Experiment 3: Percentage of anomalies evaluated at various receiver posi-

tions under reverberation condition (T60 = 0.69 s). The GMM localization

model was trained using either one specific training position (Pos 5, Pos

7) or all 8 training positions. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Experiment 3: Percentage of anomalies depending on reverberation time

evaluated at various distances between the source and receiver position 2.

The GMM localization model was trained with binaural cues at a radial

distance of 1.5 m using all 8 training positions. . . . . . . . . . . . . . . 36



xviii List of Figures

2.7 Experiment 4: Percentage of anomalies depending on reverberation time

T60 of all baseline methods and GMM-based localization algorithms evalu-

ated in four acoustic scenarios (A)-(D), consisting of 1, 2, 3 and 4 sources.

Results are shown for all three categories of localization methods, namely

the broadband FFT-based methods (dashed lines), the gammatone-based

GCC (dash-dotted lines) and the GMM-based models (solid lines). . . . . 38

2.8 Experiment 4: (A) Percentage of anomalies and (B) the standard deviation

of the correct localization estimates summarized across all 4 acoustic

scenarios (1, 2, 3 and 4 sources). Results are shown as a function of the

reverberation time T60 for all three categories of localization methods,

namely the broadband FFT-based methods (dashed lines), the gammatone-

based GCC (dash-dotted lines) and the GMM-based models (solid lines). 39

2.9 Histogram-based detection of three competing speech sources (35 ◦, 5 ◦

and −30 ◦) in reverberant conditions (T60 = 0.69 s) based on the frame-

based azimuth estimates of the proposed localization model. . . . . . . . 41

2.10 Experiment 5: Performance of estimating the number of active sources in

mixtures consisting of 1, 2, 3 and 4 sources as a function of reverberation

time T60. In (A), the average performance is presented for all baseline

methods and GMM-based localization algorithms. In (B), the dependence

of performance on the number of sources is shown for the GMM-based

evaluation of both ITD and ILD. . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Model architecture for creating a T-F-based localization map. See Sec-

tion 3.2 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Estimated localization information for an acoustic mixture consisting of

2 male speakers (at 40 ◦ and −10 ◦ azimuth) in reverberant conditions

(T60 = 0.39 s) based on: (A) individual T-F units and (B) time frames

after integrating evidence across frequency channels. As illustrated in

(C), a histogram of the frame-based localization estimates can be used to

detect the number of active sources in the mixture and the corresponding

azimuth positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Process of creating a localization map of an acoustic mixture consisting

of 2 male speakers (at 40 ◦ and −10 ◦ azimuth) in reverberant conditions

(T60 = 0.39 s): (A) Preliminary localization map, (B) Localization map

after bilateral filter, (C) Entropy map of filtered localization map, (D)

Localized groups of T-F units, (E) Final localization map and (F) Ideal

grouping based on the a priori SNR. White color indicates the background. 53



List of Figures xix

3.4 The accuracy of the estimated localization maps for two-source mixtures,

expressed in (A) percentage of localization errors and (B) percentage of

available localization information per T-F unit. . . . . . . . . . . . . . . 58

4.1 Experiment 1: SNR-dependent speaker recognition performance for 10

speakers in the presence of factory noise using the ideal binary mask (IBM).

The average recognition performance over a series of 20 simulations is

presented for both recognizers, the GMM-based missing data system

MDGMM IBM (squares) and the system including a universal background

model MDGMM-UBM IBM (diamonds). The error bars represent the

standard error of recognition performance across all 20 simulations. . . . 75

4.2 Experiment 2: SNR-dependent ROC curves for all evaluated noise es-

timation algorithms. The ROC curves are averaged over all five noise

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Experiment 3: SNR-dependent ROC curves for all evaluated noise sup-

pression rules. ROC curves are averaged over all five noise conditions. . . 83

4.4 Experiment 4: Speaker identification improvement of the MDGMM-

UBM method compared to the MDGMM system on a closed set of 10

speakers in the presence of factory noise. The left panels show the speaker

identification improvement as a function of the SNR and the number of

Gaussian components for experiments involving (A) 13, (B) 25, (C) 50,

(D) 125, and (E) 250 sentences of speaker-dependent speech material.

The right panels (F)-(J) show the corresponding speaker identification

accuracy of the MDGMM-UBM recognizer. Both speaker identification

improvement and speaker identification accuracy are reported as the mean

over a series of 20 simulations. The standard error of both measures was

below 3% for all conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 85



xx List of Figures

4.5 Experiment 5: SNR-dependent speaker recognition performance on a

set consisting of 10 speakers. Results are shown for two groups of

background noise scenarios; (A) highly non-stationary (babble and factory

noise) and (B) more stationary noise conditions (destroyer, car and cockpit

noise). Recognition performance is presented as the average recognition

performance over a series of 20 simulations. The standard error of the

reported recognition performance across all 20 simulations was below

2% for all experimental conditions. Results are presented for two types

of recognizers, the MFCC-based recognizers (dashed lines) and the MD

recognizers (solid lines). Black symbols indicate that the corresponding

recognizers are based on UBM adapation. The two recognizers marked

by crosses utilize a priori information about the noise spectrum. . . . . . 88

4.6 Experiment 5: SNR-dependent speaker recognition performance on a

set consisting of 34 speakers. Results are shown for two groups of

background noise scenarios; (A) highly non-stationary (babble and factory

noise) and (B) more stationary noise conditions (destroyer, car and cockpit

noise). Recognition performance is presented as the average recognition

performance over a series of 20 simulations. The standard error of the

reported recognition performance across all 20 simulations was below

2% for all experimental conditions. Results are presented for two types

of recognizers, the MFCC-based recognizers (dashed lines) and the MD

recognizers (solid lines). Black symbols indicate that the corresponding

recognizers are based on UBM adapation. The two recognizers marked

by crosses utilize a priori information about the noise spectrum. . . . . . 89

5.1 Schematic diagram of the proposed binaural scene analyzer. The system

is divided into three main stages: binaural localization stage, detection of

speech sources, and recognition of speaker identities. See Section 5.2 for

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Figures xxi

5.2 Demonstration of the speech detection module for two different acoustic

scenes: (A) Detection of one speaker (20◦) in the presence of three

factory noise sources (50◦, −15◦ and −50◦, SNR = 0 dBA) in an anechoic

room. (B) Detection of two speakers (60◦ and −30◦) in the presence

of three factory noise sources (30◦, −5◦ and −60◦, SNR = 0 dBA) in a

reverberant room (T60 = 0.29 s). Each of the two subplots consist of

three panels: The left panel shows the acoustic signals and the frame-

based azimuth estimates, the middle panel depicts the azimuth histogram

and the detected speech source candidates, and the right panels present

the estimated binary masks (M) of all candidate positions and the ideal

binary masks (IBM) corresponding to all real sound source positions. . . . 103

5.3 Schematic diagram of the room dimensions with all receiver positions used

for training (circles) and evaluation (squares). Note that the training stage

of the localization model incorporated three radial distances (0.5 m, 1 m

and 2 m) between the receiver and the target positions as exemplarily

shown for receiver position 15, which were different from the radial distance

(1.5 m) used for evaluation. See Section 5.3.1 for details. . . . . . . . . 106

5.4 Experiment 3: Average speaker recognition performance in % for a set of

10 speakers in reverberant conditions (T60 = 0.29 s) in the presence of

(A) one, (B) two and (C) three simultaneously interfering factory noise

sources. The average recognition performance is plotted over a series of

20 simulations. Results are presented for three categories of methods,

namely the IBM-based MD recognizers (dash-dotted lines), the proposed

MD system (solid lines) and the MFCC-based recognizers (dashed lines).

The standard error of recognition performance across all 20 simulations

was below 3% for all experimental conditions. . . . . . . . . . . . . . . . 118

5.5 Experiment 4: Average speaker identification accuracy in % of one target

speaker for a set of 34 speakers in reverberant conditions (T60 = 0.29 s) in

the presence of (A) one, (B) two, and (C) three interfering factory noise

sources. The gray and black symbols decode recognition performance

based on one and two sentences, respectively. Results are presented for

four categories of methods, namely the IBM-based MD recognizer (dash-

dotted lines), the proposed MD system (solid lines), the MFCC-based

recognizers (dashed lines) and the MFCC-based Co-channel recognizer

(dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xxii List of Figures

5.6 Experiment 4: Average speaker identification accuracy in % of two com-

peting target speakers for a set of 34 speakers in reverberant conditions

(T60 = 0.29 s) in the presence of (A) one, (B) two, and (C) three interfer-

ing factory noise sources. The gray and black symbols decode recognition

performance based on one and two sentences, respectively. Results are

presented for four categories of methods, namely the IBM-based MD

recognizer (dash-dotted lines), the proposed MD system (solid lines), the

MFCC-based recognizers (dashed lines) and the MFCC-based Co-channel

recognizer (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Experiment 5: SNR-dependent confusion matrices showing the joint

localization accuracy and speaker recognition performance of the proposed

binaural scene analyzer for mixtures consisting of one or two simultaneously

active target speakers in the presence of three factory noise sources in a

reverberant environment (T60 = 0.29 s). . . . . . . . . . . . . . . . . . . 124

5.A.1Speech detection accuracy in % of two speech sources in the presence

of three factory noise sources and reverberation as a function of (A) the

SNR and (B) the reverberation time T60. . . . . . . . . . . . . . . . . . 131



xxiii

List of Tables

1.1 Overview of the acoustic scenarios for each individual chapter. . . . . . . 11

2.1 Reverberation times T60 in seconds for all experimental conditions. . . . . 30

2.2 Experiment 1: Percentage of anomalous localization estimates depending

on the number of Gaussian components V. . . . . . . . . . . . . . . . . 32

4.1 Evaluated noise estimation techniques. . . . . . . . . . . . . . . . . . . . 69

4.2 Evaluated gain curves for estimating the clean speech spectrum. . . . . . 70

4.3 Experiment 2: Average missing data speaker recognition accuracy over

a series of 20 simulations for a subset of 10 speakers in the presence of

different types of background noise. The binary mask was estimated using

the MMSE log-STSA noise reduction scheme and various noise estimation

techniques listed in Tab. 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Experiment 3: Average missing data speaker recognition accuracy over

a series of 20 simulations for a subset of 10 speakers in the presence of

different types of background noise. The binary mask was estimated using

the Lin03Mod noise estimation technique and various noise reduction

schemes listed in Tab. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 SNR-dependent localization error of speech sources in degrees for binaural

mixtures consisting of one and two speakers in the presence of interfering

noise sources and reverberation. . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Mask estimation performance (true positive (TP) rate, false positive (FP)

rate, TP-FP rate and the number of labeled T-F units) and speaker iden-

tification (SID) accuracy in % for various methods in anechoic conditions

(T60 = 0 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



xxiv List of Tables

5.3 Mask estimation performance (true positive (TP) rate, false positive (FP)

rate, TP-FP rate and the number of labeled T-F units) and speaker

identification (SID) accuracy in % for various methods in reverberant

conditions (T60 = 0.29 s). . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.A.1Speech detection accuracy in % of one and two speech sources in the

presence of reverberation (T60 = 0.29 s) and three interfering noise sources

for different features using the MD recognizer. . . . . . . . . . . . . . . 130



1

1
General Introduction

1.1 Auditory scene analysis: Humans versus machines

In everyday life, we are exposed to an overwhelming variety of acoustic signals reaching our

ears. The human auditory system has the fascinating capability to process this mixture of

individual sound sources and to intentionally focus on a desired target source. The ability

to extract individual sound sources from a complex acoustic mixture is termed auditory

scene analysis (ASA). According to Bregman (1990), this ability of the human auditory

system is facilitated by two processes, namely segmentation and grouping. First, the

acoustic input is decomposed into spectro-temporal units, where each individual unit is

assumed to be primarily dominated by one single sound source. Secondly, individual units

that are likely to belong to the same acoustic object are subsequently grouped together,

forming a coherent stream. In this way, the human auditory system is able to segregate a

desired target source from interfering signals in challenging acoustic environments. One of

the most frequently used examples to illustrate this ability of the human auditory system

to analyze complex acoustic scenes is the so-called cocktail party effect, which describes

the phenomenon of attending to a conversation with one talker while other talkers are

speaking at the same time (Cherry, 1953, Bronkhorst, 2000, Haykin and Chen, 2005).

Bregman postulated a set of primitive grouping principles that are presumably utilized

by the human auditory system to perceptually organize and group individual acoustic
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components that originate from the same acoustic object, among them proximity in

time and frequency, periodicity, common onsets and offsets, amplitude and frequency

modulation and common spatial location.

Although humans seem to be able to effortlessly analyze even rather complex acoustic

scenes consisting of multiple competing sound sources, the development of machine

listening algorithms that are able to automatically retrieve information about complex

acoustic scenes (e.g., estimating the number of active sound sources and the corresponding

azimuthal positions or recognizing the identity of a speaker) has been proven to be

extremely difficult. The field of research dealing with computational approaches to

perform auditory scene analysis is called computational auditory scene analysis (CASA),

where the goal is to produce a computational description of the objects and their spatial

locations in a physical scene from sensory input (Wang, 2007).

One particular challenging aspect of performing ASA with machines is when the analysis

is restricted to binaural signals (Wang and Brown, 2006). It is generally known that

the performance of microphone arrays usually improves with increasing number of micro-

phones, and a common requirement for beamforming techniques, such as the adaptive

Generalized Sidelobe Canceller (GSC) proposed by Griffiths and Jim (1982), is that the

number of microphones must be larger than the number of interfering sound sources

to successfully attenuate the interfering signals (overdetermined case). In contrast, the

human auditory system is able to simultaneously deal with a large number of competing

sources by analyzing only the binaural input that is supplied by the two ears. Consequently,

the human auditory system is clearly able to deal with the underdetermined case. For

this reason, binaural approaches to CASA are of special interest and may help to pro-

vide new insights into potential mechanisms that are employed by the human auditory

system.

Although machine listening has made enormous progress over the past decades, many

studies verify that the human ability to analyze acoustic scenes is superior to the perfor-

mance that is achieved by machines. In the context of speech recognition, Lippmann

(1997) compared the recognition performance of human listeners with the performance

of machines for a wide range of different speech stimuli. He reported that the word error

rates of human listeners are often more than an order of magnitude below the error rates

obtained by machines. Furthermore, he found that human performance was significantly

more robust against the degradation of the speech material. A similar trend was observed

for the task of speaker verification. Whereas machines were pretty competitive in clean
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acoustic conditions, which might be attributed to the effectively larger memory resources,

and sometimes outperformed human listeners, humans were significantly more robust

against signal degradation (Schmidt-Nielsen and Crystal, 2000) and session variability (Lu

et al., 1997). More recent studies determined the gap between human and machine per-

formance in terms of the signal-to-noise ratio (SNR). Considering the task of recognizing

consonants in the presence of speech-shaped noise, the human advantage was estimated

to be in the range of 10 dB (Sroka and Braida, 2005). Similarly, a 15 dB advantage

of human listeners was observed in the context of phoneme recognition (Meyer et al.,

2011).

1.2 Common approaches to machine listening

The automatic analysis of acoustic scenes, including the extraction of the position of

speech sources and the recognition of the speaker identities would provide valuable

information for a wide range of applications, such as teleconference systems, hands-free

communication systems and voice-controlled systems. Also, the estimated position of the

speech source could be used to control self-steering hearing aids (Rohdenburg et al., 2008)

in the presence of interfering noise sources, where information about the spatial position

of the target source is used to determine the steering vector for a Minimum Variance

Distortionless Response (MVDR) beamformer. In addition, more general knowledge about

the acoustic scene can be used to automatically select the signal processing strategies of

hearing aids which have been optimized for a particular acoustic situation (Wittkop and

Hohmann, 2003).

In state-of-the art speech signal processing systems for automatic speech recognition or

automatic speaker recognition, the speech signal is commonly analyzed and characterized

by its spectral content. One of the most frequently-used feature representations of speech

signals are the Mel Frequency Cepstral Coefficients (MFCCs) (Davis and Mermelstein,

1980), which are short-term cepstral features based on the mel-frequency scale. Cepstral

coefficients are obtained by applying an orthogonal transformation, such as the discrete

cosine transform (DCT), to the short-term logarithmic mel-frequency scaled spectrum of

the speech signal, which results in a largely decorrelated set of MFCC coefficients. Because

each individual cepstral coefficient reflects properties of the global spectral shape of the

speech signal, it is sufficient to retain the lowest 13 coefficients, which effectively reduces

the dimensionality of the feature vector, therefore allowing for a compact representation.
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Based on a sequence of MFCC features, a classifier based on hidden Markov models

(HMMs) or Gaussian mixture models (GMMs) can be trained with the aim to discriminate

the MFCC patterns corresponding to different words or different speaker identities. Given

a set of MFCC features, e.g., which correspond to an unknown speaker identity, the

classifier is essentially trying to match the observed MFCC pattern with one of the patterns

previously learned in the training stage. These classifiers are typically trained to function

in a particular acoustic environment, which does often not agree with the application

environment however. Hence, any mismatch between the MFCC features obtained in

the training and in the testing condition, which might be induced by environmental noise,

room reverberation or the presence of interfering talkers, will substantially reduce the

classification performance.

One approach that has been suggested to alleviate the mismatch between the features

extracted from the training and the testing material is to apply feature normalization

techniques which aim at compensating for time-invariant, convolutional distortions and

channel effects. More specifically, cepstral mean normalization (CMN) is commonly applied

to increase the robustness of automatic speech recognition and speaker identification

systems where the long-term mean of each cepstral coefficient is subtracted from the

MFCC feature vector (Atal, 1974, Rosenberg et al., 1994). This concept of CMN has

been extended to also consider the long-term standard deviation of the feature vector,

resulting in cepstral mean and variance normalization (CMVN) (Openshaw and Mason,

1994, Tibrewala and Hermansky, 1997). In order to capture environmental changes, a

segmental normalization of the mean and variance can be performed where the statistics of

the cepstral coefficients are estimated over a segment length of interest (Viikki and Laurila,

1998). An alternative approach is the RelAtive SpecTrAl (RASTA) technique where the

temporal trajectory of the feature vector is filtered in such a way that spectral changes that

occur faster than the modulation range of speech components are reduced (Hermansky and

Morgan, 1994). More sophisticated approaches try to enhance the feature representation

by applying speech enhancement algorithms (Berouti et al., 1979, Boll, 1979, Ephraim

and Malah, 1984, 1985, Ephraim, 1992, Srinivasan et al., 2007, Loizou, 2007) in order to

eliminate the impact of environmental noise. However, these techniques require a robust

estimation of the noise power which is very difficult to obtain in non-stationary noise

conditions. Whereas all the aforementioned approaches can - to some extent - improve

the robustness of speech signal processing systems in adverse acoustic environments, they

do not really address the fundamental problem that the computation of the feature vector

during testing is based on a noisy speech signal where no distinction is made between the

target signal and interfering sound sources. As a consequence, the resulting feature vector
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will reflect the properties of all active sound sources, which in turn limits the detectability

of the target source.

1.3 Monaural sound source segregation

A major step towards noise robustness is to segregate the target source from the noisy

background, which is achieved by introducing the concept of missing and unreliable

acoustic information (Cooke et al., 1994, 2001). The missing data (MD) concept

separates the T-F representation of a noisy speech signal into reliable and unreliable T-F

units. This separation is accomplished by an ideal binary mask (IBM), which indicates

whether a spectrographic T-F unit is dominated by the target signal (reliable T-F unit)

or if it is contaminated by noise or interfering sources (unreliable T-F unit). In general,

there are two different approaches on how to deal with unreliable information. The first

method, termed imputation, attempts to recover the true values of the unreliable spectral

components. The theoretical advantage of this method is that no modification of the

classifier is required and that conventional features such as MFCCs can be extracted

based on the reconstructed spectral representation. Nevertheless, this approach imposes

the substantial challenge of precisely recovering the missing information. For an overview

and comparison of different data imputation methods, the reader is referred to Raj (2000).

The second alternative, called marginalization, modifies the structure of the classifier in

such a way that the classification is based solely on the reliable components, effectively

ignoring the unreliable components. Further knowledge about the bounds of unreliable

T-F units can be incorporated in both methods, imposing additional constraints on the

possible range of values that the unreliable components might have had. In the context

of speech recognition, it has been shown that the usage of the IBM allows for excellent

speech recognition performance in the presence of additive noise for a wide range of SNRs

and that the marginalization technique is superior to the imputation approach (Cooke

et al., 2001). Theoretically, an arbitrary number of sound sources can be processed by

the MD approach, assuming that the appropriate set of target-dominated T-F units can

be robustly identified for each individual sound source.

Whereas the concept of missing data may be first and foremost seen as a mathematical

tool to deal with uncertain, missing information, there are some analogies with human

auditory processing. The motivation to treat noise-dominated T-F units as unreliable

acoustic information is closely related to the phenomenon of masking where one sound
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may be obscured, or rendered inaudible, in the presence of other sounds (Moore, 2003).

Furthermore, the observation that speech-dominated T-F units tend to be sparse in the

presence of background noise has led Cooke to propose a glimpsing model of human

speech perception (Cooke, 2005, 2006). It is based on the idea that the detection of

glimpses, which are defined as contiguous groups of adjacent T-F units that contain reliable

information about the target source, may be employed by human listeners when recognizing

speech in the presence of background noise. He observed that the percentage of detected

glimpses in noisy speech is a good indicator for human intelligibility. Furthermore, a

computational model based on MD recognition and a priori information about the position

of glimpses in the T-F plane was shown to successfully predict the consonant identification

scores of human listeners as a function of the number of competing talkers that contributed

to the babble-modulated noise.

Besides the success of incorporating the concept of MD in the field of speech recognition,

it has also been shown that applying the IBM directly to a noisy speech signal in order

to gate noise-dominant T-F units can significantly increase speech intelligibility for both

normal hearing and hearing-impaired human listeners (Anzalone et al., 2006, Brungart

et al., 2006, Li and Loizou, 2008a, Kjems et al., 2009, Brungart et al., 2009). Furthermore,

the influence of the local SNR criterion (LC) to separate reliable and unreliable T-F units

on speech intelligibility has been investigated. When varying the LC threshold while

keeping the SNR of the noisy speech mixture fixed, a plateau was found where almost

100% speech understanding was possible for human listeners for a wide range of LC

values (Brungart et al., 2006, Li and Loizou, 2008a). It has been suggested that this

plateau, ranging from about −20 dB to 5 dB, may indicate that the pattern of the IBM

itself is most important for human listeners, not the local LC value (Li and Loizou,

2008a). At a local SNR criterion, e.g. −10 dB, a considerable amount of T-F units

in the IBM is dominated by the masker, yet almost 100% of the speech was correctly

recognized. Because the IBM seems to direct the attention of the human listener to

the target-dominated T-F units, the additional energy of the masker at LC values as

low as −20 dB apparently does not degrade the ability of human listeners to recognize

speech. In terms of frequency resolution, a number of 16 frequency channels was found

to be already sufficient to produce highly intelligible speech signals (Wang et al., 2008,

Li and Loizou, 2008b). Furthermore, the formulation of the IBM has been extended

to reverberant conditions (Roman and Woodruff, 2011). A reflection boundary was

introduced in order to separate the direct path and early reflections of the target signal

from the late reflections. Improved speech reception thresholds (SRTs) are obtained

when considering the direct path and early reflections of up to 50 ms of the target signal
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as part of the desired signal and when treating the late reflections as noise (Roman and

Woodruff, 2011).

Unfortunately, the usage of the IBM implies that a priori knowledge about the spectro-

temporal position of reliable and unreliable T-F units is available, which is rarely the case

in practical applications. In practice, the IBM needs to be estimated by analyzing the

noisy speech signal. Based on the encouraging experimental results that were obtained

with the IBM, Wang suggested that the main goal of CASA is to estimate the ideal

binary mask (Wang, 2005). To achieve this, a wide variety of different mask estimation

techniques have been proposed to determine the set of reliable T-F units that are associated

with the target source.

In order to estimate the ideal binary mask, several monaural cues have been exploited.

The reliability of an individual T-F unit can be interpreted as the ratio of the target

energy to the energy of interfering noise. Therefore, a common approach to determine

target-dominant T-F units is to estimate the local signal-to-noise ratio (SNR) in individual

T-F units by tracking the level of the background noise. A local SNR threshold is defined

to separate T-F units according to target-dominated and noise-dominated sets of T-F

units (Drygajlo and El-Maliki, 1998a, Vizinho et al., 1999, Cooke et al., 2001, Renevey

and Drygajlo, 2001, Ris and Dupont, 2001, May et al., 2012a). It has been shown

that a local SNR threshold of LC = 0 dB is optimal in terms of the theoretical SNR

gain (Li and Wang, 2008, 2009); therefore, this criterion is commonly chosen for the

SNR-based mask estimation. For the particular problem of detecting reliable T-F units

in the presence of reverberation, a modulation-based mask estimation technique has

been proposed, which focuses on the direct sound by detecting speech onsets (Palomäki

et al., 2004a, 2006). However, it should be noted that both the SNR-based and the

modulation-based estimation of the ideal binary mask may only be valid for acoustic

mixtures with one target source, since these approaches can not distinguish between

multiple competing target sources. Thus, other cues are required to organize the T-F

representation of multi-source mixtures. Drawing inspiration from the auditory domain,

the concept of periodicity and the temporal continuity of pitch tracks has been exploited

for the estimation of the IBM of multiple speech sources (Wu et al., 2003, Roman and

Wang, 2006, Ma et al., 2007). Furthermore, these pitch-related features have been jointly

analyzed with modulation-based features (Hu and Wang, 2001, 2004). However, these

approaches can only be applied to voiced speech. In order to extend the working range of

the pitch-based approaches, information about onsets and offsets (Hu and Wang, 2007)

can be incorporated as recently reported by Han and Wang (2011).
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1.4 Binaural approaches to sound source segregation

The input from two ears is a fundamental advantage that is utilized by the human auditory

system. Although it is argued that common spatial location might not be the cue that is

predominantly involved in auditory grouping (Darwin, 1997, 2008), which is supported

by the fact that human listeners can segregate a target source from monaural signals,

many researchers have emphasized that the ability of the human auditory system to

exploit spatial information plays a major role in analyzing and understanding speech in

complex multi-source scenarios (Cherry, 1953, Kidd et al., 1998, Hawley et al., 1999,

Bronkhorst, 2000, Hawley and Litovsky, 2004). In addition, the usage of binaural cues is

very attractive, because the unique combination of interaural time differences (ITDs) and

interaural level differences (ILDs) is inherently connected to the physical azimuthal position

of sound sources in the acoustic space, regardless of the type of source. Consequently,

many computational models attempt to replicate mechanisms of binaural processing to

enhance speech in challenging acoustic scenarios. One of the first cocktail party processors

that was based on binaural cues was the model proposed by Lyon (1983). The model was

capable of separating two competing sounds emerging from different spatial locations.

Bodden proposed a cocktail party processor which combined a binaural model of human

sound source localization (Lindemann, 1986a, Gaik, 1993) with a time-varying Wiener

filter to suppress interfering sound sources from undesired spatial directions (Bodden,

1993). The system was able to improve speech intelligibility for hearing-impaired listeners

in anechoic multi-source scenarios. Kollmeier and colleagues presented a binaural noise

reduction scheme for enhancing a target source emerging from the frontal direction,

while suppressing lateral noise sources and reverberation (Kollmeier et al., 1993). The

dereverberation stage aimed at distinguishing between the direct sound and reflections

and was based on the interaural coherence. Further extensions have been proposed to

combine monaural and binaural cues by incorporating cues related to pitch (Denbigh and

Zhao, 1992, Shamsoddini and Denbigh, 2001, Christensen et al., 2007, Wohlmayr and

Képsi, 2007, Woodruff and Wang, 2010a,b) and amplitude modulation (Kollmeier and

Koch, 1994).

One of the first approaches that utilized binaural cues for the estimation of the ideal binary

mask was the model proposed by Palomäki et al. (2001, 2004b). The model implemented

some aspects of the precedence effect by incorporating an inhibitory mechanism that

emphasizes acoustic onsets (Palomäki et al., 2004b). The resulting model was proposed

to be able to cope with small room reverberation. Around the same time, machine
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learning techniques were employed to create a probabilistic model that incorporated

knowledge about the distribution of binaural cues in anechoic conditions (Roman et al.,

2002, 2003). A classifier based on a maximum a posteriori (MAP) decision rule was

trained to jointly analyze the patterns of ITDs and ILDs in different frequency channels.

It was shown that binaural cues can be used to approximate the performance of the IBM

in anechoic conditions (Roman et al., 2002, 2003). A substantial SNR gain of up to

12 dB was reported for anechoic three-source scenarios when the estimated binary mask

was used to segregate the target source (Roman and Wang, 2003). Furthermore, the

probabilistic approach consistently outperformed the model proposed by Bodden (1993)

in all experimental conditions. Nevertheless, handling the impact of reverberation and the

presence of multiple competing sound sources has remained a challenging problem which

is addressed in this thesis.

1.5 Objectives

The primary objective of this dissertation is to create a binaural scene analyzer that

can automatically retrieve information about sound sources that are acoustically active

in a complex acoustic scene. More specifically, the goal is to develop an algorithm

which itself is able to simultaneously localize, detect and recognize multiple target

speakers in the presence of reverberation and interfering noise sources based on the

analysis of binaural signals. Whereas the term auditory in CASA may suggest that the

computational approaches are exclusively based on auditory principles, we want to clarify

that it is not the intention of this work to build a physiologically plausible computer

algorithm. Rather, we use principles of human auditory processing and combine them

with machine learning techniques in order to reduce the performance gap between humans

and machines and to obtain robust performance similar to human auditory processing in

adverse conditions.

1.6 Outline of this thesis

In Chapter 2, a probabilistic model for robust sound source localization is presented that

is based on supervised learning of azimuth-dependent binaural cues, namely interaural time

and level differences, in individual frequency channels. The distribution of these binaural

cues depends on a variety of factors, among them room reverberation, the presence
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of multiple competing sound sources, and changes in the source-receiver configuration.

Because of this, multi-conditional training is performed to account for the uncertainty of

binaural cues resulting from complex acoustic scenarios. The performance of the proposed

localization model is systematically evaluated in multi-source scenarios with up to four

competing speech sources in reverberant environments with a reverberation time of up to

T60 = 0.69 s. Experimental results show that the proposed localization model achieves

significantly higher localization accuracy compared to binaural state-of-the art localization

techniques. Furthermore, the ability of the proposed model to predict the number of

active sound sources in an acoustic mixture is explored. Relevant publications related to

this part of the thesis are May et al. (2009, 2011a).

The localization model presented in Chapter 2 is used in Chapter 3 to create a 2D

localization map by grouping individual T-F units according to the spatial location of

the most dominant sound source. In order to increase the reliability of the estimated

sound source direction of individual T-F units, a spectro-temporal integration stage is

proposed, which integrates spatial evidence across a set of T-F units that are believed

to belong to the same acoustic source. We find that this integration stage reduces the

overall localization error and increases the amount of available information. The relevant

publication related to this part of the thesis is May et al. (2010).

Although missing data techniques provide a powerful framework to deal with multiple

overlapping sound sources and interfering noise, the approach requires that the feature

space can be separated into reliable and unreliable T-F units. Therefore, it is inherently

limited to the usage of spectral features that have a limited performance as compared

to the more compact MFCC features. In Chapter 4, we incorporate the adaptation

of speaker models using universal background models (UBMs) into the framework of

MD-based speaker identification. This integration aims at improving the robustness of

speaker models that are based on spectral features in the context of MD recognition. Our

experimental results show that this combination substantially decreases the sensitivity of

the resulting speaker models to errors in the binary mask estimation, which is especially

advantageous in acoustic scenarios with highly fluctuating noise. Furthermore, the

problem of estimating the ideal binary mask (IBM) in the presence of background noise

is addressed. Therefore, a variety of different techniques to obtain an estimation of the

local signal-to-noise ratio in individual T-F units is compared, and the influence on speaker

recognition performance is discussed. The relevant publication related to this part of the

thesis is May et al. (2012a).
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In Chapter 5, a binaural scene analyzer is presented which combines the binaural front-

end developed in Chapter 2 with the robust MD-based speaker recognition framework

presented in Chapter 4. The estimation of the ideal binary mask is based on spatial

evidence, which allows a simultaneous recognition of multiple target speakers. In order

to link the estimated sound source activity supplied by the binaural front-end with the

automatic speaker recognition stage, a speech detection module is proposed that is able

to detect a predefined number of speech sources in the presence of interfering noise

sources. In this way, the binaural scene analyzer is able to selectively focus on processing

speech sources and does not require a priori information about the spatial position of the

speakers. The ability of the proposed binaural scene analyzer to simultaneously localize and

recognize a predefined number of competing target speakers in the presence of interfering

noise sources and reverberation is systematically evaluated. Relevant publications related

to this part of the thesis are May et al. (2011b,c, 2012b).

Finally, Chapter 6 summarizes the main findings of this dissertation and suggests future

research.

An overview about the different acoustic conditions that are used in the individual chapters

is given in Tab. 1.1. Chapter 2 and Chapter 3 focus on the development of the binaural

Table 1.1: Overview of the acoustic scenarios for each individual chapter.
Chapter 2 Chapter 3 Chapter 4 Chapter 5
Localization Time-frequency- Noise-robust Localization and
of multiple based localization speaker recognition of

sound sources map identification multiple speakers

speech

speech

speech

speech speech

noise noise

speech

noise

speech

Receiver
binaural binaural microphone binaural

Room characteristic
reverberant reverberant anechoic reverberant

Target sources
1-4 speech sources 2 speech sources 1 speech source 1-2 speech sources

Interfering sources
- - 1 noise source 1-3 noise sources
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front-end for robust sound source localization. Therefore, binaural signals consisting of

multiple competing speech sources in simulated reverberant conditions are considered.

To address the impact of noise, Chapter 4 presents a noise-robust MD-based speaker

recognition system which is evaluated with monaural noisy speech signals. Finally, the

individual contributions are combined in Chapter 5 and the resulting binaural scene analyzer

is systematically evaluated with binaural mixtures consisting of several target sources and

interfering noise source in simulated reverberant conditions.
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This chapter is based on:

• May et al. (2009): "A probabilistic model for robust acoustic localization based on an auditory
front-end," in Proceedings of the NAG/DAGA, Rotterdam, The Netherlands, p. 254 (A).

• May et al. (2011a): "A probabilistic model for robust localization based on a binaural auditory
front-end," IEEE Transactions on Audio, Speech, and Language Processing 19(1), pp. 1–13.

2
A Probabilistic Model for Robust
Localization based on a Binaural

Auditory Front-end

Although extensive research has been done in the field of machine-based localization,

the degrading effect of reverberation and the presence of multiple sources on local-

ization performance has remained a major problem. Motivated by the ability of the

human auditory system to robustly analyze complex acoustic scenes, the associated

peripheral stage is used in this chapter as a front-end to estimate the azimuth of

sound sources based on binaural signals. One classical approach to localize an acoustic

source in the horizontal plane is to estimate the interaural time difference (ITD)

between both ears by searching for the maximum in the cross-correlation function.

Apart from ITDs, the interaural level difference (ILD) can contribute to localization,

especially at higher frequencies where the wavelength becomes smaller than the diam-

eter of the head, leading to ambiguous ITD information. The interdependency of ITD

and ILD on azimuth is a complex pattern that depends also on the room acoustics,

and is therefore learned by azimuth-dependent Gaussian mixture models (GMM).

Multi-conditional training is performed to take into account the variability of the

binaural features which results from multiple sources and the effect of reverberation.

The proposed localization model outperforms state-of-the-art localization techniques

in simulated adverse acoustic conditions.
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2.1 Introduction

The ability to localize sound sources in adverse acoustic environments is necessary for

a wide range of applications, e.g. communication devices and hearing aids. Although

extensive research has been done in the field of localization, the localization of multiple

sources in adverse acoustic conditions has remained a challenging task. The performance

of microphone array localization depends on the array configuration and generally increases

with the number of microphones (DiBiase et al., 2001). In contrast to microphone-array

based techniques, the performance of the human auditory system is very robust against

the presence of multiple competing sources (cocktail party scenario) for tasks related

to localization (Hawley et al., 1999) and speech recognition (Bronkhorst and Plomp,

1992), despite only exploring the acoustic mixture arriving at both ears. These remarkable

capabilities of the human auditory system imply that in principle it is possible to analyze

complex acoustic scenes and to independently localize and identify a desired source within

an acoustic mixture based on binaural signals. This human ability to analyze complex

acoustic mixtures is referred to as auditory scene analysis (ASA) (Bregman, 1990). One

influential view on ASA is that the underlying mechanisms to retrieve information about

a specific sound source can be divided into two processes: first, the human auditory

system parses the acoustic scene into fragments (regions in the time-frequency plane),

and second, fragments which may belong to the same acoustic object are grouped

together. Because of this ability of the human auditory system to segment, group

and integrate information of multiple sources in adverse acoustic conditions, research

dealing with models of computational auditory scene analysis (CASA) is a growing field.

A comprehensive overview of CASA and its relevance for applications in the field of

automatic speaker recognition (ASR) and speech segregation can be found in Wang and

Brown (2006). The reliable estimation of the source position based on binaural signals

is relevant not only for CASA systems, e.g. as applied in the area of robust speech

recognition (Palomäki et al., 2004b, Harding et al., 2006), but furthermore is required for

hearing aids and systems related to wearable augmented reality audio (WARA) (Härmä

et al., 2004). Inspired by the robustness of the human auditory system, several studies have

incorporated stages of human auditory processing to improve sound source localization

in adverse acoustic conditions (Bodden, 1993, Faller and Merimaa, 2004, Wilson and

Darrell, 2005).

The two major cues which are exploited by the human auditory system to localize acoustic

sources are interaural time and level differences. One of the classical approaches to
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measure the interaural time difference is to search for the main peak in the generalized

cross-correlation (GCC) function (Knapp and Carter, 1976), which estimates the interaural

time difference (ITD) between the left and the right ears. The mathematical operation

of the uniformly-weighted GCC between binaural signals is equivalent to the coincidence

model suggested first in 1948 for describing human sound source localization (Jeffress,

1948). Since then, several modifications and extensions have been proposed to explain the

results obtained from psychoacoustic experiments. Another important cue exploited by the

human auditory system is the interaural level difference (ILD), which is attributed to the

head shadowing effects. The ILD was taken into account by incorporating the mechanisms

of contralateral and temporal inhibition into the cross-correlation model (Lindemann,

1986a). In this way, several psychoacoustic phenomena related to the precedence effect

could be successfully predicted (Lindemann, 1986b). A comprehensive review of the recent

development of binaural models can be found in Braasch (2005).

As indicated, the ILD cue plays an important role in localization, especially at higher

frequencies where the wavelength becomes smaller than the diameter of the head, leading

to ambiguous ITD information. Nevertheless, there have been only a few attempts to

combine both cues in a model for binaural sound localization. For example, the peak

selection in the cross-correlation analysis was steered by the ILD cue in order to select

the correct peak at higher frequencies where the cross-correlation function becomes

ambiguous (Viste and Evangelista, 2004). Nonetheless, the presence of reverberation has

a stronger impact on the ILD cue than on the ITD (Shinn-Cunningham et al., 2005),

thus making such a peak selection procedure less reliable in adverse acoustic conditions.

In addition, the dependence of ITD and ILD on azimuth is a complex, multimodal pattern

that also depends on the reverberation and the presence of competing sources, and

accordingly it can be best exploited by using a probabilistic model.

A combined evaluation of binaural cues has been successfully applied as a front-end for

anechoic sound source segregation (Roman et al., 2003), where a joint feature space

consisting of ITDs and ILDs was trained in ideal acoustic conditions in order to segregate

a target source from interfering sources at different azimuth positions. The modeling was

performed by an adaptive kernel density method, because the use of Gaussian mixture

models (GMM) had been reported to lead to issues related to the initialization process

and to the problem of selecting the number of Gaussian components (Roman et al.,

2003).

In Brown et al. (2006) and Harding et al. (2006), the effect of reverberation was included
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in a probabilistic model to predict a missing data mask for speaker recognition. A

histogram technique was utilized to model the probability density function (PDF) of the

binaural cues associated with the target source located at 0◦ azimuth. Although the

performance in reverberation was reported to be comparable to the system established

under anechoic acoustic conditions (Roman et al., 2003), the performance was sensitive

to the source/receiver configuration that was used to train the model for the recognition

of the binaural cues (Brown et al., 2006). In Nix and Hohmann (2006), PDFs of interaural

cues based on the fast Fourier transform (FFT), namely interaural phase differences (IPDs)

and ILDs were measured by histograms in order to perform localization in non-stationary

noise conditions. Those cues were integrated by combining their probabilities across

frequency.

In this chapter, a sound source localization model is presented that is robust against the

presence of multiple sources, changes in the source/receiver configuration and the impact

of reverberation. Based on an auditory front-end, the complex interaction of ITDs and

ILDs is learned by a probabilistic model that is trained under various acoustic conditions

to obtain robustness. For single sound source localization, long analysis windows between

100-200 ms length are commonly applied to increase the robustness of localization in

reverberation (Champagne et al., 1996, Chen et al., 2005). To be able to resolve the

time-dependent azimuth position of the most salient source in complex multi-source

mixtures, which is required for many relevant applications (e.g. beamforming, tracking

and CASA systems), a relatively short analysis window of 20 ms is used in this chapter.

Gaussian mixture models (GMM) are used to learn the azimuth-dependent distribution of

the binaural feature space consisting of both ITDs and ILDs. This feature space, based on

time-domain analysis, is then compared to an FFT-based feature space consisting of IPD

and ILD as described in Nix and Hohmann (2006). Furthermore, the selection procedure for

the number of Gaussian components will also be addressed. The straightforward approach

is a manual selection by visual inspection, which will be compared to an unsupervised

learning of Gaussian mixtures (Figueiredo and Jain, 2002), where the model complexity

is automatically determined. The performance of the GMM-based localization method

is evaluated and compared with some state-of-the-art binaural localization techniques

in multi-source reverberant conditions. Finally, the ability of the model to generalize to

unknown source/receiver configurations is discussed.

This chapter is organized as follows. The next section describes the extraction of the

binaural cues. Section 2.3 explains the details of the probabilistic model for sound source

localization. In Section 2.4, the evaluation procedure is described and the performance in
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simulated reverberant multi-source scenarios is presented in Section 2.5. A summary of the

main findings and concluding remarks will be given in Section 2.6.

Neural
transduction

Azimuth models

Log-likelihood

Across frequency
integration

Decision

arg max

Binaural
cues
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Acoustic
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Figure 2.1: Schematic diagram of the binaural sound source localization model based on a GMM
classifier. See Section 2.2 and Section 2.3 for details.

2.2 Binaural cue extraction

The two main cues enabling human sound source localization in the horizontal plane

are interaural time and level differences, ITDs and ILDs respectively. The ITD cue is

most robust at low frequencies, whereas the ILD cue is predominantly used at higher

frequencies (Blauert, 1997). The direction-dependent spectral modifications largely

associated with the complex pinna shape are especially important for the elevation

detection and to resolve front/back ambiguities. Because the localization task in this work

is restricted to the frontal horizontal plane (zero elevation), the ability to discriminate

sources in the vertical domain will not be investigated.

2.2.1 Auditory front-end

A schematic overview of the proposed binaural sound source localization model is shown

in Fig. 2.1. The peripheral processing of the human auditory system is simulated by

an auditory front-end consisting of a gammatone filterbank followed by inner hair cell-

processing. This front-end is adopted from Roman et al. (2003). In order to resemble the
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frequency selectivity of the human cochlea, the signals arriving at the left and the right ear

are decomposed into F = 32 auditory channels using a fourth-order gammatone filterbank.

More specifically, phase-compensated gammatone filters are used to synchronize the

binaural cues across auditory channels at a common time instance (Brown and Cooke,

1994). The gammatone channel responses are aligned by compensating for the group

delays of the gammatone filters at their nominal center frequencies. According to Glasberg

and Moore (1990), the channel center frequencies are equally distributed on the equivalent

rectangular bandwidth (ERB) scale between 80 Hz and 5 kHz. Similar to the model

described in Roman et al. (2003), channel-dependent gains are applied to simulate

the middle-ear transfer function, as determined by Moore et al. (1997). The neural

transduction process in the inner hair cells is approximated by halfwave-rectification

followed by a square-root compression. The resulting binaural auditory signals of the

left and the right ear are represented by hL
f and hR

f respectively, where the subscript f

indicates the gammatone channel index. Binaural cues are estimated using a rectangular

window of 20 ms at a sampling frequency of fs = 44.1 kHz (corresponding to a frame

length of B = 882 samples). An overlap between successive frames of 50% was applied,

corresponding to a frame shift of 10 ms. This high temporal resolution was chosen to

capture rapid changes in multi-source scenarios.

2.2.2 ITD

The time difference between the binaural auditory signals in the f th channel is estimated

using the normalized cross-correlation function, which is defined as a function of time lag

τ and the frame number t

Cf (t, τ) =

B−1∑
b=0

(
hL
f (t ·B/2− b)− h̄L

f

) (
hR
f (t ·B/2− b − τ)− h̄R

f

)
√

B−1∑
b=0

(
hL
f (t ·B/2− b)− h̄L

f

)2

√
B−1∑
b=0

(
hR
f (t ·B/2− b − τ)− h̄R

f

)2

. (2.1)

h̄L
f and h̄R

f denote the mean values of the left and right auditory signals and these

are estimated over the frame number t. The normalized cross-correlation function is

evaluated for time lags within the range of [−1, 1] ms, and its maximum corresponds to

the estimated ITD (in samples)

τ̂f (t) = arg max
τ

Cf (t, τ) . (2.2)
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The resolution of the ITD cue is limited by the sampling interval, whereas the actual time

delay can lie between two successive samples. In order to increase the ITD accuracy while

keeping the computational complexity moderate, exponential interpolation can be applied

around the estimated maximum τ̂f (t) of the normalized cross-correlation function (Zhang

and Wu, 2005)

δ̂f (t) =
logCf (t, τ̂f (t) + 1)− logCf (t, τ̂f (t)− 1)

4 logCf (t, τ̂f (t))− 2 logCf (t, τ̂f (t)− 1)− 2 logCf (t, τ̂f (t) + 1)
. (2.3)

The fractional part δ̂f (t) can be considered to describe the interpolated peak position

relative to the estimated integer peak position τ̂f (t), and the overall ITD estimate

îtdf (t) is then given in seconds by the combination of the integer and the fractional

estimate

îtdf (t) =
(
τ̂f (t) + δ̂f (t)

)
/fs. (2.4)

In addition to the exponential interpolation, another classical approach was also tested,

which describes the peak of the band-limited cross-correlation function by a parabola (Ja-

covitti and Scarano, 1993). The performance of both interpolation methods were almost

identical in low gammatone channels up to 1.5 kHz, whereas the exponential interpola-

tion gave better results at higher frequencies and was therefore selected in the current

chapter.

2.2.3 ILD

The interaural level difference is estimated by comparing the energy integrated across

the time interval B between the left and right ears. The ILD cue in the f th gammatone

channel expressed in dB is given by

îldf (t) = 20 log10


B−1∑
b=0

hR
f (t ·B/2− b)2

B−1∑
b=0

hL
f (t ·B/2− b)2

 . (2.5)

Note that in Eq. (2.5), 20 instead of 10 is used to compensate for the square-root

compression of the neural transduction process. A sound source positioned at the left-

hand side will result in a negative ILD whereas a positive ILD will be caused by a source

lateralized to the right-hand side.
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2.3 Model architecture

A probabilistic model is used to estimate the position of a sound source from the set of

binaural cues described in Section 2.2. Therefore, GMMs are trained to recognize the

azimuth-dependent pattern of the binaural cues. The training and the architecture of the

model is described in the following sections.

2.3.1 Multi-conditional training

To achieve a robust localization performance, the model is trained in various simulated

acoustic conditions to account for the variability of the binaural features caused by multiple

sources and the effect of additional reverberation. As analyzed by Roman et al. (2003),

the distribution of binaural cues is dependent on the presence of an interfering source and

its strength relative to the target source. To incorporate this effect into the model, the

training sequences consist of a target source within the azimuth range of [−50◦, 50◦] with

an interfering source positioned at ±5◦,±10◦,±20◦,±30◦ and ±40◦ relative to the target

azimuth (see Fig. 2.3). All target-/interfering-source combinations were presented at

three different global signal-to-noise ratios (SNRs) of 20, 10 and 0 dB, as defined prior to

spatialization. Moreover, the uncertainty of the binaural features attributed to the room

reverberation is taken into account by using simulated Binaural Room Impulse Responses

(BRIRs). This approach is similar to the training procedure described in Brown et al.

(2006), Harding et al. (2006), where mixtures of multiple sources (target plus interfering

source) were used in reverberation to obtain a more reliable model for identifying time-

frequency elements (binary mask), which are associated with the target source only. This

mask was used in the context of missing data speech recognition, where the recognition

stage is based on the reliable components, while excluding time-frequency elements which

are dominated by the interfering source. The authors showed that their model is robust

against changes in the simulated room absorption which were not considered in the

training stage. However, their system was sensitive to the relative placement of the source

and the receiver within the room (source/receiver configuration) (Brown et al., 2006). To

improve the model performance in this respect, the training data in the current study were

created using multiple source/receiver configurations, where the BRIRs were synthesized

by using the room simulation package developed by Campbell et al. (2005). This software

package combines a database of Head-Related Transfer Functions (HRTFs) (Gardner and

Martin, 1994) measured in anechoic conditions, with room reflections simulated according
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to the image source model (Allen and Berkley, 1979). To create the target and the

interfering source signals, utterances of male speakers that were randomly selected from

the TIMIT database (Garofolo et al., 1993) were convolved with the simulated BRIRs.

Throughout the multi-conditional training phase, the frequency-dependent absorption

coefficients of the room were chosen to yield a constant reverberation time T60 = 0.5 s,

in order to introduce the same amount of uncertainty for all gammatone channels. Note

that only one level of reverberation was used to train the localization model. To obtain

a reliable estimate of the target position, it is essential that the probabilistic model is

trained only with binaural features that are associated with the target source. Thus, the

following four criteria were employed to select the frames where the binaural features are

dominated by the target source:

1. An energy-based voice activity detector (VAD) was used to monitor the activity

of the target source, and, a frame was considered to be silent and excluded if the

energy level drops by more than 40 dB below the global maximum.

2. Frames were considered for training only if the target source was stronger than the

interfering source. This analysis compared the energy of the target source to the

energy of the interfering source after spatialization. The signals of the left and the

right ear were added prior to energy computation.

3. Frames were removed when the height of the primary peak in the normalized cross-

correlation function was less then a threshold θc , assuming that the associated

binaural cues are dominated by the room reflections. This third criterion was

motivated by the fact that the amplitude of the normalized cross-correlation reveals

information about the ratio between the direct sound and the room reflections,

which becomes low when the signals at the left and the right ear are dominated by

reflections. The threshold was set to θc = 0.3 by inspection, which still considers

frames with low correlation between the binaural signals to incorporate the uncer-

tainty of binaural cues resulting from adverse acoustic conditions into the training

procedure.

4. The fourth criterion removed frames from the training set, if the maximum of the

normalized cross-correlation function corresponded to one of the most lateral time

lags (τ = ± 44)1. For those time lags, it is assumed that the corresponding ITD of

[−1, 1] ms is outside the plausible range for the human head.

1 Valid for a sampling frequency of 44.1 kHz.
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Note that the last three criteria are monitored in all gammatone channels independently,

whereas the first criterion (VAD) is based on the signal prior to gammatone analysis.

Based on the requirement that all four criteria have to be satisfied, about 50% of the

frames were removed.

2.3.2 Binaural feature space

As already pointed out, the ITD and the ILD cues contain complementary information

about the source position, and can therefore be combined in a two-dimensional binaural

feature space

Xf = {~x1,f , . . . , ~xT,f }

=
{(

îtdf (1), îldf (1)
)
, . . . ,

(
îtdf (T ), îldf (T )

)}
, (2.6)

where T represents the number of observations for gammatone channel f . This joint

feature space of ITDs and ILDs is shown in Fig. 2.2 for a speech source at 0◦ azimuth

using the multi-conditional training. Each dot represents an observation of the binaural

feature space for a single frame within a specific gammatone channel. The receiver

(KEMAR head) was placed in the middle of the room, whereas the target source and

the interfering source were positioned at a radial distance of 1.5 m with respect to the

receiver. The binaural cues were simulated in a room measuring 5.1 x 7.1 x 3 m with a

reverberation time of T60 = 0.5 s.

It can be observed in Fig. 2.2 that the interdependency of ITDs and ILDs results in

complex patterns. At higher frequencies, where the wavelength is smaller than the

diameter of the head, the ITD information becomes ambiguous. This effect is reflected

by the number of distinct clusters in the binaural feature space, which systematically

increases with the gammatone center frequency. The spread of the clusters can be

related to the reverberation and the presence of an interfering source. Considering a

target source at 0◦ azimuth in anechoic conditions without an interfering source, the

distribution of ITDs and ILDs would be very narrow and hardly any side peaks would be

observed.

To estimate the position of a sound source from a set of binaural cues, the complex

pattern of the binaural feature space is learned by a probabilistic model. In Brown et al.

(2006), the probability density function (PDF) of the binaural feature space depending

on the sound source azimuth was modeled by a histogram technique. In that study, two
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Figure 2.2: Binaural feature space computed for a target source at 0◦ azimuth at different
gammatone filter center frequencies under reverberation condition (T60 = 0.5 s). The number
of clusters increases along the ITD feature dimension due to the ambiguous nature of the
cross-correlation function at high frequencies.

histograms were computed: one analyzing the binaural feature space for both target and

interfering sources, and the second for the observations related to the target source only.

The relation between these two histograms was used to derive the probability of a region

which is dominated by the target source. The bin size of the histogram is the result of a

trade-off between the PDF resolution and the amount of data required for a sufficient

training of the model. Furthermore, a threshold needs to be set for the histogram in order

to control the potential effect of insufficient training on the PDF, which may occur for

certain binaural feature combinations. Hence, ITD-ILD combinations were removed from

the histogram if the number of counts was below a certain threshold, producing better

estimates. It was also reported in Brown et al. (2006) that the performance was sensitive

to the histogram threshold and, more importantly, to the source/receiver configuration

used for the simulation of the training data.

In order to overcome these limitations, Gaussian mixtures are chosen in the current study

to model the probability density of the binaural cues for all azimuth positions. Because the

binaural features tend to cluster in the feature space, the azimuth-dependent PDF can be
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modeled by the sum of superimposed Gaussian components. Also, the use of GMMs results

in a smoother decision area than the histogram technique, which is expected to reduce the

sensitivity of the model to unknown source/receiver configurations.

2.3.3 Gaussian mixture modeling

Gaussian mixture models are used to describe the direction-dependent distribution of the

binaural feature space. Considering one specific sound source direction ϕ, denoted by λϕ,

a Gaussian mixture density for a D-dimensional feature vector ~x is the weighted sum of

V Gaussian components (Reynolds and Rose, 1995):

p(~x |λϕ) =

V∑
j=1

wj pj(~x), (2.7)

where ~x corresponds to the output of one specific gammatone channel. Each mixture

component j is characterized by the component weight wj , its mean vector ~µj and

the covariance matrix Σj . The variable λϕ represents the sound source properties.

Furthermore, the mixture weights wj satisfy
∑V

j=1 wj = 1. Each of the V components is

a D-variate Gaussian function given by

pj(~x) =
1

(2π)D/2 |Σj |1/2
exp

[
−

1

2
(~x − ~µj)TΣ−1

j (~x − ~µj)
]
. (2.8)

The parameters required to uniquely describe the GMM can be summarized by the following

notation:

λϕ = (wj , ~µj , Σj) ∀ j = 1, . . . ,V. (2.9)

Diagonal covariance matrices are used to describe the dependency between the ITD and

the ILD features, since the clusters are orientated perpendicularly with respect to the ILD

dimension (see Fig. 2.2). Moreover, the correlation between feature vector elements can

be modeled, in principle, by a larger number of diagonal covariance matrices than the

full covariance matrices, which are computationally more expensive (Reynolds and Rose,

1995).

Let X = {~x1, . . . , ~xT} be a set of T observations of the D-dimensional feature vector

~x . The log-likelihood of the sound source direction ϕ for a single time frame t can be
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computed as follows:

log p(~xt |λϕ) = log

V∑
j=1

wj pj(~xt). (2.10)

One GMM was chosen to model the pattern of the binaural feature space within each

gammatone channel f for each sound source direction ϕ independently. Extending the

log-likelihood computation to F gammatone channels indicated by the index f and to K

equally likely sound source directions represented by {λf ,ϕ1
, λf ,ϕ2

, ..., λf ,ϕK}, the estimated

sound source location is found by maximizing the log-likelihood of the current observation

~xt,f

ϕ̂T (t) = arg max
1≤k≤K

F∑
f=1

log p(~xt,f |λf ,ϕk )︸ ︷︷ ︸
log−likelihood︸ ︷︷ ︸

across frequency integration

. (2.11)

This azimuth decision is made on a frame-by-frame basis in order to capture the time-

dependent characteristics of multiple acoustic sources. In contrast to summing the

binaural cues across frequency (Shackleton et al., 1992), the evidence about a sound

source location is accumulated by combining the log-likelihood function across all F

gammatone channels. In this way, the uncertainty associated with the azimuth estimate

of a particular gammatone channel is taken into account, making an optimal use of the

available information. This probabilistic integration of cues was also proposed by Nix and

Hohmann (2006). Gaussian mixtures are trained to recognize the binaural feature space

in steps of 5 ◦. To increase the localization accuracy, an exponential interpolation (Zhang

and Wu, 2005) is applied around the maximum of the log-likelihood function accumulated

across frequency in Eq. (2.11).

2.3.4 GMM parameter estimation

The most common approach to estimate the set of GMM parameters λf ,ϕk is to use

the iterative Expectation-Maximization (EM) algorithm (Dempster et al., 1977). After

initializing the GMM parameters, each EM iteration consists of two steps, namely the

E-step and the M-step, respectively. First, the E-step determines the membership of each

training sample by assigning it to the Gaussian cluster which is most likely to have generated

it. Based on the new membership estimation, the GMM parameters are recalculated in

the M-step. This iterative procedure continues until the difference in likelihood between

two successive iterations is less than a predefined threshold ε. Although Gaussian mixture
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models can, in theory, be established to approximate arbitrarily complex probability density

functions, the quality and the robustness of the estimated GMM parameters depend on

the number of Gaussian components and the way they are initialized prior to using the

EM algorithm.

It is difficult to select the optimal number of Gaussian components V, because the "true"
number is usually unknown. An extensive number of Gaussian components reduces the

ability of the GMM model to generalize to observations which were not included in the

training data. By choosing too few components, however, the essential characteristics

of the feature space can not be properly represented. One straightforward approach to

choosing the number of GMM components is to visually identify the number of clusters,

assuming that these clusters would also be recognized by the initialization procedure.

Recently, an algorithm for unsupervised learning of Gaussian mixtures was presented,

which automatically selects the optimal number of Gaussian components by minimizing a

cost function based on the minimum description length (MDL) criterion (Figueiredo and

Jain, 2002). Furthermore, the algorithm was reported to reduce the sensitivity of the EM

algorithm to the initialization procedure by starting with significantly more components

than required, and successively removing the unnecessary components using the MDL

selection criterion. In this study, both manual and automatic approaches were used to

approximate the binaural feature space, of which the effect on localization performance

will be compared in Section 2.5.

The set of Gaussian parameters listed in Eq. (2.9) needs to be initialized prior to running

the EM algorithm. A random initialization or the use of clustering algorithms is one of the

common approaches (McLachlan and Peel, 2000). In this study, the k-means clustering

algorithm (Lloyd, 1982) is used to find the initial parameters of the V Gaussian components.

As the ITD and the ILD features have different scales, a variance normalization is performed

prior to equalize both dimensions.

2.4 Evaluation setup

2.4.1 Baseline systems

The proposed localization model is compared with three baseline systems by using the

performance evaluation described in Section 2.4.4. All baseline algorithms were imple-
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mented to perform localization by using the same framing parameters as the proposed

model: analysis window of 20 ms with a frame shift of 10 ms. The ITD estimates

of all baseline systems were also refined by exponential interpolation (Zhang and Wu,

2005).

GCC Gammatone

The first baseline system is based solely on the ITD analysis (cf. Eq. (2.1)) with the

same auditory front-end as the GMM-based localization model. Each local peak in the

normalized cross-correlation function is replaced by an impulse of the same height and

convolved with a Gaussian kernel (Roman et al., 2003, Palomäki et al., 2004b). The same

parameters were used as suggested in Palomäki et al. (2004b). This process sharpens the

peaks in the normalized cross-correlation function, and therefore is beneficial especially

when there are multiple sources spatially close to one another. The final azimuth estimate

is given by transforming the ITD according to a frequency-dependent mapping function,

which takes into account the diffraction effects of the head and shoulders (Bodden, 1993,

Roman et al., 2003, Palomäki et al., 2004b), and integrating the information across

gammatone channels.

FFT PHAT and FFT SCOTM

The FFT-based generalized cross-correlation (GCC) technique is also used for compari-

son (Knapp and Carter, 1976). More specifically, two commonly used weighting functions

for the GCC are explored: the phase transform (PHAT) (Knapp and Carter, 1976) and a

modified2 version of the smoothed coherence transform (SCOTM) (Carter et al., 1973).

Let ΦLL(ω) and ΦRR(ω) be the auto power spectrum of a 20 ms time segment of the

left and the right ear signal, respectively. Prior to spectral analysis, the time segments

were multiplied by a Hamming window and padded with zeros to reach a window length

corresponding to the next highest power of two. Furthermore, let ΦLR(ω) denote the

cross power spectrum between the two signals. The frequency-specific weighting functions

are given by ΨPHAT(ω) = 1/
∣∣ΦLR(ω)

∣∣ and ΨSCOTM(ω) = 1/
[
ΦLL(ω)ΦRR(ω)

]0.3
. Channel-

dependent pre-whitening is applied to the binaural signal in the spectral domain prior to

2 The square-root operator in the denominator of the conventional SCOT weighting was changed to cube-
root compression. This modification was found to improve localization performance in reverberation.
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the GCC analysis, to reduce the dependence of localization on the structure of the source

signal (Chen et al., 2005). Similarly to the GCC Gammatone, a mapping function was

employed to relate the broadband ITD estimate to the corresponding azimuth. The corre-

sponding mapping functions were derived by learning the azimuth-dependent responses of

the two broadband FFT-based localization models to a speech source that was presented

systematically at locations in the azimuth range of [−50◦, 50◦].

2.4.2 GMM settings

As discussed before, the GMMs were trained with the number of Gaussian components

selected either manually (Nabney and Bishop, 2001-2004) or automatically (Figueiredo

and Jain, 2002). The automatic selection was constrained between Vmin = 5 and

Vmax = 25 Gaussian components. In addition, the stopping criterion of the EM algorithm

was set to ε = 1e−5 for both training methods with a maximum of 300 iteration

steps.

2.4.3 Acoustic conditions

Binaural cues were simulated at various locations in a room of dimensions 5.1 x 7.1 x 3 m,

as depicted in Fig. 2.3. The circles correspond to all possible receiver positions (KEMAR

head) in the training phase. The diamonds represent the positions of the receiver at which

the localization model was evaluated for various reverberation times. Note that only the

receiver position 5 was used for both training and evaluation in order to study the influence

of known/unknown receiver positions. The receiver was always oriented towards −90 ◦

and placed at 1.75 m above the ground, where the source azimuth was varied, at a radial

distance of 1.5 m, with respect to receiver position. The positioning of sound sources

(filled triangles) is sketched for one training and one evaluation scenario. The black triangle

shows the placement of a target source at −50 ◦ with respect to receiver position 15, and

the positions of an interfering source (crosses) placed at ±5◦,±10◦,±20◦,±30◦ and ±40◦

relative to the target source, which were systematically processed in the multi-conditional

training. As can be seen from Fig. 2.3, the maximum lateral sound source position had to

be limited between ±90 ◦ since some receiver positions were too close to the room boundary

(e.g. receiver position 11). On the other hand, the placement of the interfering source

required an spatial offset of ±40◦ with respect to the target source position. Therefore,

the GMM localization models were trained and evaluated for a narrower range of target
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Figure 2.3: Diagram showing the room dimension with all receiver positions used for training
(circles) and for evaluation (diamonds). The triangles show exemplarily the positioning of sound
sources for one training and one evaluation scenario. See Section 2.4.3 for details.

azimuths between ±50◦ at every 5 ◦, which resulted in 21 possible sound source locations.

The gray triangles represent all 21 target positions with respect to receiver position 5

which were used for evaluation. If not stated otherwise, the localization model was trained

with binaural cues extracted for all 8 training positions (denoted by circles in Fig. 2.3)

and tested at 7 evaluation positions (denoted by diamonds).

For evaluation, the surface Acoustic plaster was selected to characterize the reverberation

of the room within the room simulation software (Campbell et al., 2005), where the

frequency-dependent absorption coefficients were used for all room boundaries. In order

to take into account mild-to-strong reverberation, several different sets of absorption

coefficients were used for the room simulation and the frequency-dependent and average

reverberation time T60 for all experimental conditions are listed in Tab. 2.1. Each row

represents one experimental condition used for evaluation. Note that this reverberation

with a low-pass characteristic is different from the frequency-independent reverberation

time T60 = 0.5 s which was used to perform the multi-conditional training. This mismatch

between training and testing conditions is incorporated to analyze to what extend the pro-

posed approach is able to generalize to unknown acoustic conditions.
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Table 2.1: Reverberation times T60 in seconds for all experimental conditions.
Frequency in Hz

Surface
125 250 500 1000 2000 4000

mean

0.48 0.33 0.13 0.08 0.06 0.06 0.19
Acoustic 0.67 0.48 0.24 0.15 0.11 0.10 0.29
plaster 0.81 0.61 0.36 0.23 0.18 0.15 0.39

0.93 0.75 0.46 0.30 0.24 0.19 0.48
T60 in s 1.09 0.89 0.56 0.39 0.30 0.24 0.58

1.26 1.03 0.69 0.48 0.37 0.29 0.69

2.4.4 Performance evaluation

The localization performance was evaluated on a frame-by-frame basis where an absolute

error threshold θϕ = 5 ◦ was considered to classify the estimated source azimuth as either

correct or anomalous (Ianniello, 1982, Champagne et al., 1996). Correct estimates were

further analyzed by means of the bias and the standard deviation. The performance of all

localization techniques was analyzed given the results of a series of Monte-Carlo (MC)

simulation experiments which were carried out for four sets of acoustic scenarios with

1, 2, 3 and 4 simultaneously active sound sources. Acoustic sources were represented

by male speech selected from the TIMIT database (Garofolo et al., 1993), which were

different from those used in the training stage. Reference azimuth labels were obtained

from the anechoic speech files by using an energy-based VAD. The average length of the

acoustic mixtures was 2.86 s. Regardless of the number of active sources in the acoustic

mixture, each localization method produced one azimuth estimate per frame associated

with the primary peak, while secondary peaks were ignored for a robust localization. In

the case of a multi-source mixture, the localization estimate was considered to be correct,

only if the error was within the threshold θϕ relative to one of the reference azimuth

positions. Localization performance was evaluated at all 21 sound source positions within

the azimuth range of ±50◦. The sound sources in a multi-source mixture were positioned

randomly, but the distance between nearby sources was constrained to at least 10◦. The

energy of each source was adjusted prior to spatialization to maintain a global SNR of

0 dB. All four scenarios, each consisting of 21 mixtures, were presented three times

using different sentences at all 8 receiver positions selected for evaluation (see Fig. 2.3).

Therefore, a total of 2016 (4 x 21 x 3 x 8) acoustic mixtures were tested for each

reverberation time.
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2.5 Localization experiments

2.5.1 Experiment 1: Influence of GMM model complexity

The first experiment investigated the influence of the GMM model complexity on localiza-

tion performance. As described before, two different methods were used to determine the

number of Gaussian components V. First, the binaural feature space was approximated

by a manually determined number of components, which was fixed across all azimuth

angles and gammatone channels. The second method automatically selected the optimal

model complexity for each azimuth angle and each gammatone channel independently,

resulting in a variable model complexity.

The percentage of anomalies per frame is listed in Tab. 2.2 as a function of the GMM

model complexity, where the performance was averaged across all 4 acoustic scenarios.

With increasing number of Gaussian components, the model performed better in all

reverberation conditions. In particular, the improvement was significant from 5 to

11 Gaussian components, but the performance gain started to saturate as the model

complexity was further increased. For example, the average percentage of anomalies

changed only by 0.09% between the order 15 and 21. In addition, the models with an

extensive amount of Gaussian components (e.g. 25 or 31) performed slightly worse,

which may indicate that the model was overtrained with the limited set of training

data.

The last row in Tab. 2.2 shows the performance of the GMM model with variable model

complexity. The average number of automatically determined Gaussian components was

17 across azimuth angles and gammatone channels3 and the performance was similar to

the fixed GMM model with 21 components. However, the training procedure for this

method takes significantly longer because the model is fitted for the whole complexity

range between Vmin and Vmax Gaussian components. Furthermore, the similar performance

of both procedures suggests that the requirement for learning the binaural feature space

does not change across azimuth directions or gammatone channels. Thus there seems to

be no advantage in individualizing the training of the model for each azimuth direction

and gammatone channel. Considering the performance saturation and the computational

costs, the number of the GMM components was set to 15, constant across gammatone

3 Note that this average number of automatically determined Gaussian components did not vary substan-
tially across frequency channels.
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Table 2.2: Experiment 1: Percentage of anomalous localization estimates depending on the
number of Gaussian components V.

GMM Reverberation time in seconds
complexity V 0.19 0.29 0.39 0.48 0.58 0.69

mean

Fixed 5 6.65 10.37 15.58 20.52 25.48 30.16 18.13
Fixed 11 2.20 4.30 8.05 12.28 17.16 22.03 11.00
Fixed 15 2.16 4.15 7.76 11.87 16.72 21.50 10.70
Fixed 21 2.11 4.06 7.71 11.77 16.62 21.40 10.61
Fixed 25 2.14 4.09 7.73 11.79 16.63 21.40 10.63
Fixed 31 2.12 4.09 7.76 11.85 16.67 21.52 10.67
Variable 2.14 4.05 7.70 11.76 16.61 21.39 10.61

channels for the simulations presented in this study.

2.5.2 Experiment 2: Selection of binaural cues

The second experiment analyzed the impact of either using ITD or ILD only, or performing

localization based on a joint two-dimensional binaural feature space. In Fig. 2.4, the

percentage of anomalies averaged across 4 acoustic scenarios is shown as a function of

the reverberation time. Also, the performance of the gammatone-based feature extraction

(solid lines) defined in Eq. (2.6) is compared with a feature space obtained by an FFT-

based auditory front-end (dashed lines), consisting of IPD and ILD, according to Nix and

Hohmann (2006). The same parameters were used to simulate the auditory periphery

for the two implementations (see Section 2.2.1), where no temporal smoothing was

performed across frames.

The results show that the exclusive use of the interaural level cue (GMM ILD) is not

sufficient to reliably determine the location of acoustic sources. Because the GMM

models were trained for the reverberant environment, the localization performance slightly

improved as the reverberation time increased up to T60 = 0.3 s, but overall, the error

rate of GMM ILD was, in general above 50%. In contrast to GMM ILD, a reasonable

localization performance could be achieved with the ITD model (GMM ITD). For example,

even for a relatively long reverberation time of T60 = 0.69 s, the average percentage of

anomalies was only about 28.39%.

It is apparent in Fig. 2.4 that the joint evaluation of both ITD and ILD produced

the best result (GMM ITD& ILD). Although the isolated ILD cue does not allow for

robust localization, it can significantly improve the localization performance by disam-
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Figure 2.4: Experiment 2: Effect of binaural cue selection on localization performance. The
percentage of anomalies is averaged across all 4 acoustic scenarios (1, 2, 3 and 4 sources).
Cues were extracted using either the gammatone-based front-end (solid lines) or the FFT-based
representation (dashed lines). See Section 2.5.2 for details.

biguating the ITD information especially in acoustic conditions with strong reverbera-

tion.

Comparing the gammatone-based (solid lines) and the FFT-based auditory front-end

(dashed lines), the GMM model using ITD performed noticeably better compared to the

GMM using IPD only. The performance gap between the GMM ITD and the GMM IPD

increased with the reverberation time, which may indicate that the azimuth-dependent

IPD pattern is not so systematically modified by the reverberation time as the ITD

pattern, and therefore, the GMM classifier cannot utilize it effectively. Using the joint

feature space, the performance gap between the gammatone-based (GMM ITD& ILD)

and FFT-based front-end (GMM IPD& ILD) was reduced, but the gammatone-based

front-end performed consistently better than its counterpart.

So far, a basic neural transduction model for the inner hair cells was used for the

simulation where the signals are half-wave rectified and square-root compressed. How-

ever, more detailed models typically employ a high-order low-pass filter to simulate

the loss of phase-locking in the auditory nerve at higher frequencies (Bernstein and

Trahiotis, 1996, Bernstein et al., 1999), as was used in this study for the model de-
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noted GMM ITD& ILDHCM. Compared to the performance of the basic hair cell model

(GMM ITD& ILD), localization accuracy is significantly worse, which clearly reflects

the importance of the ITD fine structure at higher frequencies for a better localization

performance. Therefore, the basic hair cell model excluding the low pass filter is used for

the following experiments.

2.5.3 Experiment 3: Dependency on source/receiver configuration

In the third experiment, the effect of using multiple receiver positions for the multi-

conditional training of the localization model was evaluated. Two GMM models, denoted

as GMMPos 5 and GMMPos 7, were trained with binaural cues simulated at one specific

receiver position (position 5 and 7, respectively), and compared to a model, GMMAll,

which was trained with binaural cues extracted for all 8 training positions (1, 3, 5, 7, 9,

11, 13 and 15). The average percentage of anomalies for the receiver position considered

for the evaluation is shown in Fig. 2.5, where the performance was averaged across all

four acoustic scenarios (from one to four sources). To maximize the influence of receiver

position on the binaural cues, long reverberation times (on average T60 = 0.69 s) were

used in this experiment, but the performance was found to be similar regardless of the

reverberation condition.

The model GMM All performed best among all three models, as shown in Fig. 2.5. Only

at receiver position 5, the GMMPos 5 achieved a lower percentage of anomalies but the

difference was rather small (4.19%) considering that the model had been trained for this

very position. Indeed, the average performance was best with the GMMAll, implying

that the model is robust and can localize acoustic sources even from untrained receiver

positions.

Overall, the GMMPos 5 produced the highest percentage of anomalies. The receiver

position 5 is located in the center of the room, farthest from any room boundary. On

the other hand, all the evaluation positions are relatively close to the room boundaries,

where the pattern of the binaural cues can easily be modified or shifted by the acoustic

reflection. For example, the performance is particularly low at receiver positions 6 and

12, which are close to the room boundary (see Fig. 2.3). Indeed, the model is quite

sensitive to the placement of the receiver (the performance difference between position

5 and 12 is 17.58%), which obviously resulted in large variances shown by the error

bars.
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Figure 2.5: Experiment 3: Percentage of anomalies evaluated at various receiver positions under
reverberation condition (T60 = 0.69 s). The GMM localization model was trained using either one
specific training position (Pos 5, Pos 7) or all 8 training positions.

Compared to the receiver position 5 (see Fig. 2.3), position 7 is closer to the evaluation

positions, and therefore the GMMPos 7 performed better than the GMMPos 5. Especially

at receiver position 6, 8 and 10, which are close to the model training position 7, the

overall percentage of anomalies is almost as low as that for the GMMAll. Nevertheless,

the performance is, in general, better with the GMM model trained with multiple receiver

positions than with one specific position.

So far, the radial distance between the acoustic sources and the receiver was kept constant

at 1.5 m for both the training and the evaluation conditions. To analyze the effect of the

radial distance on localization performance, the proposed localization model trained with

binaural cues at a radial distance of 1.5 m was evaluated at receiver position 2 for five

different radial distances. Whereas ITDs can be considered to be fairly independent of the

distance between the source and the receiver, ILDs can change considerably with distance

in the proximal region, in particular for nearby sources at distances below 0.5 m (Brungart

and Rabinowitz, 1999). However, for distances larger than 1 m, the distance-dependent

changes of binaural cues are assumed to be negligible (Brungart et al., 1999). The effect

of distance is incorporated in the room simulation software (Campbell et al., 2005) by

simulating the distance-dependent circular wave attenuation and by modeling the air

absorption with a low-pass filter.
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Figure 2.6: Experiment 3: Percentage of anomalies depending on reverberation time evaluated
at various distances between the source and receiver position 2. The GMM localization model was
trained with binaural cues at a radial distance of 1.5 m using all 8 training positions.

The direct-to-reverberation ratio (DRR) decreases with increasing radial distance, which

may reduce the reliability of the measured binaural cues. The percentage of anomalies is

presented in Fig. 2.6 averaged over all 4 acoustic scenarios. As shown in Fig. 2.6, the

localization prediction of the model becomes less reliable with increasing source-receiver

distance. With longer reverberation time, the localization error is more frequent, and

the difference in performance is quite noticeable when going from 1.5 m to 2.0 m. This

result shows that the GMM model trained at a certain fixed distance may not successfully

be applied for the localization prediction of more distant sources. However, the fact

that the model performance improves at a shorter distance indicates that the model is

capable to generalize to distances which have not been included in the training phase.

The poorer performance at larger distances seems to be mainly determined by the reduced

reliability of the binaural cues, resulting from the larger distance between the source and

the receiver. This is in line with the expectation that the direct-to-reverberation ratio

decreases with increasing radial distance and consequently affects the reliability of the

binaural cues.
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2.5.4 Experiment 4: Effect of the number of active sources

Experiment 4 compared the performance of the GMM-based localization model to the

baseline systems described in Section 2.4.1, where the effect of the number of active

sources was also analyzed in terms of the localization performance. The localization results

are presented in Fig. 2.7 for all evaluated systems as a function of the reverberation time

T60. Panels (A)-(D) show the individual results for all four acoustic scenarios. Furthermore,

the percentage of anomalies and the standard deviation of the correct estimates averaged

over all four acoustic scenarios are shown in Fig. 2.8, respectively.

As expected, the average percentage of anomalies increased with reverberation time

for all localization methods. For the single source scenario shown in panel (A) of

Fig. 2.7, both broadband FFT-based models gave more accurate predictions than the

gammatone-based GCC method, where the SCOTM weighting performed slightly better

than the PHAT weighting. However, the performance of both broadband FFT-based

methods, SCOTM and PHAT, significantly deteriorated, when the number of sources

increased.

The cross-correlation analysis based on the auditory front-end, GCC Gammatone, outper-

formed the broadband FFT-based methods in all multi-source conditions, which implies

that the frequency selective cue extraction effectively resolved the dominant localization

information of multiple sources. Nevertheless, the percentage of anomalies increased

quite rapidly with the reverberation time.

The localization error was significantly reduced, when the ITD cue was employed in

combination with Gaussian mixtures. Although the same information is available as in the

case of GCC Gammatone, the presence of reverberation affected the performance less

due to the multi-conditional training and the probabilistic integration of source evidence

across channels. In addition, localization performance was more robust in multi-source

scenarios because the binaural cues modified by competing sources were also considered

in the multi-conditional training phase.

As Fig. 2.7 clearly shows, the joint evaluation of ITD and ILD by Gaussian mixtures

performed best in all acoustic scenarios, where the additional ILD information was especially

important to cope with strong reverberation. Indeed the performance of the broadband

FFT-based methods was strongly affected by the number of active sources, for which the

GMM model using both ITD and ILD cues was almost independent.
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Figure 2.7: Experiment 4: Percentage of anomalies depending on reverberation time T60 of all
baseline methods and GMM-based localization algorithms evaluated in four acoustic scenarios (A)-
(D), consisting of 1, 2, 3 and 4 sources. Results are shown for all three categories of localization
methods, namely the broadband FFT-based methods (dashed lines), the gammatone-based GCC
(dash-dotted lines) and the GMM-based models (solid lines).
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Figure 2.8: Experiment 4: (A) Percentage of anomalies and (B) the standard deviation of the
correct localization estimates summarized across all 4 acoustic scenarios (1, 2, 3 and 4 sources).
Results are shown as a function of the reverberation time T60 for all three categories of localization
methods, namely the broadband FFT-based methods (dashed lines), the gammatone-based GCC
(dash-dotted lines) and the GMM-based models (solid lines).
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2.5.5 Experiment 5: Blind estimation of the number of acoustic
sources

The number of active sources in an acoustic mixture can be a valuable information, which

might be used for blind source separation algorithms, to control and steer the beams

of a microphone array, or to post-process the frame-by-frame localization estimates. In

Experiment 5, the capability of the proposed localization method to predict the number

of active sources in an acoustic mixture was explored. Therefore, a histogram based on

the frame-by-frame azimuth estimates is computed with a resolution of 5 ◦ by pooling the

azimuth estimates of all frames over the entire acoustic mixture. After normalization, all

local peaks in the histogram that fall below a predefined threshold θh are discarded. The

remaining histogram peaks are assumed to be caused by active sound sources and are

therefore selected as source candidates.

The histogram-based procedure is illustrated in Fig. 2.9 for an acoustic mixture consisting

of three competing speech sources that are located at 35 ◦, 5 ◦ and −30 ◦ in a reverberant

room (T60 = 0.69 s). The left panel shows the three active speech sources and the

frame-based azimuth estimates of the proposed localization model. The right panel

presents the azimuth histogram. Whereas five local peaks are detected in the azimuth

histogram, only the three sound source positions above the histogram threshold are

considered as active sound sources.

The following performance measure is used to take into account errors which are caused

by either selecting more or fewer source candidates than the true number of active

sources. Let rϕ = {rϕ1
, ..., rϕA} be a set of A reference source positions which were

present simultaneously in the acoustic mixture, and let r̂ϕ =
{
r̂ϕ1
, ..., r̂ϕÂ

}
be a set of Â

estimated source candidates. The percentage of correctly identified number of sources is

given by

pc = 100 ·
|rϕ ∩ r̂ϕ|
|rϕ ∪ r̂ϕ|

. (2.12)

The intersection of the reference source positions rϕ and the estimated source candidates

r̂ϕ is related to the union of the two. The operator |.| represents the cardinality of a

set, which is a measure of the number of elements of a set. In this way, performance

decreases if more than the true number of sources are selected, although all reference

positions might have been correctly identified.
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Figure 2.9: Histogram-based detection of three competing speech sources (35 ◦, 5 ◦ and −30 ◦)
in reverberant conditions (T60 = 0.69 s) based on the frame-based azimuth estimates of the
proposed localization model.

The performance was evaluated for various histogram thresholds θh, and results are

reported for the threshold which gave the overall best result for each localization method

independently. The percentage of correctly identified number of sources is shown in

panel (A) of Fig. 2.10. The performance was averaged over four acoustic scenarios,

containing between 1 and 4 sources and over all 8 evaluation positions. As already shown

in experiment 4, the presence of multiple sources has a severe effect on the performance

of the FFT-based localization methods. Even under anechoic conditions, the performance

of estimating the number of active sources was below 85%. With increasing reverberation

time, the performance decreased to about 55%. Again, the SCOTM filtering performed

consistently better than the PHAT weighting. Up to a reverberation time of T60 = 0.2 s,

the gammatone-based GCC method is slightly superior to the GMM-based models. But

with stronger reverberation, the performance of the GCC-based method rapidly decreased

to 53% at a reverberation time of T60 = 0.69 s. Due to the multi-conditional training of the

Gaussian mixtures, localization performance is robust against the impact of reverberation.

As a consequence, the GMM-based models led to a cleaner histogram of source positions,

which allowed for a more reliable identification of the number of active sources. Even

at a reverberation time of T60 = 0.69 s, about 86% of the multi-source mixtures were

correctly classified using the GMM ITD& ILD. In panel (B) of Fig. 2.10, the performance
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Figure 2.10: Experiment 5: Performance of estimating the number of active sources in mixtures
consisting of 1, 2, 3 and 4 sources as a function of reverberation time T60. In (A), the average
performance is presented for all baseline methods and GMM-based localization algorithms. In (B),
the dependence of performance on the number of sources is shown for the GMM-based evaluation
of both ITD and ILD.

of GMM ITD& ILD is presented depending on the number of acoustic sources. Whereas

classification was quite robust for 1, 2 and 3 sources, performance significanlty decreased

for mixtures consisting of four sources.
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2.6 Discussion and conclusions

A robust acoustic binaural localization model was presented, which is based on the

supervised learning of azimuth-dependent binaural feature maps consisting of ITD and ILD.

The model was evaluated in simulated adverse acoustic scenarios and outperformed binaural

state-of-the-art localization techniques, especially in multi-source scenarios. Furthermore,

the model was capable of generalizing to unknown source/receiver configurations which

were not included in the training stage. Based on the frame-by-frame localization estimates,

an efficient histogram technique allowed to robustly estimate the number of active sources

in acoustic multi-source mixtures.

The robustness of the model against reverberation and the presence of multiple sources is

attributed to three factors: First, due to the auditory front-end, the frequency-dependent,

dominant localization information of multiple sources can be spectrally resolved, allowing

for a robust estimation of the binaural cues. Second, GMMs are used to evaluate the

joint binaural feature space and to accumulate evidence of possible source locations

across frequency in a probabilistic way, taking into account the available information in an

optimum way. Third, the multi-conditional training incorporates the uncertainty of the

binaural cues caused by room effects, reverberation, the presence of multiple sources and

changes in the source/receiver configurations.

It was shown, that integrating the probabilities of possible sound source locations across

frequency is superior to accumulating the localization cues directly. Moreover, the

joint evaluation of ITD and ILD disambiguates the information derived from the ITD

cue, especially in strong reverberation, increasing the robustness of the localization

model.

Although the concept of using either IPD or ITD might provide similar information, the

localization performance using the ITD cue was superior to the IPD cue. This comparison

is based on the assumption that the distribution of both ITD and IPD can be modeled

equally well using a sum of Gaussian distributions. One possible explanation might be

that the multiple clusters in the ITD feature space, which reflect the ambiguous ITD

information, are warped to the interval between ±π in the IPD representation. Since

the centered ITD clusters are more sharp and the more lateral clusters are more broad,

this differentiated analysis is lost in the IPD representation, presumably decreasing the

localization performance. Furthermore, it is worthwhile to note that the GMM localization

model using a basic hair cell model outperformed the more detailed hair cell model including
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higher order low-pass filtering. Thus, the probabilistic model is capable of exploiting

the ITD in the fine structure at higher frequencies, which is generally accepted not to

be accessible by the human auditory system (Klumpp and Eady, 1956, Zwislocki and

Feldman, 1956). Thus, the model is not strictly limited by the processing which is believed

to be performed by the human auditory system.

The broadband FFT localization (PHAT and SCOTM) is prone to errors in multi-source

scenarios, because it actually averages the directional cues of all sources over a short

time segment, which can lead to a phantom source that does not necessarily reflect

the source position of the most dominant source. This is especially likely to happen

if the energetic contribution of sources is equally strong and the sources are located

symmetrically but in opposite directions with respect to the receiver (e.g. −40 ◦ and

40 ◦). Furthermore, a noticeably longer analysis window than 20 ms is commonly used to

increase the robustness in adverse conditions (Chen et al., 2005). However, this is only

reasonable for single-source localization.

The current analysis of the localization model was restricted to the frontal horizontal

plane, whereas front-back discrimination and localization in the elevation domain are

tasks for further investigations. Using the framework of Gaussian mixture models, the

binaural feature space could be readily extended by additional descriptive features which

are depending on the position of sound sources. For example, in order to extend the

model to the elevation domain, the use of spectral cues might be beneficial (Zakarauskas

and Cynader, 1993).

The radial distance between the source and the receiver, which determines the relation

between the direct and the reverberated sound, was a sensitive parameter. Similar to

the reverberation time, the radial distance is a source of uncertainties which modifies

the distribution of the binaural cues. Localization performance significantly decreased at

larger radial distances, which is in line with behavioral data observed for humans (Devore

et al., 2007). In order to improve the working range of the model, it might be beneficial

to train the model either with binaural cues simulated at a larger radial distance or with

binaural cues corresponding to various radial distances.

The reported localization performance was achieved by applying the probabilistic model

on a frame-by-frame basis, accumulating evidence over frequency channels. However,

accumulating evidence of sound source locations across a larger time span could fur-

ther increase localization performance. Integrating the localization cues over patches

across time and frequency, which are believed to belong to a single source was reported
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to significantly improve ITD-based localization performance (Christensen et al., 2007,

2008, 2009). Instead of integrating the localization cues directly, the proposed prob-

abilistic localization model could combine likelihoods of sound source locations across

patches.

Due to its robustness and high temporal resolution, the localization model presented in

this study might be very suitable as a front-end for CASA algorithms that segregate and

recognize sound sources in complex acoustic mixtures.
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This chapter is based on:

• May et al. (2010): "The effect of spectro-temporal integration in a probabilistic model for ro-
bust acoustic localization," in 2nd International Symposium on Auditory and Audiological Research
(ISAAR 2009), Helsingør, Denmark, pp. 125–134.

3
The Effect of Spectro-Temporal

Integration in a Probabilistic Model for
Robust Acoustic Localization

A robust acoustic localization model will be presented, which is based on the supervised

learning of azimuth-dependent binaural feature maps consisting of interaural time

differences (ITD) and interaural level differences (ILD). Motivated by the robust

localization performance of the human auditory system, the associated peripheral

stage is used in this study as a front-end for binaural cue extraction. Multi-conditional

training is performed to take into account the variability of the binaural features

which results from the combination of multiple sources, the effect of reverberation

and changes in the source/receiver configuration. One way of accumulating evidence

of possible sound source locations is to combine information across auditory channels.

Alternatively, integrating evidence across groups of time-frequency (T-F) units, so-

called fragments, which are believed to belong to a single source, was reported to

significantly improve ITD-based localization performance (Christensen et al., 2007).

Instead of accumulating the localization cue directly, the proposed model combines

likelihoods, taking into account the uncertainty which is associated with the azimuth

estimate of a particular T-F unit. Various procedures of controlling the spectro-

temporal integration will be discussed and the influence on sound source localization

will be presented.



48 3.1 Introduction

3.1 Introduction

The human auditory system is able to identify and localize acoustic objects in adverse

acoustic conditions. Regarding speech perception and localization tasks, the robustness

of the human auditory system is superior to computer algorithms that have access to the

information also available to the human auditory system (binaural signal). Bregman’s

auditory scene analysis (ASA) is an approach to describe how the human auditory system

derives a description of complex acoustic scenes (Bregman, 1990). First, the auditory

input is segregated into fragments, representing groups of T-F units which are dominated

by a single source. In the second step, fragments which correspond to the same acoustic

source are grouped together to form an acoustic description of the sources present in

the scene. In order to perform this higher level analysis of complex acoustic scenes, a

front-end is required to partition the T-F plane into groups of coherent T-F units, which

are believed to be dominated by one source.

The segregation of multiple sources based on localization cues was shown to lead to high

performance in anechoic conditions (Roman et al., 2003). However, the accuracy of

localization information based on individual T-F units rapidly decreases with increasing

reverberation time. In order to increase the reliability of the localization estimate,

information could be grouped and integrated across T-F units that are dominated by the

same source. Recently, a two-stage model for exploiting spatial cues across groups of

T-F units was proposed to improve frame-based localization in reverberation (Christensen

et al., 2007, 2008, 2009). First, a pitch tracking algorithm was employed to group T-F

units together to so-called fragments, according to common pitch information. Those

fragments of consistent pitch information were used in the second stage to integrate the

ITD information across the corresponding spectro-temporal regions.

This chapter presents a model to create T-F-based localization maps of multi-source

scenarios in reverberation, by integrating evidence of sound source direction across groups

of T-F units. There is strong evidence that the formation of auditory objects is not

primarily driven by spatial cues (Darwin, 2008). Nevertheless, it is interesting to explore

whether in realistic acoustic settings with reverberation, there is enough localization

information to derive fragments based on common spatial information. Compared to the

pitch-based fragment generation, a method based on spatial cues would work for arbitrary

acoustic signals (voiced/unvoiced/noise). In contrast to accumulating spatial cues as

proposed by Christensen and colleagues, in this study the evidence will be accumulated

by integrating likelihoods of sound source locations across fragments. In this way, the
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Figure 3.1: Model architecture for creating a T-F-based localization map. See Section 3.2 for
details.

uncertainty of localization estimates of individual T-F units is taken into account. With

respect to frame-based localization performance, it was shown in Chapter 2 that the

integration of log-likelihoods is superior to integrating the normalized cross-correlation

function across frequency.

The remainder of this chapter is structured as follows. Section 3.2 will explain the model

architecture. The evaluation setup and the experimental results will be given in Section 3.3

and 3.4. Section 3.5 will conclude the chapter.

3.2 Model architecture

The model that we propose to derive the localization map consists of four major building

blocks, which are shown in Fig. 3.1. The assumed input is a binaural signal consisting

of several acoustic sources at fixed spatial locations. Given this binaural input, the

proposed model first computes the log-likelihood of azimuth-dependent sound source

activity for individual T-F units. Secondly, T-F units are grouped together to fragments

based on consistency in localization information. Those fragments are used in the third

block to accumulate log-likelihoods across the corresponding spectro-temporal regions of

each fragment. Fourthly, the modified log-likelihood map is transformed into the final
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localization map. Each of the four building blocks is explained in detail in the following

sections. The description is supported by visualizing outputs of various processing steps

involved in estimating the localization map of a two-source mixture in reverberation

(T60 = 0.39 s).

3.2.1 Spatial log-likelihood map

In Chapter 2 we have presented a probabilistic model for sound source localization that can

be used for the computation of a spatial log-likelihood map. In this model, the acoustic

signal is decomposed into F = 64 frequency channels using a fourth-order gammatone

filterbank. Spatial ITD and ILD cues are extracted independently for each frequency

channel using a time window of 20 ms with a 10 ms frame shift. The joint distribution

of both spatial cues resulting from multiple sources and reverberation is learned by a

Gaussian mixture model (GMM) classifier for a range of K = 21 azimuth positions between

±50 ◦ in steps of 5 ◦. The frequency- and azimuth-dependent GMMs are denoted by

{λf ,ϕ1
, . . . , λf ,ϕK}. Given the binaural feature vector ~xt,f which consists of the estimated

ITDs and ILDs, the model computes a three-dimensional spatial log-likelihood map L,
which represents the log-likelihood that the kth sound source direction is active at time

frame t and frequency channel f :

L (t, f , k) = log p (~xt,f |λf ,ϕk ) , (3.1)

The aim of the final localization map is to group and label the T-F representation of multi-

source mixtures according to azimuth information of the active sources. In order to achieve

this, the number and the azimuth of active sources is required. Figure 3.2 shows the

estimated azimuth map before grouping and spectro-temporal integration for an acoustic

mixture consisting of two male speakers in reverberation (T60 = 0.39 s). In panel (A), the

most likely source position for individual T-F units ϕTF is presented

ϕ̂TF (t, f ) = arg max
1≤k≤K

L (t, f , k) . (3.2)

Although dominant azimuth locations seem to be detectable by visual inspection, an

automatic detection of active sources using the T-F-based localization information is a

nontrivial task.
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Figure 3.2: Estimated localization information for an acoustic mixture consisting of 2 male
speakers (at 40 ◦ and −10 ◦ azimuth) in reverberant conditions (T60 = 0.39 s) based on: (A)
individual T-F units and (B) time frames after integrating evidence across frequency channels. As
illustrated in (C), a histogram of the frame-based localization estimates can be used to detect the
number of active sources in the mixture and the corresponding azimuth positions.

Integrating the log-likelihood across frequency and estimating the most dominant sound

source direction per frame ϕ̂T according to

ϕ̂T (t) = arg max
1≤k≤K

F∑
f=1

L (t, f , k) (3.3)

leads to a good frame-by-frame indicator of the azimuth of the most dominant source

(see panel (B)). Using these frame-based localization estimates, an efficient histogram

technique can be utilized to detect active sound sources and the corresponding azimuth

positions by applying a threshold criterion θh (see Section 2.5.5), as shown in panel (C).

Note that the histogram analysis is performed on a sentence basis for each acoustic

mixture.

3.2.2 Grouping of consistent localization information across T-F
units

In this study, consistent localization information is grouped across T-F units leading

to fragments. For this purpose, the 3D log-likelihood map is transformed into a pre-

liminary 2D localization map by recursively smoothing the log-likelihood map L across

frames and selecting the most likely source position for each T-F unit according to

Eq.(3.2).
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The recursive smoothing is intended to reduce fluctuations of the azimuth information

across time

L̃ (t, f , k) = αFrag L̃ (t − 1, f , k) + (1− αFrag)L (t, f , k) , (3.4)

where the smoothing constant is set to αFrag = 0.7165. This choice is adopted from Chris-

tensen et al. (2007) to match the average length of speech fragments in multi-source

scenarios, which was reported to be in the range of 30 ms. The preliminary localization

map is shown in panel (A) of Fig. 3.3.

In the next step, the estimated localization information is averaged across neighboring

T-F units by applying a bilateral filter (Tomasi and Manduchi, 1998). The output of

the bilateral filter is a weighted sum of the azimuth of neighboring T-F units, where the

weighting function is data-dependent. The weighting function is a multiplication of two

Gaussian functions. The first one decreases with the distance of neighboring T-F units to

the center T-F units, putting more emphasis on the T-F units that are in the proximity

of the center unit. The second weighting function decreases with increasing azimuth

difference to the azimuth of the center T-F unit, using predominantly T-F units with

similar azimuth values for the averaging. The latter weight provides the edge preserving

property of the bilateral filter. The width of the Gaussian functions are specified by two

parameters, σTF and σϕ, controlling the decrease of the Gaussian weight in the T-F

domain and in the azimuth domain, respectively. To ensure that the edge-preserving

property of the bilateral filter is maintained for arbitrary source configurations, the decrease

of the Gaussian weight along the azimuth domain σϕ is adjusted by using the estimated

source positions described in the previous section. The minimum spatial distance between

all detected sources is taken as the change in azimuth which should be preserved by the

bilateral filter. Therefore, σϕ is changing linearly as a function of the minimum source

distance. In this way, the smoothing of the bilateral filter is stronger if acoustic sources

are spatially further apart, whereas less smoothing is applied if sources are spatially close

to one another. The effect of the bilateral filter can be seen in Fig. 3.3, by comparing

the preliminary localization map in panel (A) with the output of the bilateral filter in

panel (B). Although groups of connected T-F units which correspond to either of the two

source positions can be visually identified in panel (A), the azimuth within those areas is

quite noisy and fluctuates around the true azimuth position. The localization information

after bilateral filtering is consistent across large areas of T-F units and small azimuth

deviations are smoothed, whereas boundaries between two different source positions are

maintained.
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Figure 3.3: Process of creating a localization map of an acoustic mixture consisting of 2 male
speakers (at 40 ◦ and −10 ◦ azimuth) in reverberant conditions (T60 = 0.39 s): (A) Preliminary
localization map, (B) Localization map after bilateral filter, (C) Entropy map of filtered localization
map, (D) Localized groups of T-F units, (E) Final localization map and (F) Ideal grouping based
on the a priori SNR. White color indicates the background.
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After bilateral filtering, fragments of consistent localization information are extracted to

complete the grouping procedure. To achieve this, the variability of azimuth information

is computed over a window of adjacent T-F units. More specifically, the variability is

measured by calculating the entropy of the azimuth values across a window of 3 x 3

neighboring T-F units. Panel (C) of Fig. 3.3 shows the entropy map of the localization

information presented in panel (B). The entropy map is close to zero if the azimuth is

consistent across the analysis window (low variability) and approaches 1 if the azimuth

is completely random. Hence, the entropy filter can be used to effectively group T-F

units and to extract the boundaries between areas of consistent localization information.

An experimentally determined threshold of θe = 0.3 is used to transform the entropy

map into a binary image, labeling consistent and inconsistent T-F units with 1 and 0,

respectively. T-F units labeled with 0 are considered as background, and are therefore not

considered for the fragment creation. T-F units labeled with 1 are grouped across time

and frequency to obtain the final fragments. A pair of T-F units is considered to belong

to the same fragment, if the two spectro-temporal units are connected either horizontally

or vertically (4-neighbors connectivity).

3.2.3 Spectro-temporal integration

Based on the extracted fragments, the spectro-temporal integration accumulates evidence

of source locations across all corresponding T-F units. For each fragment, the log-

likelihoods corresponding to a specific azimuth are integrated to obtain an estimate of

the likelihood that the source is at this specific azimuth. This 2D integration is done

for all 21 azimuth positions of the log-likelihood map independently. Various weighting

schemes are discussed in Christensen et al. (2009) to control the contribution of each T-F

unit to the overall average of the fragment. But because the log-likelihood map already

reflects the uncertainty which is associated with local T-F units, a uniform combination

of log-likelihoods seems to be optimal.

3.2.4 Mapping

After performing spectro-temporal integration, a 2D localization map is formed by esti-

mating the most likely source location for each fragment. The azimuth labeling is done

only for those T-F units which do correspond to a fragment. The remaining T-F units

are labeled as background. This process can be seen in panel (D) of Fig. 3.3. While the
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estimated azimuth of most fragments correspond to either of the real sound sources at

40 ◦ and −10 ◦, some fragments in lower frequency channels point to different azimuth

positions.

After assigning a localization label for each fragment in the T-F plane, a post-processing

is performed to remove T-F units from the localization map which do not correspond

to one of the active sound source positions. The detection of source activity is based

on the histogram technique described in Section 3.2.1. The final localization map after

post-processing is depicted in panel (E). For comparison, the ideal localization map

based on the a priori signal-to-noise ratio (SNR) between both sources is presented in

panel (F).

3.3 Evaluation setup

3.3.1 Acoustic conditions

The performance of the proposed system was evaluated in simulated two-source scenarios.

Binaural mixtures were generated by convolving anechoic speech files with simulated

binaural room impulse responses (BRIR). The speech files were randomly selected from

the TIMIT database (Garofolo et al., 1993). The BRIRs were synthesized for a room of

dimensions 5.1 x 7.1 x 3 meter by using the room simulation package (Campbell et al.,

2005). The preset Acoustic plaster was selected in the software package to model a

frequency-dependent absorption characteristic of the room. Different sets of absorption

coefficients were used to realize mild-to-strong reverberation. Each binaural mixture

consisted of two, fully overlapping speech files of different speakers which were mixed at

an SNR of 0 dB, as defined after spatialization. The probabilistic model was trained to

recognize locations between ±50 ◦ in steps of 5 ◦, resulting in 21 possible source positions.

21 mixtures consisting of two sources were created by randomly selecting all 21 source

positions, but the minimum sources distance was constrained to be at least 10 ◦. All 21

mixtures were created and presented five times using different sentences, leading to a

total of 105 mixtures for each reverberation condition.



56 3.3 Evaluation setup

3.3.2 Performance evaluation

The accuracy of the estimated localization map is evaluated by comparing it to the ideal

binary mask (IBM) (Wang, 2005), which represents the ideal grouping of T-F units based

on the a priori SNR of the target and interfering source. Because this work focuses on

competing sources rather then separating a target from interfering sources, the IBM

was modified to take the azimuth of the dominant source per T-F unit. A T-F unit is

considered to be correct, if the estimated azimuth corresponds to the azimuth of the

IBM. Thus, the percentage of localization errors is computed by dividing the number of

correctly identified T-F units by the number of T-F units in the estimated localization

map.

The estimated localization map is not fully occupied, but only contains information which

is believed to belong to one of the detected sources. The remaining T-F units are

labeled as background. Hence, an additional metric is used to measure the amount of

available information, expressed in percentage of T-F units. Ideally, the percentage of

errors should be minimized while maximizing the percentage of available information.

But there is an interdependency between both measures. At a certain amount of

information, a further increase is only possible at the cost of increasing the localization

errors.

3.3.3 Algorithms

The performance of the proposed method is compared against two baseline systems. The

first system T-F units produced localization maps on the basis of individual T-F units

without any grouping and integration according to Eq.(3.2). The second system Leaky

is based on the preliminary localization map which is depicted in panel (A) of Fig. 3.3.

Compared to T-F units, it explores the time-dependent development of sound source

likelihoods by applying a leaky integrator across frames. The third system Fragments used

the proposed spectro-temporal integration by accumulating evidence across fragments

(see panel (D) of Fig. 3.3). Note that the post-processing described in the mapping

section is applied to the localization maps of all methods.
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3.4 Experimental results

Panel (A) of Fig. 3.4 shows the error rate of the estimated localization maps for acoustic

mixtures consisting of two sources in reverberation. The first method T-F units, which

computed localization maps based on individual T-F units, achieved an error rate of 5.7%

in anechoic conditions. However, performance rapidly deteriorated with reverberation

time, showing that the estimated localization information based on individual T-F units

is not robust in adverse acoustic conditions. Although significantly lower error rates

were accomplished by the Leaky system, the general dependency of localization accuracy

on reverberation time remained. The proposed method Fragments, which performed

spectro-temporal integration based on fragments, outperformed both baseline systems in

all reverberation conditions. Furthermore, the localization error per T-F unit was almost

independent of the reverberation time, ranging from 4.5% in anechoic conditions to 5.5%

in strong reverberation (T60 = 0.69 s). This demonstrates the benefit of grouping and

integrating localization information across groups of T-F units.

The percentage of available localization information is presented in panel (B) of Fig. 3.4.

With increasing reverberation time, the estimated localization information becomes more

noisy and therefore, the percentage of T-F units which correspond to one of the detected

source positions decreases. However, especially for reverberation times below T60 = 0.4 s,

the localization maps produced by the Fragments system contained significantly more

information compared to the two baseline systems.
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Figure 3.4: The accuracy of the estimated localization maps for two-source mixtures, expressed
in (A) percentage of localization errors and (B) percentage of available localization information
per T-F unit.

3.5 Conclusions

This chapter presented a method to create T-F-based localization maps for multi-source

mixtures. By accumulating sound source evidence across groups of T-F units which are

believed to be dominated by one source, the estimated localization information was shown

to be robust in simulated, adverse acoustic conditions. The new method for extracting

fragments which was proposed, is based on common spatial information. Compared to
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pitch-based grouping, no explicit assumption about the sound source is required, which

makes the method generally applicable to arbitrary acoustic scenarios. Future work will

investigate the use of primitive grouping principles, e.g. onset and offset analysis (Hu

and Wang, 2007), to further enhance the fragment generation process. In addition, the

estimated localization map will be used as a front-end for higher order analysis of complex

acoustic scenes.
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This chapter is based on:

• May et al. (2012a): "Noise-robust speaker recognition combining missing data techniques and
universal background modeling," IEEE Transactions on Audio, Speech, and Language Processing
20(1), pp. 108–121.

4
Noise-Robust Speaker Recognition

Combining Missing Data Techniques
and Universal Background Modeling

Although the field of automatic speaker recognition (ASR) has been the subject of

extensive research over the past decades, the lack of robustness against background

noise has remained a major challenge. This chapter describes a noise-robust speaker

recognition system that combines missing data (MD) recognition with the adaptation

of speaker models using a universal background model (UBM). For MD recognition,

the identification of reliable and unreliable feature components is required. For this

purpose, the signal-to-noise ratio (SNR) based mask estimation performance of various

state-of-the art noise estimation techniques and noise reduction schemes is compared.

Speaker recognition experiments show that the usage of a UBM in combination with

missing data recognition yields substantial improvements in recognition performance,

especially in the presence of highly non-stationary background noise at low SNRs.
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4.1 Introduction

Whereas single speaker recognition can be performed quite robustly in clean acoustic

conditions, the recognition performance severely degrades in the presence of background

noise (Lippmann, 1997). The reduced performance is caused by the mismatch between the

features which have been learned by the classifier under clean acoustic conditions and the

features which are observed in adverse acoustic scenarios. Common approaches to reduce

this mismatch are feature compensation methods such as cepstral mean normalization

(CMN) (Atal, 1974) and relative spectral (RASTA) processing (Hermansky and Morgan,

1994).

In contrast to compensating for the effect of environmental noise, a major step towards

noise-robust speaker recognition is to modify the structure of the recognizer such that it

only considers feature components which are believed to contain reliable information about

the target signal. Considering a two-dimensional time-frequency (T-F) representation

of a noisy speech signal, some T-F components will be dominated by the target signal,

whereas other regions will be contaminated by background noise. In missing data (MD)

recognition, the classification is performed only on that part of the observed spectro-

temporal feature space that is believed to be reliable (Cooke et al., 2001). Two different

approaches exist to deal with missing features. Imputation refers to the technique of

replacing missing features with an estimate of the feature value, whereas marginalization

basically ignores missing features. Marginalization has been shown to be superior to

imputation in the context of speech recognition (Cooke et al., 2001). In order to perform

marginalization, a mask is constructed which classifies the feature space into reliable and

unreliable components. Like the spectral feature space, the mask is defined as a function

of time and frequency. In the second step, the classification is solely based on the reliable

feature components whereas the unreliable components are assumed to be masked by the

background noise.

One major drawback of the MD framework is that it needs to be based on spectral

features. This limitation is caused by the required correspondence between the mask and

individual feature components. In contrast to spectral features, mel frequency cepstral

coefficients (MFCCs) are orthogonalized by the discrete cosine transform (DCT) and

therefore can be used for a more compact feature representation (Davis and Mermelstein,

1980), where each cepstral feature is representing properties of the global spectral shape.

As a result, cepstral features are more accurately modeled by recognizers which commonly

assume independence of feature components (e.g., diagonal Gaussian mixture models).
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This may account for the better accuracy of cepstral-based recognition systems under

clean acoustic conditions compared to MD-based recognition systems (Cooke et al., 2001,

Palomäki et al., 2004a). It is also interesting to note that in the context of automatic

speech recognition, the performance of an MD-based speech recognizer significantly

decreases as the vocabulary size increases (Srinivasan et al., 2006), which is generally less

problematic for cepstral-based recognition systems. Possibly a similar effect may occur for

speaker recognition, where the number of speakers which can be discriminated using the

spectral feature representation may be limited due to the covariance between the feature

components, which is not effectively modeled by a diagonal covariance matrix. Thus,

whereas MD systems provide considerable advantages over cepstral-based techniques

in terms of noise robustness, MD systems are limited by their inherent dependence on

spectral features and therefore, a proper modeling of the speaker-dependent characteristics

becomes especially important for MD-based recognition systems in order to provide a

substantial benefit over conventional MFCC-based recognizers.

Many state-of-the art speaker recognition systems approximate the speaker-dependent

distribution of features by Gaussian mixture models (GMMs) (Reynolds and Rose, 1995).

GMM-based speaker models are predominantly used for MD-based speaker recogni-

tion (Drygajlo and El-Maliki, 1998a,b, Shao and Wang, 2003, 2006, Kühne et al., 2008,

Pullella et al., 2008). In cepstral-based speaker recognition systems, the usage of a

universal background model (UBM) in combination with GMMs is well established and was

shown to outperform GMM-based speaker recognition (Reynolds et al., 2000). A UBM rep-

resents the speaker-independent distribution of features and speaker models are obtained

by adapting the well-trained UBM parameters to the speaker-dependent speech material.

Despite its superior performance, the possible benefit of using a UBM in combination

with MD-based speaker recognition has not been investigated.

In this chapter, we combine the UBM-based adaptation of speaker models with missing

data recognition. It is expected that the representation of spectral features can be

substantially improved by using a UBM model, especially for recognizing speakers for

which there is a limited set of training material. Because the UBM is trained on the pooled

speech material of many speakers, it is possible to significantly increase the number of

Gaussian mixture components and therefore, develop a more precise model of the feature

distribution without the risk of over-training. In order to show the potential benefit of

combining missing data with the UBM-based adaptation of speaker models, a missing data

mask is required that indicates whether a feature component is reliable or missing. Because

the estimated mask is the most critical component in missing data systems that limits the
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overall recognition performance, an extensive comparison of methods for estimating the

missing data mask based on the local signal-to-noise ratio (SNR) is performed. Therefore,

various strategies for obtaining an estimation of the noise and the clean speech spectrum

are systematically compared and evaluated in non-stationary noise conditions. In this way,

the best performing method for the GMM-based missing data recognizer is found and will

serve as a baseline for the newly proposed approach.

The remainder of the chapter is organized as follows. Section 4.2 gives an overview

about missing data classification, the adaptation of UBM-based speaker models and

discusses various ways to derive an estimate of reliable feature components based on

a local SNR criterion. Section 4.3 outlines the evaluation procedure and the baseline

system. In Section 4.4, speaker recognition experiments are conducted to analyze the

benefit of using a UBM in combination with MD recognition and to evaluate various

mask estimation procedures. Section 4.5 summarizes the main findings and concludes

the chapter.

4.2 Automatic speaker recognition system

In this section, the missing data-based speaker recognition system and the adaptation of

speaker models from a universal background model (UBM) are described. Furthermore,

various methods will be presented for deriving the required missing data mask based on

the spectral estimation of the noise and speech components.

4.2.1 Missing data recognition using adapted Gaussian mixture
models

Gaussian mixture models are used to approximate the probability distribution of the

D-dimensional feature vector ~x for the task of speaker recognition. Assuming V diagonal

Gaussian mixture components, the probability density function (PDF) of a GMM is given

by (Reynolds and Rose, 1995)

p(~x |λ) =

V∑
j=1

wj

D∏
d=1

N (xd , µj,d , σ
2
j,d), (4.1)
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where wj is the component weight andN (xd , µj,d , σ
2
j,d) is a uni-variate Gaussian distribution

with mean µj,d and variance σ2
j,d

N (xd , µj,d , σ
2
j,d) =

1√
2πσ2

j,d

exp

(
−

(xd − µj,d)2

2σ2
j,d

)
. (4.2)

The model for each specific speaker can be summarized by the following set of parame-

ters

λ =
(
wj , ~µj , ~σ

2
j

)
∀ j = 1, . . . ,V. (4.3)

In missing data recognition, the feature vector ~x is split into two sub-vectors, according

to reliable R and unreliable U components, and both are treated differently during the

classification process. The evidence of the reliable feature components is directly used to

estimate the likelihood of the speaker identity λ. Although the unreliable components

are assumed to be dominated by additive noise, they do contain information about the

maximum energy of the target speech component. The assumption that the unreliable

feature components are bounded between zero and the observed spectral energy values xu
is exploited by bounded marginalization (Cooke et al., 2001), where the average likelihood

is computed across the range of all possible levels that the unreliable components might

have had (also called counter-evidence)

p(~x |λ) =

V∑
j=1

wj
∏
r∈R

N (xr , µj,r , σ
2
j,r)

×
∏
u∈U

1

xhigh,u − xlow,u

xhigh,u∫
xlow,u

N (xu, µj,u, σ
2
j,u)dxu

︸ ︷︷ ︸
counter−evidence

. (4.4)

The integral in Eq. (4.4) can be evaluated as the vector difference of error functions (Cooke

et al., 2001), and Eq. (4.4) can be rewritten as

p(~x |λ) =

V∑
j=1

wj
∏
r∈R

N (xr , µj,r , σ
2
j,r)

×
∏
u∈U

1

xhigh,u − xlow,u

1

2

erf

xhigh,u − µj,u√
2σ2

j,u

− erf

xlow,u − µj,u√
2σ2

j,u

 .
(4.5)
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The bounds were set to [xlow,u, xhigh,u] = [0, xu].

The speaker-dependent set of GMM parameters λ listed in Eq. (4.3) is commonly

initialized by k-means clustering (Lloyd, 1982) and further refined using the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977). The objective of selecting the

number of Gaussian components V is to find the minimum model complexity which

is required to accurately model the characteristics of all speakers (Reynolds and Rose,

1995). As discussed in the introduction, instead of estimating the GMM parameters for

each speaker independently, a speaker-independent universal background model (UBM) is

used, which is trained on the pooled speech material of many speakers using k-means

clustering and the EM algorithm (Reynolds et al., 2000). A speaker-dependent model

is derived by adapting the well-trained UBM parameters to the speech material of

the corresponding speaker using maximum a posteriori (MAP) estimation. During the

adaptation process, only those Gaussian components of the UBM are adapted, which show

sufficient probabilistic alignment with the speaker-dependent speech material. In this way,

the parameters of Gaussian components which are potentially under-represented are not

updated to the new data, making the model adaptation robust even to a small amount of

training data (Reynolds et al., 2000). The MAP adaptation was shown to outperform the

estimation of GMM parameters using the maximum likelihood (ML) approach (Reynolds

et al., 2000).

4.2.2 Spectral features

Spectral features are computed using the short-time Fourier transform (STFT) on a frame-

by-frame basis. First, the input signal x(i) is processed with a first-order pre-emphasis

filter using a coefficient of 0.97 in order to enhance the spectral representation of high

frequencies. This is a standard pre-processing technique for computing mel frequency

cepstral coefficients, which is typically not applied if spectral features are extracted.

However, it was found to be beneficial for missing data recognition in pilot experiments.

Then, the signal is transformed into overlapping segments and the B-point STFT is

computed as

X(t, ω) =

B−1∑
b=0

wH(b)x(t O + b) exp

(
−j2πωb
B

)
, (4.6)

where t indexes the frame number, ω represents the frequency bin index corresponding to

the frequency fω = ωfs/B, fs specifies the sampling frequency, wH is a Hamming window

function and O determines the frame shift in samples. To reduce the number of spectral
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components, the spectrum X(t, ω) is passed through an auditory filterbank that resembles

the frequency resolution of the human auditory system, resulting in an auditory power

spectrum

X2
FB(t, f ) =

B−1∑
ω=0

|hFB(ω, f ) ·X(t, ω)|2 (4.7)

for f = 1, 2, ..., F , where F = 32 is the number of auditory filters and hFB(ω, f ) is a

matrix containing the frequency-dependent auditory filter weights. The set of center

frequencies fc = {fc (1) , . . . , fc (F )} of the auditory filterbank are equally distributed on

the equivalent rectangular bandwidth (ERB) scale (Glasberg and Moore, 1990) using

a spacing of 1 ERB between 80 Hz and 5000 Hz. The set of triangular auditory filter

weights is computed as

hFB (ω, f ) =


0 for fω < fc(f − 1)
fω−fc(f−1)
fc(f )−fc(f−1)

for fc(f − 1) ≤ fω < fc(f )
fω−fc(f+1)
fc(f )−fc(f+1)

for fc(f ) ≤ fω < fc(f + 1)

0 for fω ≥ fc(f + 1).

(4.8)

In the following, the two-dimensional, time- and frequency-dependent auditory power

spectrum will be referred to as T-F representation. Finally, the auditory power spectrum

is loudness compressed by raising it to the power of 0.33 to obtain the spectral features

which are used for recognition.

4.2.3 Mask estimation

In order to perform missing data classification, a mask is required which classifies the T-F

representation into reliable and unreliable components. The underlying concept of the

mask is that T-F units are assumed to be reliable if they are dominated by the target

source, whereas the unreliable T-F units are considered to be dominated by interfering

noise. This formulation implies that the local signal-to-noise ratio (SNR) is known for

individual T-F components. To establish an upper performance limit, it is common to

employ an ideal binary mask (IBM), which assumes a priori knowledge about the local

SNR (Cooke et al., 2001). It was shown that such an ideal binary mask yields excellent

speech recognition performance (Cooke et al., 2001) and can significantly increase speech

intelligibility in multi-talker scenarios (Brungart et al., 2006). Therefore, the estimation

of the IBM was suggested to be the main goal of computational auditory scene analysis

(CASA) (Wang, 2005). Various strategies have been proposed to estimate the IBM
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based on auditory grouping principles (Hu and Wang, 2004, 2007, Ma et al., 2007),

binaural interaction (Roman et al., 2003, Palomäki et al., 2004b, Harding et al., 2006)

and assessing the local SNR (Drygajlo and El-Maliki, 1998a, Vizinho et al., 1999, Cooke

et al., 2001). It is, however, outside the scope of this chapter to analyze and compare

all existing approaches. Because the focus of the present study is to robustly identify

speakers in the presence of noise, the maskM (t, f ) is determined by estimating the local

SNR in individual T-F units. A local SNR criterion (Cooke et al., 2001) of LC = 0 dB is

applied to decide whether a T-F unit is reliable

M (t, f ) =

 1 if 10 log10
Ŝ2

FB(t,f )

N̂2
FB(t,f )

> LC

0 otherwise.
(4.9)

The local SNR is obtained by comparing the estimated auditory power spectrum of speech

Ŝ2
FB(t, f ) to the estimated auditory power spectrum of noise N̂2

FB(t, f ) in individual T-F

units. The estimation of speech and noise components is carried out in the spectral domain

before applying the auditory filterbank. This was shown to be superior to performing the

spectral estimation within auditory bands (Flores and Young, 1994). After estimating the

spectral magnitude of speech and noise, both spectra are transformed to the auditory

domain in analogy to Eq. (4.7) :

Ŝ2
FB(t, f ) =

B−1∑
ω=0

∣∣hFB(ω, f ) · Ŝ(t, ω)
∣∣2 (4.10)

N̂2
FB(t, f ) =

B−1∑
ω=0

∣∣hFB(ω, f ) · N̂(t, ω)
∣∣2 . (4.11)

Because neither the noise nor the speech spectrum is generally known a priori, they need

to be estimated based on the noisy signal spectrum X(t, ω). A plethora of methods

exist to perform this task and the choice of both the noise estimation technique and the

method to obtain an estimate of the clean speech spectrum can potentially influence the

quality of the estimated binary mask. However, only a few studies have investigated the

effect of some basic noise estimation techniques on MD recognition performance (Vizinho

et al., 1999, Ris and Dupont, 2001). Since the estimated binary mask is the most critical

component in missing data recognition systems, we will describe the most important

1 The notation of parameters corresponds to the notation in the corresponding reference. Therefore, the
same parameter may have a different meaning across references.
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Table 4.1: Evaluated noise estimation techniques.
Method Parameters1 Reference
Initial50ms average spectrum Vizinho et al. (1999)
Hirsch95 α = 0.9, β = 2.5 Hirsch and Ehrlicher (1995)
Doblinger95 α = 0.8, β = 0.96, γ = 0.998 Doblinger (1995)
Cohen02 same as in reference Cohen and Berdugo (2002)
Lin03 αfinal = 0.9, Q = 2 Lin et al. (2003)
Lin03Mod αfinal = 0.9, Q = 2, η = 0.6 Lin et al. (2003)
Martin06 same as in reference Martin (2006)
Rangachari06 same as in reference Rangachari and Loizou (2006)

methods to derive an estimate of the noise and the speech spectrum and their influence

on the estimated binary mask will be assessed and systematically evaluated in terms of

speaker recognition performance in Sections 4.4.2 and 4.4.3. A brief explanation of the

compared algorithms will be given in the following. For a detailed description, the reader

is referred to the corresponding references.

Noise estimation

The estimate of the noise power spectrum is derived from the noisy signal spectrum

X(t, ω). Various noise estimation techniques have been proposed to deal with stationary

and fluctuating noise types. A comprehensive overview and implementational details can

be found in Loizou (2007). In this study, the most relevant developments are compared

in the context of speaker recognition. The most simple method Initial50ms is estimating

the noise by averaging the power spectrum of the initial frames (Vizinho et al., 1999),

assuming that no speech is present. The weighted average method Hirsch95 introduced

by Hirsch and Ehrlicher is using a first order recursion and employs an adaptive threshold

to stop the recursion when speech activity is detected (Hirsch and Ehrlicher, 1995). An

alternative approach Lin03 is adjusting the first order recursion based on the estimated

a posteriori SNR (Lin et al., 2003). More elaborated methods, such as Doblinger95,

Cohen02 and Martin06, recursively average the noise power by tracking minima in the

noisy spectrum (Doblinger, 1995, Martin, 2001, Cohen and Berdugo, 2002, Martin, 2006).

A modification Rangachari06 that aims at reducing the adaptation time of the noise

estimate especially for highly non-stationary conditions is using a smoothing factor based

on speech presence probability (Rangachari et al., 2004, Rangachari and Loizou, 2006).

Finally, a modified version Lin03Mod of the SNR-dependent recursive averaging (Lin

et al., 2003) was implemented by smoothing the noisy power spectrum with a first order



70 4.2 Automatic speaker recognition system

Table 4.2: Evaluated gain curves for estimating the clean speech spectrum.
Gain function Parameters1 Reference
SpecSubPowα1 α = 1, β = 0.01, γ1 = 1, γ2 = 1 Virag (1999)
SpecSubPowα3 α = 3, β = 0.01, γ1 = 1, γ2 = 1 Virag (1999)
SpecSubMagα1 α = 1, β = 0.01, γ1 = 2, γ2 = 0.5 Virag (1999)
SpecSubMagα3 α = 3, β = 0.01, γ1 = 2, γ2 = 0.5 Virag (1999)
MMSESTSA α = 0.98 Ephraim and Malah (1984)
MMSE log-STSA α = 0.98 Ephraim and Malah (1985)

recursion prior to estimating the SNR-dependent smoothing parameter. The frame-based

smoothing was performed with a filter coefficient of η = 0.6 and aimed at reducing

the variance of the resulting noise estimate. In Tab. 4.1, the parameter settings of all

evaluated noise estimation techniques are listed. As far as possible, parameters were

chosen according to the recommendations of the authors.

Speech estimation

In addition to the estimated noise power spectrum
∣∣N̂(t, ω)

∣∣2, an estimate of the clean

speech spectrum Ŝ (t, ω) is required to construct the missing data mask according to

Eq. (4.9). In the context of noise reduction, much effort has been directed at improving

the perceived quality of the estimated speech signal by attenuating the amount of residual

noise while keeping speech and background noise artifacts at a minimum. However,

these perceptual constraints are not necessarily relevant for the estimation of the ideal

binary mask and it is a question, if perceptual improvements can be quantified in terms

of recognition performance. To answer this question, the most common approaches

are briefly reported and the influence on the estimated binary mask will be assessed in

Section 4.4.3.

An estimate of the speech spectrum can be derived by subtracting the estimated noise

spectrum from the corrupted signal spectrum. The most frequently used technique to

accomplish this is to perform spectral subtraction (Boll, 1979) by applying an SNR-

dependent gain function in the frequency domain. The residual noise that exhibits strong

temporal fluctuations after processing is often referred to as musical noise (Cappe, 1994).

To reduce this problem of musical noise in spectral subtraction-based noise reduction

schemes, an over-estimation of the noise in combination with introducing a spectral floor

was found to be beneficial (Berouti et al., 1979). In the context of detecting reliable

feature components based on spectral subtraction, the optimal over-estimation factor
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was reported to be close to α = 3 (Drygajlo and El-Maliki, 1998b, Renevey and Drygajlo,

2000). An alternative approach is to estimate the optimal minimum mean square error

(MMSE) short-time spectral amplitude (STSA), which was reported to significantly reduce

the problem of musical noise by recursively smoothing the a priori SNR (Ephraim and

Malah, 1984, 1985). More recently, model-based approaches (Ephraim, 1992, Srinivasan

et al., 2007, Zhao et al., 2008) have been reported to further improve the performance

of speech enhancement systems especially in the presence of non-stationary noise at

the expense of increasing computational complexity. But bearing in mind that the mask

estimation is part of the front-end for missing data classification, we limited the estimation

of the clean speech spectrum to SNR-based gain functions, which can be efficiently applied

in the spectral domain.

To study the effect of the above described approaches on the estimation of the clean speech

spectrum, and consequently on the estimation of the ideal binary mask, the following four

gain functions are evaluated: magnitude spectral subtraction, power spectral subtraction,

MMSE STSA and MMSE log-STSA. The gain functions were implemented using the

speech processing toolbox VOICEBOX (Brookes, 2009). Parameters of all tested gain

functions are listed in Tab. 4.2. Note that due to the convention in the corresponding

references, the parameter α has a different meaning within the spectral subtraction and the

MMSE framework. Spectral subtraction-based gain functions are characterized by the over-

estimation factor α, the spectral floor β and the two exponents γ1 and γ2 in the generalized

spectral subtraction scheme, which define the suppression rule to be either magnitude

or power spectral subtraction. The MMSE-based gain curves are computed using a

smoothing constant α to recursively estimate the a priori SNR.

4.3 Evaluation setup

4.3.1 Acoustic mixtures

Speaker recognition performance was evaluated on a closed set of 34 speakers (18 males

and 16 females) using the SSC database (Cooke and Lee, 2006). The database consists

of 17.000 clean utterances, 500 utterances per speaker. The audio signals were down-

sampled to a sampling frequency of fs = 16 kHz. To ensure that the speech material

used to train the UBMs is different from the material used for the speaker recognition

experiments, speech files of all 34 speakers were randomly partitioned into two equal sized
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sets, each consisting of 250 sentences per speaker. The first half was used to train the

speaker-independent but gender-dependent UBMs for all recognizers. From the second

half of the SSC database (again comprising 250 sentences per speaker), a certain amount

of speech files was randomly selected for the speaker recognition experiments presented

in Section 4.4. This limitation of speech files is motivated by the fact that the amount

of available speech material is often a constraint for practical applications. The amount

of speech material involved in the training of speaker-dependent models (using either a

conventional GMM recognizer or the UBM-based adaptation, see Section 4.3.2) and the

evaluation of speaker recognition accuracy is reported for each experiment, individually.

To investigate the influence on speaker recognition performance, the amount of available

speech files is systematically varied in Section 4.4.4. In general, for each speaker 70% of

the available speech material was randomly selected to train the corresponding speaker

model and the remaining 30% was used for evaluation.

Because the assessed recognition accuracy will depend to some extent on the random

selection of the training and the testing material, results are reported as the mean speaker

identification accuracy over a series of 20 simulations, each containing a new randomly

selected set of speech files for training and testing. Speaker recognition experiments were

performed on either the full set of 34 speakers or with a subset of 10 randomly selected

speakers. For each of the 20 simulations, a new subset of 10 speakers was randomly

selected from the set of 34 speakers. In the testing phase, utterances were digitally

mixed at various SNRs with noise signals drawn from the NOISEX database (Varga et al.,

1992). Five different noise types were used for evaluation: factory noise, cockpit noise,

speech babble, destroyer operation engine noise and car noise. The SNR was computed

by comparing the A-weighted energy of the speech signal to the A-weighted energy of

the noise signal. The A-weighting filter was applied to ensure that the SNR is adjusted

predominantly within the frequency range that is relevant for speech. The design of the

A-weighting filter was implemented according to American National Standards Institute

(1983). To prevent that the energy of speech is underestimated due to silent parts, an

energy-based voice activity detector (VAD) was used to only consider signal segments

with relevant speech activity. A frame was considered to contain relevant speech activity,

if its energy level was within 40 dB of the global maximum.
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4.3.2 GMM and UBM parameters

In this study, two different types of recognizers were used to model the speaker-dependent

distribution of features. The first recognizer, denoted as GMM, was a conventional

GMM2 recognizer. Based on features extracted from the speaker-dependent speech

material, speaker models were first initialized by 20 iterations of the k-means algorithm

and further trained using the EM algorithm. The EM algorithm iteratively refines the model

parameters λ by maximizing the likelihood of the resulting GMM. The stopping criterion

of the EM algorithm was set to 1e−5 with a maximum of 300 iterations. The second

recognizer, referred to as GMM-UBM, utilized two gender-dependent UBMs, reflecting

the distribution of speaker-independent features for male and female speech, respectively.

The training of both UBMs involved one half of the SSC database (see Section 4.3.1)

and was accomplished by 20 initial k-means iterations followed by the EM algorithm

using a stopping criterion of 1e−5 with a maximum of 300 iterations. Speaker-dependent

models were obtained by adapting the trained UBM parameters to the speaker-dependent

speech material. Therefore, first the gender selection was performed by selecting the

UBM which showed the higher probabilistic alignment with the speaker-dependent speech

material. Secondly, as suggested by Reynolds et al. (2000), only the mean vectors of the

UBM were adapted using a relevance factor of 16. The adaptation was performed by

10 iterations of the EM algorithm. Note that the two recognizers were used both within

the MD framework and also to represent the MFCC-based feature vectors (see Section

4.4.5). Only speech material with relevant speech activity was included in the training

stage of both systems by using the previously described VAD.

4.3.3 Baseline system

A conventional robust speaker recognition system was trained using a 26-dimensional

feature vector consisting of 13 static MFCC coefficients, including the 0th order coefficient,

and first order temporal derivatives, so-called delta coefficients. The static MFCC

coefficients were computed using the RASTAMAT toolbox (Ellis, 2005). Parameters3

were chosen to reproduce MFCC coefficients according to the hidden Markov models

toolkit (HTK), which is a commonly used front-end for speaker recognition experiments.

2 The GMM modeling was performed using the NETLAB package (Nabney and Bishop, 2001-2004).
3 melfcc(in, fs, 'lifterexp', -22, 'nbands', 20, 'dcttype', 3, 'maxfreq', 8000,

'fbtype', 'htkmel', 'sumpower', 0, 'wintime', 20e-3, 'hoptime', 10e-3, 'numcep',
13). For details see http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.html

http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.html
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The delta coefficients were computed using the trend derived from linear regression

over a window of 5 frames (Soong and Rosenberg, 1988). In a pilot experiment, it

was observed that the additional use of second order temporal derivatives, so-called

acceleration coefficients reduced speaker recognition performance at low SNRs and

therefore, acceleration coefficients were not appended. Cepstral mean and variance

normalization (CMVN) was applied for improved robustness, where the feature statistics are

measured over the duration of one utterance (Openshaw and Mason, 1994, Tibrewala and

Hermansky, 1997). Compared to cepstral mean normalization (CMN) (Atal, 1974), CMVN

substantially improved MFCC-based recognition performance.

4.4 Experiments

A series of speaker recognition experiments was conducted. The first experiment inves-

tigated the benefit of combining MD recognition with the UBM-based adaptation of

speaker models under idealized conditions, assuming that the required ideal binary mask

is known a priori. In reality, the IBM is not known and needs to be estimated. Therefore,

experiments two and three aimed at exploring various techniques to estimate the IBM

in a variety of different background noise conditions. In addition, a detailed analysis

of errors made by the mask estimation process is presented. Based on these findings,

the best performing method for estimating the missing data mask was selected in the

fourth experiment and the performance improvement with the UBM-based missing data

recognizer as a function of available speech material is investigated. Finally, the fifth

experiment compared speaker recognition performance of the UBM-based missing data

recognizer with a GMM-based MD recognizer and with state-of-the art MFCC-based

recognizers (with and without UBM adaptation).

4.4.1 Experiment 1: Effect of UBM using an IBM

The first experiment studied the effect of using a UBM within the MD framework. To

isolate the effect of the UBM on speaker recognition performance, this initial experiment

used the ideal binary mask for MD recognition. In order to further investigate the effect

of erroneously classified T-F components on missing data recognition, the ideal binary

mask was modified by randomly labeling unreliable T-F components as reliable. A spectral

feature component corresponding to an unreliable T-F unit is dominated by background
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Figure 4.1: Experiment 1: SNR-dependent speaker recognition performance for 10 speakers
in the presence of factory noise using the ideal binary mask (IBM). The average recognition
performance over a series of 20 simulations is presented for both recognizers, the GMM-based
missing data system MDGMM IBM (squares) and the system including a universal background
model MDGMM-UBM IBM (diamonds). The error bars represent the standard error of recognition
performance across all 20 simulations.

noise and thus is likely to cause a mismatch between the training and the testing situation.

The number of randomly modified components was chosen to be 20% of the number

of reliable T-F components. Speaker recognition accuracy was evaluated on a subset

of 10 speakers. The amount of available speech material per speaker was limited to 25

sentences, using 18 for training and 7 for testing. The optimal model complexity of both

recognizers, MDGMM IBM and MDGMM-UBM IBM, was individually selected based on

pilot experiments. For both systems, a model complexity of 64 Gaussian components was

chosen.

The average SNR-dependent speaker recognition accuracy in the presence of factory noise

is presented in Fig. 4.1. Note that the standard error of recognition performance across

all 20 simulations was below 2% for all experimental conditions. Open symbols represent

the IBM and black symbols indicate that the IBM has been modified by randomly labeling

unreliable T-F units as being reliable. When using the IBM, the recognition performance

of both systems MDGMM IBM and MDGMM-UBM IBM is almost identical. However,

it can be seen that the MD recognizer in combination with a UBM is significantly more
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robust when unreliable T-F components are randomly labeled as reliable. Especially at

low SNRs, the advantage of the UBM-based system in terms of speaker recognition

accuracy is larger than 12%. When using the MDGMM system, all speaker-dependent

model parameters are trained using the training data of one speaker only, and as a result,

observations which have not been seen during the training stage can cause erroneous

likelihood values which can potentially bias the class decision in very different ways across

different speakers. Regarding the UBM-based recognition system, all speaker-dependent

models share the same initial model parameters that have been learned based on the pooled

speech material of the SSC database. Furthermore, only the mean values of the Gaussian

components are adapted to the speaker-dependent training data that show sufficient

probabilistic alignment. As a result, the UBM-based system is significantly less sensitive

to observations which were not included in the training stage.

4.4.2 Experiment 2: Influence of noise estimation algorithms

The second experiment investigated the influence of various noise estimation algorithms

on the estimation of the IBM in terms of speaker recognition performance. Independent

of the noise estimation technique, the speech spectrum was obtained by applying the

MMSE log-STSA gain function to the noisy input spectrum. Speaker models were trained

using a GMM-based missing data recognizer MDGMM with 16 Gaussian components.

Speaker recognition accuracy was evaluated on a subset of 10 speakers, involving a total

of 25 sentences per speaker (18 sentences for training and 7 sentences for testing). The

SNR-dependent recognition accuracy for all evaluated noise estimation techniques is

presented in Tab. 4.3.

The upper five panels of Tab. 4.3 show recognition performance for different noise types,

whereas the last table depicts the average performance over all noise conditions. The

corresponding standard error of recognition performance across all 20 simulations was

below 2% for all experimental conditions. Results are ranked for different noise types

according to recognition performance, starting with the lowest performance for babble

noise and ending with the highest performance in the presence of car noise. This ranking

coincides with the stationarity of the background noise, ranging from very non-stationary

(babble and factory noise) to more stationary conditions (car noise).
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Table 4.3: Experiment 2: Average missing data speaker recognition accuracy over a series of 20
simulations for a subset of 10 speakers in the presence of different types of background noise.
The binary mask was estimated using the MMSE log-STSA noise reduction scheme and various
noise estimation techniques listed in Tab. 4.1.

babble noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

Initial50 ms 29.86 58.57 84.50 96.79 98.86

Hirsch95 20.43 45.00 76.50 94.93 98.86

Doblinger95 20.50 46.50 79.43 95.14 98.79

Cohen02 34.36 69.71 90.86 97.86 98.93

Lin03 16.29 36.50 66.29 90.64 98.86

Martin06 22.29 51.50 79.50 95.79 99.07
Rangachari06 23.07 50.86 82.57 96.07 98.93

Lin03Mod 33.07 68.29 91.50 97.71 99.00

factory noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

Initial50 ms 35.64 61.93 84.93 95.64 98.86

Hirsch95 23.00 45.86 75.43 93.57 99.07
Doblinger95 24.43 48.86 79.36 94.93 98.79

Cohen02 39.86 69.50 89.43 96.57 98.86

Lin03 16.43 32.64 60.57 86.57 98.86

Martin06 26.86 54.00 81.07 94.86 98.86

Rangachari06 30.29 61.29 87.00 96.57 98.64

Lin03Mod 39.29 70.93 88.86 96.07 98.79

destroyer noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

Initial50 ms 45.79 71.93 89.43 96.21 99.00

Hirsch95 24.57 49.00 79.00 94.29 99.00

Doblinger95 31.14 62.00 86.86 96.29 98.71

Cohen02 45.57 77.64 92.50 97.36 99.07
Lin03 13.93 29.07 56.86 84.57 98.71

Martin06 35.86 64.36 86.50 96.07 99.00

Rangachari06 55.57 82.50 94.64 97.50 98.93

Lin03Mod 50.79 77.14 91.36 96.79 99.00

cockpit noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

Initial50 ms 79.50 93.93 97.36 98.79 99.00

Hirsch95 77.57 93.29 97.36 98.64 99.07
Doblinger95 81.57 94.21 97.57 98.21 98.71

Continued on next page. . .
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Table 4.3 (continued)

Cohen02 73.86 92.64 97.07 98.29 99.00

Lin03 26.00 57.43 85.14 94.79 98.79

Martin06 73.71 91.64 97.50 98.64 99.00

Rangachari06 81.71 94.93 97.14 98.07 98.86

Lin03Mod 83.50 93.64 96.71 97.93 98.93

car noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

Initial50 ms 72.07 85.00 91.43 95.57 98.14

Hirsch95 60.21 75.57 87.50 94.71 98.50
Doblinger95 60.64 77.07 87.64 95.50 97.64

Cohen02 80.50 92.93 96.29 97.57 98.50
Lin03 22.07 28.36 45.93 68.43 96.43

Martin06 67.29 80.29 87.86 93.29 98.29

Rangachari06 72.43 84.43 91.29 96.21 98.21

Lin03Mod 86.14 93.43 96.71 98.07 98.50

average -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

Initial50 ms 52.57 74.27 89.53 96.60 98.77

Hirsch95 41.16 61.74 83.16 95.23 98.90
Doblinger95 43.66 65.73 86.17 96.01 98.53

Cohen02 54.83 80.49 93.23 97.53 98.87

Lin03 18.94 36.80 62.96 85.00 98.33

Martin06 45.20 68.36 86.49 95.73 98.84

Rangachari06 52.61 74.80 90.53 96.89 98.71

Lin03Mod 58.56 80.69 93.03 97.31 98.84

At an SNR of 20 dBA, no substantial difference was observed between the evaluated noise

estimation techniques. Considering lower SNRs, several methods performed well for one

particular noise type but recognition performance was considerably lower compared to

other methods if the speech material was corrupted by other types of background noise.

Rangachari06 performed well under the influence of both cockpit and destroyer noise, but

recognition performance was significantly lower than other methods in the presence of

factory, babble and car noise. Doblinger95 and Hirsch95 performed best in the condition

of cockpit noise but performance was way below Cohen02 and Lin03Mod in all other



Chapter 4: Noise-Robust Speaker Recognition 79

background noise scenarios. This sensitivity to the type of background noise suggests

that the corresponding noise estimation methods are most suitable for certain types of

background noise or that the corresponding parameters may have been optimized for a

particular noise condition. On average, the recognition performance using Martin06 was

about 10% below Lin03Mod at low SNRs, which might have been caused by the rather

conservative adaptation of the noise spectrum and the comparably long initialization

phase.

The overall lowest recognition performance was obtained by Lin03. This method was

initially designed to estimate the noise spectrum in auditory bands. Clearly, the spectral

variance of frequency bins is much larger than the variation within auditory bands and

therefore, this method failed to successfully predict the noise power spectrum. In contrast

to the above mentioned techniques, Cohen02 and Lin03Mod were consistently among the

best methods across all evaluated noise types. Compared to Lin03, the additional recursion

in Lin03Mod significantly increased recognition performance.

In order to gain more understanding of the underlying factors that influence the recogni-

tion performance, receiver operating characteristic (ROC) curves (Fawcett, 2006) were

computed by comparing the estimated binary mask to the ideal binary mask which was

computed using a priori knowledge of the speech and the noise spectra. The ROC

graph visualizes the trade-off between correctly identified T-F components which are

dominated by the target signal (true positive rate) and misclassified T-F elements which

are dominated by background noise (false positive rate). The higher the true positive rate

and the smaller the false positive rate, the higher the quality of the estimated binary mask.

Based on the experimental results reported in Tab. 4.3, the corresponding SNR-dependent

ROC curves are shown for all evaluated noise estimation techniques in Fig. 4.2. The ROC

curves are averaged across all 5 background noise types. With decreasing SNR, the true

positive rate decreased for all noise estimation techniques. Although Lin03 achieved the

highest true positive rates, the false positive rates are above 20% for all SNR conditions.

The additional first order recursion employed in Lin03Mod substantially reduced the false

positive rate. It can be seen that the two best performing noise estimation methods

Lin03Mod and Cohen02 are most conservative in labeling reliable T-F components,

keeping the false positive rate down to about 2%. The small advantage of Lin03Mod

over Cohen02 at low SNRs is manifested in a slightly higher true positive rate. Thus it

seems that false positive errors are most problematic for MD recognition using a GMM

classifier.
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Figure 4.2: Experiment 2: SNR-dependent ROC curves for all evaluated noise estimation
algorithms. The ROC curves are averaged over all five noise conditions.

4.4.3 Experiment 3: Influence of speech estimation algorithms

In the third experiment, the impact of deriving an estimate of the clean speech spectrum

Ŝ(t, ω) on the estimated binary mask was analyzed. The clean speech spectrum is

estimated by subtracting the estimated noise spectrum from the noisy input spectrum

using various SNR-based gain curves (see Tab. 4.2). The objective of those gain

curves is to enable maximum noise suppression while simultaneously minimizing the

amount of speech distortion. The strength of the noise suppression determines the

amount of noise energy which might leak into the estimated speech power spectrum, and

consequently, will affect the amount of T-F elements in the estimated binary mask which

are erroneously identified as reliable components due to the over-estimation of the speech

power spectrum.

The MD-based speaker recognition performance for the estimated binary mask based on all

tested methods to derive an estimate of the clean speech spectrum is presented in Tab. 4.4

depending on the SNR and the type of background noise. The standard error of recognition

performance across all 20 simulations was below 2% for all experimental conditions. The

noise power spectrum was estimated by Lin03Mod, which was the most consistent method

among all evaluated noise estimation techniques in the second experiment. The remaining

experimental conditions were identical to the second experiment (see Section 4.4.2).
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Similar to the second experiment, the SNR-dependent ROC curves corresponding to the

experimental results in Tab. 4.4 are presented in Fig. 4.3.

Table 4.4: Experiment 3: Average missing data speaker recognition accuracy over a series of 20
simulations for a subset of 10 speakers in the presence of different types of background noise.
The binary mask was estimated using the Lin03Mod noise estimation technique and various noise
reduction schemes listed in Tab. 4.2.

babble noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

SpecSubPowα1 14.64 31.36 61.14 90.71 98.57

SpecSubPowα3 19.21 42.50 75.86 95.29 99.14
SpecSubMagα1 21.93 49.57 83.79 96.79 99.00

SpecSubMagα3 32.07 67.29 90.71 97.57 99.00

MMSESTSA 28.57 60.36 88.43 97.21 99.00

MMSE log-STSA 33.07 68.29 91.50 97.71 99.00

factory noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

SpecSubPowα1 14.86 28.86 57.71 88.21 98.86

SpecSubPowα3 18.93 42.86 77.93 94.79 99.21
SpecSubMagα1 24.93 54.43 84.14 95.93 98.93

SpecSubMagα3 35.71 69.57 89.21 96.29 98.71

MMSESTSA 33.43 64.71 86.36 96.07 98.93

MMSE log-STSA 39.29 70.93 88.86 96.07 98.79

destroyer noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

SpecSubPowα1 15.29 25.50 51.86 85.07 98.93

SpecSubPowα3 18.50 37.93 71.79 93.29 99.14
SpecSubMagα1 21.50 46.86 79.93 94.50 98.93

SpecSubMagα3 33.79 65.79 86.71 95.64 98.50

MMSESTSA 45.36 74.29 90.29 96.86 99.14
MMSE log-STSA 50.79 77.14 91.36 96.79 99.00

cockpit noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

SpecSubPowα1 19.21 41.93 76.57 93.50 98.93

SpecSubPowα3 47.50 82.21 95.64 98.14 99.00

SpecSubMagα1 67.57 91.79 96.57 97.93 99.00

SpecSubMagα3 76.64 91.00 95.43 97.29 98.71

MMSESTSA 86.71 94.71 97.14 98.29 99.07
MMSE log-STSA 83.50 93.64 96.71 97.93 98.93

Continued on next page. . .
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Table 4.4 (continued)

car noise -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

SpecSubPowα1 16.57 18.50 30.50 52.14 93.71

SpecSubPowα3 25.50 39.93 55.71 80.50 98.43

SpecSubMagα1 32.36 54.86 72.50 91.86 98.71
SpecSubMagα3 71.07 88.14 94.86 97.93 98.36

MMSESTSA 82.93 91.71 96.43 98.36 98.64

MMSE log-STSA 86.14 93.43 96.71 98.07 98.50

average -5 dBA 0 dBA 5 dBA 10 dBA 20 dBA

SpecSubPowα1 16.11 29.23 55.56 81.93 97.80

SpecSubPowα3 25.93 49.09 75.39 92.40 98.99
SpecSubMagα1 33.66 59.50 83.39 95.40 98.91

SpecSubMagα3 49.86 76.36 91.39 96.94 98.66

MMSESTSA 55.40 77.16 91.73 97.36 98.96

MMSE log-STSA 58.56 80.69 93.03 97.31 98.84

Regarding spectral subtraction-based gain functions, magnitude-based spectral subtraction

with an over-estimation factor of 3 SpecSubMagα3 enabled the strongest attenuation

of the estimated noise and consequently, lowered the level of the estimated speech

spectrum. Thus, SpecSubMagα3 conservatively selected reliable T-F components and as

a result, achieved the highest recognition performance among all spectral subtraction-

based algorithms. This observation is consistent across all evaluated background noise

scenarios and can be confirmed by comparing the corresponding ROC curves, which

show systematically decreasing false positive rates for noise reduction schemes with

stronger noise attenuation. Although the MMSE-based gain functions MMSESTSA

and MMSE log-STSA produced slightly higher false positive rates, MMSE log-STSA

outperformed SpecSubMagα3 in terms of recognition accuracy, especially in conditions

with low SNRs. Whereas moderate improvements are observed in the presence of highly

non-stationary noise (babble and factory noise), more substantial benefits of MMSE log-

STSA over the spectral subtraction-based methods are found for more stationary scenarios,

namely destroyer and car noise. This advantage is presumably caused by the higher true

positive rates of MMSE log-STSA, which effectively produced an estimated binary mask

which is less sparse than the mask obtained by SpecSubMagα3.
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Figure 4.3: Experiment 3: SNR-dependent ROC curves for all evaluated noise suppression rules.
ROC curves are averaged over all five noise conditions.

4.4.4 Experiment 4: Effect of UBM using an estimated binary mask

The first experiment showed a significant benefit when using a UBM within the MD

framework under ideal conditions (i.e. when the ideal binary mask is known a priori).

Consequently, the fourth experiment aimed at verifying this benefit for scenarios in

which the ideal binary mask is not known a priori and needs to be estimated. Based

on findings of the second and third experiment, the IBM was estimated by combining

the Lin03Mod noise estimation with the MMSE log-STSA gain function. In addition,

the dependency of the reported performance gain on the amount of available speech

material is investigated. The speech material that can be used for training and testing

the speaker models consist of 250 sentences per speaker, which might not be available for

practical applications. Furthermore, the amount of available speaker-dependent speech

material and the complexity of the recognizer (number of Gaussian components used by

the recognizer) are interdependent and both parameters are expected to influence the

comparison between both speaker recognition systems MDGMM and MDGMM-UBM.

Therefore, the influence of the following parameters is analyzed:

• Number of speaker-dependent sentences: 13, 25, 50, 125 and 250 of the SSC

database (70% for training and 30% for testing),

• Number of GMM components: 16, 32, 64, 128 and 256,
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• Type of recognizer: MDGMM and MDGMM-UBM.

The relative difference in speaker recognition accuracy between MDGMM-UBM and

MDGMM is presented in the left panels of Fig. 4.4 as a function of the SNR and the

number of Gaussian components. In addition, the right panels show the corresponding

absolute speaker recognition accuracy using the MDGMM-UBM recognizer. Speaker

recognition was performed on a subset of 10 speakers in the presence of factory noise.

The amount of available speech material is systematically increased, ranging from 13

sentences in the top panels to 250 sentences in the bottom panels. It can be observed

that the benefit of the MDUBM-GMM is greatest when a limited amount of speech

material is available for training. In general, rather moderate improvements are observed

for conditions with a high SNR down to 10 dBA, because the corresponding recognition

performance is close to 100%, but considerable improvements are achieved for low SNRs.

If only 13 sentences of speaker-dependent material are involved in the speaker recognition

experiments as depicted in panel 4.4(A), the improvement can be as high as 23% for

conditions with low SNRs. With increasing availability of speech material, the difficulty of

properly training speaker-dependent GMMs decreases and as a consequence, the relative

benefit of the UBM-based missing data system decreases. When all 250 sentences per

speaker are used (see panel 4.4(E)), the benefit of applying a UBM is only about 10%

at low SNRs. Overall, the usage of a UBM in conjunction with MD recognition shows

a consistent and substantial benefit, especially in challenging noise conditions with low

SNR.

The optimal number of Gaussian components moderately depends on the amount of

available training material. If the amount of speech material is limited (to up to 25

sentences), the MDGMM-UBM recognizer with 64 Gaussian components performed best.

This is consistent with the observation that the UBM-based recognizer with 64 components

using the ideal binary mask performed best in the first experiment (see Section 4.4.1). The

use of Gaussian mixture models with a higher complexity led to a decrease in recognition

performance (see panels 4.4(F) and 4.4(G)), which may indicate that the resulting speaker

models were overtrained given the limited amount of speech material. Having access to

at least 50 sentences of the SSC database, the recognizer with 128 Gaussian mixtures

slightly outperformed systems with lower complexity at low SNRs. Speaker recognition

performance saturated at a model complexity of 128 Gaussian components and a further

increase did not lead to significant improvements.
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Figure 4.4: Experiment 4: Speaker identification improvement of the MDGMM-UBM method
compared to the MDGMM system on a closed set of 10 speakers in the presence of factory
noise. The left panels show the speaker identification improvement as a function of the SNR and
the number of Gaussian components for experiments involving (A) 13, (B) 25, (C) 50, (D) 125,
and (E) 250 sentences of speaker-dependent speech material. The right panels (F)-(J) show the
corresponding speaker identification accuracy of the MDGMM-UBM recognizer. Both speaker
identification improvement and speaker identification accuracy are reported as the mean over a
series of 20 simulations. The standard error of both measures was below 3% for all conditions.
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4.4.5 Experiment 5: MD recognition versus MFCCs

The last experiment compared the proposed UBM-based missing data recognizer with a

conventional MFCC-based recognition system (see Section 4.3.3). The distribution of

both spectral and MFCC features was learned by the two classifiers GMM and GMM-

UBM (see Section 4.3.2). For MD recognition, the required mask was estimated

using the Lin03Mod noise estimation technique and the MMSE log-STSA gain function.

Furthermore, MD recognition was performed using the ideal binary mask in order to show

the theoretical upper performance limit. In addition to the conventional MFCC-based

recognizer, another baseline system is used that employed a noise reduction (NR) stage

prior to computing the MFCC feature vector. Among all evaluated methods, the Hirsch95

noise estimation technique in combination with the MMSE log-STSA gain function

performed best during initial tests. This pre-processing is indicated by NR. Furthermore,

analogously to the ideal binary mask, an ideal noise reduction front-end NR IDEAL was

applied that used a priori knowledge about the noise power spectrum. Similar to the

first experiment, the optimal model complexity of each recognizer was selected based

on pilot experiments. Whereas the two MFCC-based recognizers MFCCGMM and

MFCCGMMNR performed best with 32 Gaussian components, all other recognizers

utilized 128 Gaussian components.

The average speaker recognition performance is shown as a function of the SNR in Fig. 4.5

and Fig. 4.6, respectively. Figure 4.5 presents speaker recognition performance on a

subset of 10 speakers, whereas the results for the full set of 34 speakers are shown in

Fig. 4.6. For each speaker, a total of 25 sentences were used (18 sentences for training

and 7 sentences for testing). The standard error across all 20 simulations was below 2%

for all experimental conditions. Black symbols signify recognizers that are based on UBM

adaptation. According to the results obtained in the second and third experiment (see

Section 4.4.2 and Section 4.4.3), the five background noise types are grouped into two

categories, namely highly non-stationary (babble and factory noise) and more stationary

scenarios (destroyer, car and cockpit noise). Speaker recognition performance is separately

shown as the average of highly non-stationary (top panels) and more stationary noise

conditions (bottom panels).

Compared to the GMM-based cepstral recognizer MFCCGMM (1), the additional use of

a UBM (a) significantly improved recognition performance in all conditions. But already

at moderate SNRs, the speaker recognition performance of both MFCC-based recognizers

MFCCGMM and MFCCGMM-UBM rapidly decreased. Considering more stationary
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noise conditions, a consistent and significant performance gain was obtained when noise

reduction was performed prior to computing the MFCC features (c). However, this

benefit is noticeably reduced in highly non-stationary conditions, probably because of the

inability of the noise estimation technique to quickly adapt to sudden changes in noise

level. In turn, MD-based speaker recognition was superior to all MFCC-based recognition

systems. In the presence of highly non-stationary noise (babble and factory noise),

the usage of a UBM in combination with MD recognition (e) substantially improved

recognition performance, especially at low SNRs. The relative performance improvement

of the MDGMM-UBM recognizer over the MDGMM system (5) was in the range of

20% at very low SNRs. This improvement was found for both sets consisting of 10 and

34 speakers. Whereas the benefit of the UBM for the MFCC-based recognizer decreased

at lower SNRs, the improvement for the MD recognizer in highly non-stationary noise

conditions increased with decreasing SNR. Regarding the more stationary noise types, the

benefit of the UBM was not significant. One possible explanation might be that for more

stationary noise types, the false positive rate of the estimated binary mask is substantially

below the error rates obtained in fluctuating noise scenarios. As a result, a larger amount

of T-F units is erroneously labeled as speech for fluctuating noise, increasing the mismatch

between training and testing. Compared to the GMM-based MD recognizer MDGMM,

the UBM-based MD recognizer MDGMM-UBM is not as sensitive to this mismatch,

providing a benefit especially for non-stationary conditions.

Considering the MDGMM-UBM system in the presence of both highly non-stationary

and more stationary noise scenarios, the speaker recognition performance was close to

that of the recognizer using the ideal binary mask MDGMM-UBM IBM for SNRs as

low as 5 dBA, which suggests that the Lin03Mod noise estimation combined with the

MMSE log-STSA gain function produces high quality missing data masks. Comparing the

overall recognition performance between the two sets consisting of 10 and 34 speakers,

it can be noticed that the speaker recognition accuracy is lower for the larger set of

speakers, especially at lower SNRs. A similar dependency was observed in the context of

speech recognition, where the recognition accuracy decreased when the vocabulary size

was increased (Srinivasan et al., 2006).

The fifth experiment also showed the fundamental limitation of noise reduction schemes

to improve speaker recognition performance of MFCC-based recognizers in the pres-

ence of noise. As long as a priori information about the noise power spectrum is

available, the MFCC recognizer including the ideal noise reduction front-end MFCCGMM-

UBMNR IDEAL shows excellent recognition performance and is comparable to the MD
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Figure 4.5: Experiment 5: SNR-dependent speaker recognition performance on a set consisting
of 10 speakers. Results are shown for two groups of background noise scenarios; (A) highly
non-stationary (babble and factory noise) and (B) more stationary noise conditions (destroyer, car
and cockpit noise). Recognition performance is presented as the average recognition performance
over a series of 20 simulations. The standard error of the reported recognition performance across
all 20 simulations was below 2% for all experimental conditions. Results are presented for two
types of recognizers, the MFCC-based recognizers (dashed lines) and the MD recognizers (solid
lines). Black symbols indicate that the corresponding recognizers are based on UBM adapation.
The two recognizers marked by crosses utilize a priori information about the noise spectrum.

system using the ideal binary mask MDGMM-UBM IBM. However, for MFCC-based

recognition, there is a tremendous difference between the system that uses the ideal

noise power and the one that employs the best operating front-end for noise estimation

MFCCGMM-UBMNR. This performance difference between the idealized and the realistic

scenario is significantly smaller for the MD recognizer, although both systems employ
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Figure 4.6: Experiment 5: SNR-dependent speaker recognition performance on a set consisting
of 34 speakers. Results are shown for two groups of background noise scenarios; (A) highly
non-stationary (babble and factory noise) and (B) more stationary noise conditions (destroyer, car
and cockpit noise). Recognition performance is presented as the average recognition performance
over a series of 20 simulations. The standard error of the reported recognition performance across
all 20 simulations was below 2% for all experimental conditions. Results are presented for two
types of recognizers, the MFCC-based recognizers (dashed lines) and the MD recognizers (solid
lines). Black symbols indicate that the corresponding recognizers are based on UBM adapation.
The two recognizers marked by crosses utilize a priori information about the noise spectrum.

a similar front-end for noise estimation. We believe that this performance gap can be

explained by the conceptual difference between both recognizers and the way knowledge

about the noise power is incorporated in both systems. Whereas the MD system only

requires a binary decision about the reliability of individual T-F units, the noise reduction

front-end needs an accurate estimation of the instantaneous SNR in order to design the
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noise reduction filter, which is obviously much more difficult. Furthermore, errors in the

estimated noise power spectrum will have different effects on speaker recognition perfor-

mance for both systems. Whereas, e.g. an over-estimation of the noise will cause the

estimated binary mask to be more sparse, leaving fewer T-F elements for classification, the

noise reduction front-end will attenuate speech which can potentially distort the resulting

MFCC feature vector. Our experimental results suggest that the errors induced by the

noise estimation are more problematic for MFCC-based recognizers.

4.5 Discussion and conclusions

A robust speaker recognition system was presented, which combines missing data recogni-

tion with the adaptation of speaker models using universal background models. Compared

to a GMM-based recognizer, the additional use of a UBM was shown to be especially

beneficial in representing the spectral features in highly non-stationary noise conditions.

The improvement was found to depend on the amount of available training material

and was greatest for a small amount of speech material, which is often a constraint for

practical applications.

The first experiment revealed that a MD recognizer in combination with a UBM was

significantly more robust against false positive rates in the ideal binary mask and showed

superior speaker recognition accuracy compared to a conventional GMM-based missing

data recognizer. This benefit could be confirmed in the fourth experiment for conditions,

where the IBM was estimated. One possible explanation is that the speaker models of a

conventional GMM-based recognizer are initialized and trained independently. As a result,

observations which were not well represented in the training stage can bias the likelihood

computation across speaker models in very different ways. This problem is more likely

to occur if only a small amount of training material is available or if T-F elements in

the estimated binary mask are erroneously classified as reliable elements. When using a

UBM, all speaker models are equally initialized using the UBM parameters and only those

Gaussian components are adapted to the speaker-dependent speech material that show

sufficient probabilistic alignment. Thus, the risk of a biased likelihood computation is

reduced.

In the context of estimating the ideal binary mask using a local SNR criterion, several

noise estimation techniques and gain functions were evaluated. Substantial speaker

recognition accuracy differences were found across methods. Among all tested noise
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estimation techniques, the minima-controlled recursive averaging (Cohen and Berdugo,

2002) and a modified version of the SNR-dependent recursive averaging (Lin et al., 2003)

consistently achieved the highest recognition performance across a variety of background

noise scenarios. In combination with the aforementioned noise estimation techniques, the

MMSE log-STSA gain function clearly outperformed spectral subtraction-based methods

in terms of recognition accuracy in all noise conditions. The quality of the estimated binary

mask was further analyzed by ROC statistics. This analysis revealed that best results are

obtained by a conservative labeling of reliable T-F components, which is reflected in a

low false positive rate.

Due to the sparsity of the estimated binary mask especially in conditions with low

SNR, the speaker identification is only based on a fraction of the overall feature space.

Further improvements can be expected if the decision about reliable and unreliable feature

components is softened by using a fuzzy mask (Barker et al., 2000). The current work

focused on the recognition of speakers in noisy environments. Future work will also

investigate the performance of the proposed system in the presence of reverberation and

in scenarios with multiple target speakers.
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5
A Binaural Scene Analyzer for Joint

Localization and Recognition of
Speakers in the Presence of Interfering

Noise Sources and Reverberation

In this chapter we present a binaural scene analyzer that is able to simultaneously

localize, detect and identify a known number of target speakers in the presence

of spatially positioned noise sources and reverberation. In contrast to many other

binaural cocktail party processors, the proposed system does not require a priori

knowledge about the azimuth position of the target speakers. The proposed system

consists of three main building blocks: binaural localization, speech source detection,

and automatic speaker identification. First, a binaural front-end is used to robustly

localize relevant sound source activity. Second, a speech detection module based on

missing data classification is employed to determine whether detected sound source

activity corresponds to a speaker or to an interfering noise source using a binary

mask that is based on spatial evidence supplied by the binaural front-end. Third, a

second missing data classifier is used to recognize the speaker identities of all detected

speech sources. The proposed system is systematically evaluated in simulated adverse

acoustic scenarios. Compared to state-of-the art MFCC recognizers, the proposed

model achieves significant speaker recognition accuracy improvements.
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5.1 Introduction

While being constantly surrounded by a variety of different acoustic sources, among them

concurrent speakers and environmental noise, the human auditory system is capable of

recognizing a single target speaker and selectively following a conversation (Cherry, 1953,

Bronkhorst, 2000). According to Bregman (1990), the underlying perceptual mechanisms

that enable the human auditory system to perform auditory scene analysis (ASA) can

be divided into two stages: First, the acoustic input is decomposed into a number of

segments. In a second step, individual segments that are believed to belong to the same

acoustic object are grouped to form a coherent stream.

The remarkable capabilities of the human auditory system to process an arbitrary target

source in complex acoustic scenes have inspired a new field of research, termed compu-

tational auditory scene analysis (CASA), that attempts to achieve human performance

with computational models by imitating the processing of the human auditory system

(Wang and Brown, 2006). Despite extensive research efforts, computer algorithms

based on binaural signals are not able to compete with the performance achieved by

the human auditory system, and up to this point, computers are only able to perform

a very restricted version of auditory scene analysis. In contrast to the human auditory

system, which is remarkably robust against environmental noise and variations of acoustic

conditions, computational models are usually trained for a particular acoustic scenario,

and therefore, any mismatch between the training and the testing condition will decrease

performance.

A powerful framework that attempts to overcome the aforementioned limitations by

implementing concepts of ASA is the classification with missing, unreliable acoustic

information (Cooke et al., 2001), termed missing data (MD) classification, which is

able to circumvent the mismatch between training and testing conditions. The acoustic

input is first decomposed into individual time-frequency (T-F) units. Based on this

two-dimensional segmentation, a so-called binary mask is used to identify whether an

individual T-F unit is reliable (i.e. dominated by the target source) or unreliable (i.e.

dominated by noise, interfering sources or reverberation). It has been shown that such

an ideal binary mask (IBM), where the assignment of reliable and unreliable T-F units

is known a priori, can substantially improve the recognition of speech (Cooke et al.,

2001) and the identification of speakers (Pullella et al., 2008, May et al., 2012a) in

noisy conditions. Furthermore, it has been reported that applying an IBM to noisy

speech can improve speech intelligibility in challenging acoustic scenarios for both normal
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hearing listeners (Brungart et al., 2006, Li and Loizou, 2007), as well as hearing-impaired

subjects (Wang et al., 2009). Consequently, the estimation of the ideal binary mask has

been suggested to be the main goal of CASA (Wang, 2005).

An important aspect that is exploited by the human auditory system is the fact that it is

provided with inputs from the left and the right ears. Given a complex acoustic scene, the

human auditory system is able to benefit from the spatial separation between target and

interfering sources (Hawley and Litovsky, 2004). By analyzing only the signals reaching

both ears, humans can detect and localize a target in the presence of up to five competing

sources (Simpson et al., 2006).

There are a number of computational approaches that have used binaural cues in order

to estimate the ideal binary mask, either to perform robust speech recognition (Palomäki

et al., 2004b, Harding et al., 2006), or to segregate a target source from background

noise (Roman et al., 2003). However, an important drawback of these existing systems is

that the location of the target source is assumed to be known a priori, which is a strong

limitation for practical applications. A related area of research has focused on the binaural

localization of multiple speech sources in the presence of reverberation (Christensen

et al., 2009, Woodruff and Wang, 2010b, May et al., 2011a). In these studies all active

sound sources in the acoustic scene were localized without further determining whether

the source was speech or background noise, i.e. no inferences were possible about the

nature of the sound sources. Thus, for a complex acoustic scene with multiple target

speakers and interfering noise sources that are positioned at unknown spatial locations,

it is not possible to simultaneously localize and recognize the target speakers with the

aforementioned methods.

However, a wide range of applications such as hearing aids and teleconference systems

require a priori knowledge about the azimuth location of the target sources, e.g. to steer a

beamformer or to control processing parameters. Also the human auditory system is able

to take advantage of a priori knowledge about the spatial configuration of sound sources

in complex acoustic scenes. In multi-talker scenarios, a significant performance gain in

speech recognition has been reported when the subject’s attention was directed towards

the spatial location of the target talker (Kidd et al., 2005). Likewise, a priori knowledge

about the locations of maskers in multi-talker mixtures has been shown to substantially

reduce the localization error of speech for humans (Kopčo et al., 2010). Thus, assistive

systems which are able to retrieve information about the spatial position of target speakers

can potentially be used to guide the attention of human listeners.
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This chapter addresses the problem of jointly localizing and recognizing a known number of

target speakers in adverse acoustic scenarios based on the analysis of binaural signals. For

this purpose, a binaural scene analyzer is proposed that is able to simultaneously localize,

detect and identify a predefined number of S speakers in the presence of reverberation

and interfering noise sources that are placed at various spatial positions. As opposed to

many other cocktail party processors, a speech detection module is proposed to link the

localization and the recognition stage, thus allowing the system to operate without a

priori knowledge about the azimuth position of the target speakers. The proposed system

builds on the previously developed binaural front-end for robust sound source localization

presented in Chapter 2, which is used to determine azimuth positions with relevant sound

source activity. Based on this initial set of candidate positions, a speech detection module

is presented to select azimuth positions that most likely correspond to speech sources.

The final stage of the binaural scene analyzer recognizes the speaker identities of all

detected speech sources. Therefore, the estimated azimuth position of the speech source

is also used to select the better ear feature space for recognition, which aims at improving

the signal-to-noise ratio (SNR) of the target speaker.

The performance of the proposed binaural scene analyzer is systematically evaluated in

simulated multi-source scenarios. The estimated binary mask of the proposed system

is compared with two formulations of the ideal binary mask and with a binaural system

proposed by Palomäki et al. (2004a). Furthermore, speaker recognition experiments are

conducted to compare speaker identification accuracy of the proposed system with the

performance of MFCC-based recognizers.

The remainder of the chapter is organized as follows. The proposed binaural scene analyzer

is described in the next section. Section 5.3 contains details about baseline systems and

the evaluation procedure. The experimental results are shown in Section 5.4. Section 5.5

presents concluding remarks and summarizes the chapter.

5.2 Model architecture

The proposed binaural scene analyzer consists of three main building blocks, namely the

binaural localization stage 1 , the speech detection module 2 and the speaker recognition

stage 3 . The system is shown in Fig. 5.1 and the individual processing stages will be

described in detail in the following sections.
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Figure 5.1: Schematic diagram of the proposed binaural scene analyzer. The system is divided
into three main stages: binaural localization stage, detection of speech sources, and recognition
of speaker identities. See Section 5.2 for details.

5.2.1 Binaural localization

The binaural localization stage 1 is based on the previously developed auditory front-end

for robust sound source localization described in Chapter 2. The acoustic input to the

model is a binaural signal consisting of speech and noise sources that are randomly

positioned at unknown spatial locations. The input (sampled at a rate of 16 kHz) is

first split into auditory channels using a bank of F = 32 gammatone filters with center

frequencies equally spaced on the equivalent rectangular bandwidth (ERB) scale (Glasberg

and Moore, 1990) between 80 and 5000 Hz. More specifically, a fourth-order, phase-

compensated gammatone filterbank (Brown and Cooke, 1994) is used to synchronize

the binaural analysis across all gammatone channels at a common time instance. The

neural transduction of the inner hair cells is simulated by half-wave rectification and

square-root compression. Afterwards, interaural time (ITD) and level differences (ILD)

are independently estimated for each auditory channel using overlapping frames of 20 ms

with a 10-ms shift. The ITD is estimated by detecting peaks in the normalized cross-

correlation function and the ILD is derived by comparing the energy between the left and

the right ear signals. These two binaural cues are combined in a two-dimensional binaural

feature space

~xt,f =
{

ˆitdf (t) , ˆildf (t)
}
, (5.1)

where t is the frame number and f indexes the gammatone channel. As shown in

Chapter 2, the joint analysis of both binaural cues facilitates the disambiguation of
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the ITD cue by the ILD information, which is particularly beneficial in reverberant

environments.

Similar to other binaural systems (Roman et al., 2003, Harding et al., 2006), the

applied localization model is based on the supervised learning of ITDs and ILDs. A

noticeable difference is that the model proposed in Chapter 2 employs a multi-conditional

training stage which incorporates the uncertainties of binaural cues that are caused by

a variety of acoustic conditions, including changes in the source/receiver configuration,

the presence of competing sound sources and the impact of reverberation. In the

present study, the localization model is extended to also include different radial distances

between the source and the receiver (see Section 5.3.1 for more details regarding the

training).

Based on the joint analysis of both binaural cues, the likelihood for each source location is

determined by a Gaussian mixture model (GMM) classifier that has learned the azimuth-

dependent distribution of ITDs and ILDs. Given a set of K sound source directions

{ϕ1, . . . , ϕK} that are modeled by a set of frequency-dependent GMMs {λf ,ϕ1
, . . . , λf ,ϕK},

a three-dimensional spatial log-likelihood map can be computed that represents the

likelihood that the kth sound source direction is active at time frame t and frequency

channel f :

L (t, f , k) = log p (~xt,f |λf ,ϕk ) , (5.2)

where p (~xt,f |λf ,ϕk ) is a Gaussian mixture density consisting of V weighted component

densities. As determined in Chapter 2, a constant GMM model complexity of V = 15

Gaussian components for all gammatone channels and azimuth directions was found to

give accurate localization performance. In the present study, a set of K = 37 azimuths

spaced by 5◦ within the range of [−90◦, 90◦] is considered.

5.2.2 Detection of speech sources

The task of the speech detection module 2 , as shown in Fig. 5.1, is to use the spatial

evidence supplied by the binaural front-end to find candidate positions with relevant sound

source activity. From this initial set of candidate positions, a known number of S sources

are selected that are most likely speech by exploiting the distinct spectral characteristics

of speech and noise signals.

To this end, first, the evidence about a sound source location is integrated across all F
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gammatone channels, and the most probable sound source position is used to reflect the

azimuth estimate for each time frame:

ϕ̂T (t) = arg max
1≤k≤K

F∑
f=1

L (t, f , k) . (5.3)

Note that this across-frequency integration of log-likelihoods can be viewed as an im-

plementation of the straightness weighting according to (Stern et al., 1988, Shackleton

et al., 1992), which makes the detection of sound source positions that are consistently

active across multiple frequency channels more likely.

To obtain a reliable estimation of active sources, all frame-based azimuth estimates ϕ̂T are

pooled together over the entire mixture to form an azimuth histogram H [k ]. This implies

that the sound source positions are stationary throughout the time interval over which the

histogram is calculated. H [k ] represents the number of azimuth estimates that are assigned

to the kth sound source direction. Peaks within this histogram indicate azimuth directions

with relevant sound source activity and the corresponding histogram bin indices are used

to form an initial set of M speech source candidate positions L = {`1, . . . , `M}. Each bin

index `m corresponds to a local peak in the azimuth histogram.

Based on such a histogram, however, it is not possible to decide whether the detected

activity corresponds to a speech source or to interfering noise. Nevertheless, assuming

that all sources are spatially separated, the spatial information can be used to determine

and isolate the contribution of individual sound sources on a T-F basis. To achieve this,

the spatial log-likelihood map L (t, f , k) is used to estimate a binary mask Mm (t, f )

for each of the M candidate positions by grouping T-F units according to common

azimuth locations. More specifically, for each T-F unit the most likely position among all

m = 1, . . . ,M candidate positions is determined, and the individual T-F unit is added to

the corresponding mask:

Mm (t, f ) =

 1 if m = arg max
k∈L

L (t, f , k)

0 otherwise.
(5.4)

Rather than considering all K possible sound source directions, the candidate selection

effectively reduces the number of alternatives per T-F unit, which results in a more dense

binary mask.

Based on this mask, missing data classification (Cooke et al., 2001) is performed to

decide whether the corresponding source type is speech or noise. Our prior work has
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shown that the mean absolute deviation of the smoothed envelope is a good descriptor for

detecting speech sources in the presence of noise and reverberation (see Appendix 5.A for

more details). In order to compute this feature, first a smoothed envelope ef is obtained

by low-pass filtering the half-wave rectified output of the f th gammatone channel with a

time constant of 10 ms. Then, the mean absolute deviation of the smoothed envelope ef
is computed over B adjacent samples with a shift of O samples

FAD (t, f ) =
1

B

B−1∑
b=0

|ef (t O + b)− ēf | , (5.5)

where ēf refers to the mean envelope of frame t. The feature reflects the amount of

fluctuation and its magnitude is lower for speech-dominant T-F units compared to units

that are corrupted by noise. Thus, it is possible to apply bounded marginalization where

the true value of the unreliable feature components is bounded between zero and the

observed feature magnitude (El-Maliki and Drygajlo, 1999, Cooke et al., 2001, Raj and

Stern, 2005). Signals of the left and the right ears are averaged prior to feature extraction.

Similar to the binaural front-end, the processing is based on 20-ms frames with a shift of

10 ms.

For classification two GMMs with 32 Gaussian components and diagonal covariance

matrices are trained to approximate the probability distribution of the feature space

FAD (t, f ) that is extracted separately for speech and noise files. The first GMM, denoted

as speech model λSpeech, is trained with features based on a large pool of monaural speech

files selected from the speech separation challenge (SSC) database (Cooke and Lee,

2006). The second GMM, termed noise model λNoise, reflects the feature distribution of

all types of noise files drawn from the NOISEX database (Varga et al., 1992). The GMMs

are initialized by 20 iterations of the k-means clustering algorithm (Lloyd, 1982) and

afterwards refined by the EM algorithm (Dempster et al., 1977) using a stopping criterion

of 1e−5 with a maximum of 300 iterations. About 29 minutes of training material is used

for each GMM. To compensate for the mismatch between training (λSpeech and λNoise are

trained with clean signals) and testing (the speech detection module is applied in noisy

and reverberant conditions), a missing data compatible normalization scheme is employed.

Therefore, a frequency-dependent compensation factor is derived by computing the mean

of the most intense feature values that are classified as being reliable by the estimated

binary mask (Palomäki et al., 2004a).

Given the binary maskMm (t, f ), the feature space FAD (t, f ) and the trained speech

and noise models (λSpeech and λNoise), the log-likelihood ratio pm reflecting the evidence
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for the mth speech source candidate can be determined by

pm = log

(
p (F|λSpeech)

p (F|λNoise)

)
. (5.6)

A speech source is detected if the log-likelihood ratio is larger than a predefined thresh-

old θ

pm

{
≥ θ accept λSpeech

< θ reject λSpeech.
(5.7)

Selecting the optimal decision threshold is a non-trivial task because it is influenced by

a variety of parameters; among them the number of speech and noise sources in the

acoustic mixture, the SNR between all sources and the amount of reverberation. In

preliminary experiments we found that a decision threshold of θ = 0 performed well for

a wide range of acoustic scenarios. Based on this criterion, all active sound sources

are classified to be either speech or noise. After classification a set of Ŝ log-likelihood

ratios
{
pSpeech

1 , . . . , pSpeech

Ŝ

}
is available that specifies the evidence of all detected speech

sources. Moreover, a new set of histogram bin indices LSpeech =
{
`Speech

1 , . . . , `Speech

Ŝ

}
is

available, which is a subset of L, and reflects the individual bin positions of all detected

speech sources in the azimuth histogram.

Reflections and the interaction of multiple competing sound sources can cause the azimuth

histogram to have numerous local peaks. As a consequence, the number of detected

speech sources Ŝ might be larger than the number of a priori known speech sources

S. Thus, the final step is to select the S most likely speech sources. Instead of using

the evidence from the missing data classifier directly for selection, we found that it

is advantageous to apply an azimuth-dependent weight to the log-likelihood ratio of

each detected speech source to account for the fact that speech sources that are more

frequently represented in the azimuth histogram are more likely to reflect the real position

of the speech sources (see Appendix 5.A for more details). The applied weight reflects

the a priori probability that the corresponding source was active in the acoustic scene,

and is approximated by the normalized azimuth histogram. The weighted log-likelihood

ratio for the nth speech source is given by

pSpeech,W
n = pSpeech

n + log

(
H
[
`Speech
n

]
/
∑
k

H [k ]

)
︸ ︷︷ ︸

azimuth weight

. (5.8)

Finally, the set of weighted log-likelihood ratios of all detected speech sources is rearranged
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in descending order {
pSpeech,W

1 ≥ pSpeech,W
2 ≥ . . . ≥ pSpeech,W

Ŝ

}
(5.9)

and the azimuth locations corresponding to the highest S values are selected to represent

the estimated speech source positions.

When using the frame-based azimuth estimates according to Eq. (5.3) for the initial

selection of source candidate positions, it is required that a sufficiently large number

of frames is dominated by the target sources which should be detected. However, in

conditions where the SNR between the target speakers and the interfering noise sources is

very low, or even negative, very few target source dominated frames may be found. Thus,

when Ŝ < S, the histogram of the frame-based azimuth estimates ϕ̂T was apparently

dominated by locations corresponding to noise sources, and the histogram did not reflect

the locations of all present speech sources. Indeed, it has been shown that spectro-

temporal regions dominated by speech tend to be sparse in the presence of noise (Cooke,

2006). Thus, whenever Ŝ < S, the azimuth histogram H [k ] is recomputed using the

azimuth estimates on a T-F basis

ϕ̂TF (t, f ) = arg max
1≤k≤K

L (t, f , k) . (5.10)

Again, all local peaks within this histogram are considered as initial speech source candi-

dates, and the missing data masks corresponding to these locations are estimated and

fed to the missing data classifier to determine the most likely speech source positions

(involving the aforementioned steps Eq. (5.4)-(5.9)). The rationale behind Eq. (5.10)

is that speech source positions that were not resolved on a frame-by-frame basis can

potentially be recovered when using azimuth estimates on a T-F level. In Section 5.4.1,

the impact of alternative methods to select the set of speech source candidate positions is

analyzed in order to justify the proposed frame-based selection of speech source candidates

with the possibility to switch to time-frequency-based processing.

The proposed speech detection module is illustrated in Fig. 5.2 for two different acoustic

scenes. Figure 5.2(A) shows the detection of one speech source in the presence of three

factory noise sources in an anechoic room. Despite the presence of four competing sources,

the estimated binary masks are quite similar to the ideal binary masks based on the a

priori SNR. Figure 5.2(B) presents the detection of two speech sources in the presence

of three factory noise sources in a reverberant room (T60 = 0.29 s). In comparison to the

anechoic scenario with one target source, the estimated binary masks of the two target
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Figure 5.2: Demonstration of the speech detection module for two different acoustic scenes: (A)
Detection of one speaker (20◦) in the presence of three factory noise sources (50◦, −15◦ and
−50◦, SNR = 0 dBA) in an anechoic room. (B) Detection of two speakers (60◦ and −30◦) in
the presence of three factory noise sources (30◦, −5◦ and −60◦, SNR = 0 dBA) in a reverberant
room (T60 = 0.29 s). Each of the two subplots consist of three panels: The left panel shows the
acoustic signals and the frame-based azimuth estimates, the middle panel depicts the azimuth
histogram and the detected speech source candidates, and the right panels present the estimated
binary masks (M) of all candidate positions and the ideal binary masks (IBM) corresponding to
all real sound source positions.



104 5.2 Model architecture

sources are more noisy due to the impact of reverberation.

5.2.3 Automatic speaker recognition

The final stage 3 of the proposed binaural scene analyzer (see Fig. 5.1) has the function

of recognizing the speaker identity of the detected speech sources from a set of stored

speaker models. For this purpose, a second missing data classifier based on bounded

marginalization is supplied with the binary masks that were estimated by the speech

detection module (see Section 5.2.2). The recognition of speakers is performed with

spectral features reflecting the energy of individual frequency channels (Cooke et al.,

2001). Therefore, a map of auditory nerve firing rates, a so-called ratemap, is computed

by averaging the smoothed envelope ef (see Section 5.2.2) over B adjacent samples with

a shift of O samples and subsequent cube-root compression

FR (t, f ) =

(
1

B

B−1∑
b=0

ef (t O + b)

)1/3

. (5.11)

Speaker models are represented by 128-mixture GMMs with diagonal covariance matrices.

In comparison to a conventional GMM-based missing data recognizer, Chapter 4 demon-

strated that the combination of missing data recognition with universal background model

(UBM)-based adaptation of speaker models (Reynolds et al., 2000) yields substantial

improvements in highly non-stationary noise scenarios. However, in order to apply this

scheme to reverberant multi-source environments, a modification is required to account

for the mismatch between the speaker models trained with monaural and anechoic speech,

and the observed spectral features that are affected by HRTF filtering and reverberation.

Similar to the speech detection module, a missing data compatible normalization scheme

is required. The normalization scheme proposed in Palomäki et al. (2004a) was developed

in the context of automatic speech recognition and applies a spectral normalization factor

that is independently derived for each frequency channel. In contrast to automatic speech

recognition, which is generally speaker-independent, an automatic speaker identification

system exploits the frequency-dependent spectral variations across different speakers.

We found that it is beneficial in terms of speaker recognition performance to average

the normalization factor proposed in Palomäki et al. (2004a) across adjacent frequency

channels prior to normalization. In this way, a similar normalization factor is applied

to neighboring frequency channels and differences between adjacent channels will be

related to speaker-specific variations. A sliding triangular window of size 7 is used for
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averaging the normalization factor (these parameters were derived empirically based on

pilot experiments).

For the adaptation of speaker models, two gender-dependent UBMs are used to represent

the speaker-independent distribution of the ratemap feature. The two UBM models are

initialized with 20 iterations of the k-means clustering algorithm (Lloyd, 1982) and further

trained with the EM algorithm (Dempster et al., 1977) using a stopping criterion of 1e−5

at a maximum of 300 iterations. Speaker-dependent models are obtained by adapting

the well-trained UBM parameters to the speaker-dependent speech material. Therefore,

first the gender selection is performed by selecting the UBM which shows the highest

probabilistic alignment with the speaker-dependent material. Secondly, as suggested in

Reynolds et al. (2000), only the mean vectors of the UBM are adapted using a relevance

factor of 16.

In order to benefit from the fact that the binaural scene analyzer is provided with two

acoustic signals from both ears, the estimated positions of speech sources are utilized to

implement a better-ear selection of the feature space. Therefore, ratemaps are always

computed for both the left FL
R (t, f ) and the right ear signals FR

R (t, f ). For recognition,

the ratemap based on the ear signal that is closest to the estimated azimuth position

of the corresponding speech source is selected individually for each detected speech

source

FR,n (t, f ) =


FL
R (t, f ) , ϕ`Speech

n
< 0

FR
R (t, f ) , ϕ`Speech

n
> 0

1
2

(
FL
R (t, f ) + FR

R (t, f )
)
, ϕ`Speech

n
= 0.

(5.12)

This approach aims at increasing the SNR between the target and interfering sources,

and the underlying effect is referred to as the better ear effect (Shinn-Cunningham et al.,

2001).

5.3 Evaluation setup

5.3.1 Acoustic mixtures

Acoustic sources were simulated by convolving monaural audio files with binaural room

impulse responses (BRIRs). BRIRs were constructed by combining head related transfer

functions (HRTFs) of a KEMAR artificial head taken from the MIT database (Gardner
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Figure 5.3: Schematic diagram of the room dimensions with all receiver positions used for
training (circles) and evaluation (squares). Note that the training stage of the localization model
incorporated three radial distances (0.5 m, 1 m and 2 m) between the receiver and the target
positions as exemplarily shown for receiver position 15, which were different from the radial
distance (1.5 m) used for evaluation. See Section 5.3.1 for details.

and Martin, 1994) with room impulse responses (RIRs) that were simulated according

to the image-source model (Allen and Berkley, 1979). More specifically, the roomsim

simulation software (Schimmel et al., 2009) was used for that purpose. The receiver

(KEMAR) was placed at various positions in a simulated room of dimensions 6.6 x 8.6 x

3 m at 1.75 m above the ground, as depicted in Fig. 5.3.

The binaural localization model was trained with BRIRs corresponding to eight training

positions (different from those used for evaluation). In order to incorporate the same

amount of uncertainty to the binaural cues of all gammatone channels, we intentionally

chose a frequency-independent reverberation time of T60 = 0.5 sec for all training positions.

It has been shown in Chapter 2 that this training enables the localization model to

generalize to unseen absorption characteristics. Note that a different, frequency-dependent

absorption characteristic is used for evaluation. The training of the binaural model also

incorporated the effect of interfering sources. This is exemplarily shown in Fig. 5.3 for

the training position 15 . In order to train the binaural model for one particular sound

source direction, the training consists of a target source placed at the corresponding

azimuth (denoted by a) and an interfering source (indicated by ×) positioned at ±5◦,
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±10◦, ±20◦, ±30◦ and ±40◦ with respect to the target azimuth. In addition to the

training procedure described in Chapter 2, the multi-conditional training is extended to

consider three different radial distances (0.5 m, 1 m and 2 m) between the source and the

receiver. The corresponding direct-to-reverberation ratios (DRRs) are 7.3 dB, 1.4 dB and

−4.8 dB.

For evaluation the receiver was randomly placed at seven evaluation positions using a

radial distance of 1.5 m. To systematically evaluate the impact of reverberation, the

surface Acoustic plaster was selected for all room boundaries within the room simulation

software (Schimmel et al., 2009) to create a specific, frequency-dependent absorption

characteristic. Note that this absorption characteristic was different from the one used

to train the localization model. Speech and noise sources (different from the material

used to train the speech detection module) were randomly positioned within the azimuth

range of [−90◦, 90◦], while having an angular distance of at least 15◦ to the nearest

source. A set of 1400, 4-source mixtures (one speech source) and 600, 5-source mixtures

(two speech sources) were generated for each SNR condition. Mixtures had an average

length of 1.83 s. The SNR was adjusted by comparing the A-weighted energy of all

binaural speech sources with the A-weighted energy of all binaural noise sources. This

weighting was applied to ensure that the SNR is adjusted in the frequency range that

is relevant for speech. The design of the A-weighting filter was implemented according

to (American National Standards Institute, 1983). To prevent that the energy of speech

is underestimated due to silent parts, an energy-based voice activity detector (VAD) was

used. A frame was considered to contain relevant speech activity, if its energy level was

within 40 dB of the global maximum. The level between multiple speech or noise sources

was always set equal.

For a given multi-source mixture, the localization error in degrees was evaluated by compar-

ing the positions of the detected speech sources to their real positions.

Speaker recognition performance was evaluated on a closed set of speakers that were

randomly selected from the SSC database (Cooke and Lee, 2006). The SSC database

consists of 17000 clean utterances spoken by 34 speakers (18 males and 16 females). To

ensure that there is no overlap between the speech material used for training and testing,

the SSC database was randomly split into two equal sized sets consisting of 8500 files

(250 sentences per speakers). The first half was used to train the two gender-dependent

UBMs. Also, 950 sentences (about 29 minutes) were randomly selected from the first

half to train the speech model λSpeech of the speech detection module. The second half
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of the SSC database was used to perform the speaker recognition experiments reported in

Section 5.4, involving the training of speaker-specific models using UBM adaptation and

the evaluation of the speaker identification accuracy. Because the amount of available

speech material is often a limitation for practical applications, the speech material was

restricted to 25 randomly selected sentences per speaker. For each speaker, 18 sentences

were randomly chosen to train the speaker model and the remaining 7 sentences were used

for evaluation. Because this randomized selection of training and testing material will to

some extent influence the evaluated speaker identification accuracy, results are reported

as the mean identification accuracy over a series of 20 simulations, each containing a

new set of randomly selected speakers. Note that the speaker identification accuracy was

measured on an utterance level.

5.3.2 Baseline systems

To serve as a baseline for recognition performance, a conventional robust speaker recogni-

tion system was trained with a feature vector consisting of 13 static MFCC coefficients

including the 0th order coefficient and first order temporal derivatives (a total of 26 fea-

tures). The static MFCC coefficients were computed using the RASTAMAT toolbox (Ellis,

2005). Parameters1 were chosen to reproduce MFCC coefficients according to the hidden

markov models toolkit (HTK). The delta coefficients were computed using a first-order

orthogonal polynomial fit over a window of 5 frames (Soong and Rosenberg, 1988). For

improved robustness, cepstral mean and variance normalization (CMVN) was performed,

where the feature statistics are measured over the duration of one utterance (Openshaw

and Mason, 1994, Tibrewala and Hermansky, 1997).

The first method, termed MFCCMono, extracted the MFCC coefficients by averaging

the signals of the left and the right ear. In addition, a recognizer was implemented that

computed the MFCC feature vector, as described above, for both the left and the right

ear signals. Based on the binaural analysis, the feature vector with the higher SNR (the

better ear) was selected for recognition according to the estimated location of each

target speech source, individually. This algorithm is referred to as MFCCBinaural. The

third MFCC-based recognizer, denoted by MFCCBinaural NR, combined the previously

described better-ear selection and a noise reduction (NR) stage. In Chapter 4, we

1 melfcc(in, fs, ’lifterexp’, -22, ’nbands’, 20, ’dcttype’, 3, ’maxfreq’, 8000, ’fbtype’, ’htkmel’, ’sumpower’,
0, ’wintime’, 20e-3, ’hoptime’, 10e-3, ’numcep’, 13). For details see http://labrosa.ee.columbia.
edu/matlab/rastamat/mfccs.html

http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.html
http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.html
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analyzed the impact of a variety of noise estimation and noise reduction schemes on

speaker identification performance. Based on these findings, noise reduction is performed

prior to MFCC extraction by recursively averaging the noise power spectrum (Hirsch

and Ehrlicher, 1995) in combination with the MMSE log-STSA gain function (Ephraim

and Malah, 1985). The noise estimation and the noise reduction is applied after the

speech detection module and is performed independently for the left and the right ear

signals.

Similar to the MD-based recognizer, speaker models of all MFCC-based recognizers

are represented by 128-mixture GMMs and were adapted from two gender-dependent

UBMs. Recognition of two target speakers is performed by accumulating the frame-

based likelihoods over the entire test sequence and selecting the two most likely speaker

identities.

Finally, a comparison is made with a recently proposed co-channel speaker identifica-

tion system based on adapted GMMs (Saeidi et al., 2010). This approach, denoted as

MFCCCo-channel, combines frame-level likelihood scores and a Kullback-Leibler diver-

gence (KLD) distance measure to find the most likely speaker identity on a frame-by-frame

basis in co-channel scenarios. A UBM with 128 Gaussian components is trained with

MFCC coefficients extracted from two-talker mixtures. For training, two-talker mix-

tures are created from the first half of the SSC database by mixing two sentences

from different speakers at one of the following seven signal-to-signal ratio (SSR) levels:

{−9,−6,−3, 0, 3, 6,∞} dB. For each SSR level, a set of 8500 co-channel mixtures is cre-

ated, giving a total of 59500 audio files for UBM training. Speaker-dependent GMMs are

adapted from the UBM by mixing 18 randomly selected training sentences for each speaker

(see Section 5.3.1 for details) with 18 files from other speakers, again at different SSR

levels. Because multiple talkers are always set to have equal power in the experiments, only

the following SSR levels are considered for adaptation: {0,∞} dB.

5.3.3 Ideal binary mask

To evaluate the upper performance limit of missing data recognition systems, an ideal

binary mask is commonly introduced that represents the ideal segmentation of the spectral

feature space according to the contribution of all occurring sound sources. Studies related

to recognition tasks in noisy conditions often utilize the ideal binary mask based on the a

priori SNR between the target and the noise source (Cooke et al., 2001). Note that the
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SNR-based ideal binary mask, denoted as IBMSNR, is only able to segregate the target

signal from the background noise, but the effect of reverberation is not taken into account.

Another formulation of the ideal binary mask is to select only those T-F units where

the spectral energy of the noisy and reverberated speech is within 3 dB of the spectral

energy of the clean target source (Cooke et al., 2001, Palomäki et al., 2004b), taking into

account both the effect of background noise and the impact of reverberation. The ideal

binary mask based on this spectral criterion will be referred to as IBMSPEC. To create

this mask for a given binaural mixture, the observed spectral energy of the noisy and

reverberated speech signal is compared with the spectral energy of the clean speech signal,

that has been convolved with the same HRTF but in anechoic conditions. In this way, the

azimuth-dependent HRTF filtering does not bias the mask computation. Both definitions

of the ideal binary mask will be used to evaluate the mask estimation performance of the

proposed binaural front-end in the experimental section.

5.4 Experiments

We performed a series of localization and speaker recognition experiments to evaluate the

proposed binaural scene analyzer in simulated adverse acoustic conditions. The first two

experiments are aimed at evaluating the estimated localization information of the proposed

system. Whereas the first experiment evaluates the ability of the speech detection module

to localize the azimuth of speakers in multi-source scenarios, the second experiment

analyzes the mask estimation performance of the binaural front-end. Therefore, the

estimated binary mask is compared with two different formulations of the ideal binary

mask and with the model proposed by Palomäki et al. (2004b). Both the estimated

location of target speakers and the estimated binary masks are used in the third and

fourth experiment to recognize the identity of speakers in complex acoustic scenes. More

specifically, the third experiment is using a reduced set of 10 speakers to study the

influence of the number of interfering noise sources on speaker recognition performance.

Furthermore, the performance of the proposed system is compared with several baseline

systems based on MFCC coefficients (see Section 5.3.2). Based on this comparison,

the best performing baseline systems and the proposed method are used in the fourth

experiment to recognize one and two simultaneously active target speakers using the full

set of 34 speakers. In the last experiment, the final goal of the study is addressed by

jointly analyzing the combined localization and speaker recognition performance of the

proposed method using a confusion matrix.
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5.4.1 Experiment 1: Speaker localization performance

The first experiment is analyzing the ability of the speech detection module to determine

the azimuth position of a predefined number of speech sources from a set of candidate

positions. Furthermore, the influence of the speech source candidate selection on speech

detection performance is systematically investigated. Therefore, we compare the proposed

candidate selection as described in Section 5.2.2 with two alternative approaches. The

first alternative, indicated by ϕ̂TF, determines candidate positions by detecting local peaks

in the azimuth histogram which is solely based on azimuth estimates derived on a T-F level

(according to Eq. (5.10)). The second alternative, denoted by ϕ̂T, exclusively operates on

frame-based azimuth estimates according to Eq. (5.3) to compute the azimuth histogram.

Again, azimuth positions corresponding to all local peaks in the histogram are considered

as candidate positions.

The SNR-dependent localization error in degrees of the detected speech sources is

presented in Tab. 5.1 for all three candidate selection methods. It can be seen that

the T-F-based selection of speech source candidates produces the highest error rates.

When using the frame-based selection ϕ̂T, a considerable improvement is achieved. This

improvement can be attributed to the fact that the frame-based candidate selection

integrates evidence of sound source activity across all frequency channels, which effectively

increases the reliability of the resulting localization estimate. As a result, the number of

candidate positions is reduced, which consequently reduces the number of alternatives

per T-F unit in Eq. (5.4), thus increasing the density of the estimated binary mask which

allows for a more accurate detection of the speech sources.

The proposed candidate selection, which combines both the frame-based and the T-

F-based selection, can further improve the localization performance at low SNRs. In

particular, in conditions with one interfering noise source, it appears that switching

from frame-based to T-F-based processing can to some extent recover the position of

speech sources, therefore, improving the localization performance by about 5 ◦. Regarding

mixtures with one speaker, the average localization error is below 3 ◦ for SNRs as low

as 0 dBA. When two speakers are simultaneously talking, the azimuth of both speakers

is estimated within 5 ◦ accuracy for SNRs as low as 5 dBA. At lower SNRs, the error is

noticeably increased.

The general trend that the localization error decreases with increasing number of noise

sources can be attributed to the SNR definition described in Section 5.3.1, which compares
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Table 5.1: SNR-dependent localization error of speech sources in degrees for binaural mixtures
consisting of one and two speakers in the presence of interfering noise sources and reverberation.

Candidate SNR in dBA (factory noise)
T60 = 0.29 s

selection −5 0 5 10 20
Mean

1 speaker, ϕ̂TF 23.7 10.9 3.6 1.7 0.5 8.1
1 noise ϕ̂T 17.0 2.2 0.6 0.1 0.0 4.0
source Proposed 12.0 1.6 0.4 0.1 0.0 2.8

1 speaker, ϕ̂TF 19.5 6.1 1.7 0.4 0.6 5.7
2 noise ϕ̂T 12.2 1.4 0.4 0.1 0.0 2.8
sources Proposed 11.4 1.3 0.4 0.1 0.0 2.6

1 speaker, ϕ̂TF 16.7 4.1 1.1 0.5 0.4 4.6
3 noise ϕ̂T 9.8 1.5 0.3 0.1 0.1 2.4
sources Proposed 9.2 1.5 0.3 0.1 0.1 2.2

2 speakers, ϕ̂TF 31.0 24.2 15.5 9.4 3.4 16.7
1 noise ϕ̂T 32.3 12.0 3.1 1.5 0.9 10.0
source Proposed 27.8 12.1 3.0 1.5 0.9 9.1

2 speakers, ϕ̂TF 31.5 21.2 13.5 7.3 3.6 15.4
2 noise ϕ̂T 29.4 12.7 4.6 1.5 1.0 9.8
sources Proposed 27.4 12.6 4.6 1.5 1.0 9.4

2 speakers, ϕ̂TF 29.2 18.1 11.7 6.9 4.1 14.0
3 noise ϕ̂T 26.2 11.5 4.4 2.3 0.4 9.0
sources Proposed 25.8 11.4 4.4 2.3 0.4 8.9

the overall energy of all speech sources with the energy of all noise sources. With increasing

number of noise sources, the noise energy is distributed across multiple directions, which

increases the relative localization dominance of the speech source, thus allowing for a

more accurate prediction of its azimuth position.

5.4.2 Experiment 2: Evaluation of the IBM estimated by the
binaural front-end

The second experiment is used to verify the ability of the binaural front-end to estimate the

ideal binary mask. The quality is systematically evaluated in terms of receiver operating

characteristics (ROC) analysis (Fawcett, 2006). For this analysis, the estimated binary

mask is compared with the ideal binary mask by calculating the percentage of correctly

identified T-F units which are dominated by the target signal (true positive rate) and the

percentage of misclassified T-F units which are dominated by interfering sources (false

positive rate). For comparison, we also provide the difference between the true positive

rate and the false positive rate, because it has been shown that this metric is highly
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correlated with human speech intelligibility (Kim et al., 2009). For the ROC analysis, we

selected the IBMSPEC to represent the reference mask, which accounts for both the

effect of interfering noise and reverberation. Moreover, the percentage of labeled T-F

units is reported to reflect the amount of information that is available to the MD classifier.

In addition to the ROC analysis, the corresponding speaker identification accuracy for a

set of 10 speakers is provided to illustrate the implication of the true positive rate and

the false positive rate on speaker recognition performance.

We compared the performance of the proposed mask estimation technique with two

definitions of the ideal binary mask (see Section 5.3.3) and with a binaural front-end

proposed by Palomäki et al. (2004b). In addition, to study the influence of the speech

detection module on mask estimation performance, the proposed method is supplied

with a priori knowledge about the azimuth positions of the target and the interfering

sources.

The model proposed in Palomäki et al. (2004b) extracts both ITD and ILD cues in individual

frequency channels. The ITD cue is warped by a table look-up to its corresponding azimuth

and subsequently used to group T-F units according to common azimuth. The required

azimuth locations of the target and interfering sources are provided by the speech detection

module (see Section 5.2.2). The ILD cue is used to remove T-F units from the estimated

binary mask where the ILD estimate is not consistent with the azimuth of the sound

source, which is derived from the ITD analysis. The expected azimuth-specific ILD

template is precomputed for all frequency channels above 2800 Hz.

We evaluated two variants of the model, first the combined ITD and ILD analysis denoted as

Palomäki ITD& ILD, and Palomäki ITD which solely relies on ITD analysis. Note that the

original model proposed in Palomäki et al. (2004b) includes an inhibition mechanism that

emphasizes acoustic onsets. Whereas this inhibition might be advantageous for the azimuth

estimation of sound sources on an utterance level (as indicated in Fig. 5 in Palomäki

et al. (2004b)), preliminary tests revealed, however, that the resulting mask was very

sparse and the model performed best in terms of speaker identification performance

when the inhibition mechanism was switched off by setting the inhibition gain to zero.

Apart from this modification, all other model parameters were chosen according to the

recommendations of the authors (Palomäki et al., 2004b).

The evaluation of all tested mask estimation methods is performed for binaural mixtures

with one target speaker and one interfering factory noise source. The experimental

results presented in Tab. 5.2 and Tab. 5.3 correspond to anechoic (T60 = 0 s) and
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Table 5.2: Mask estimation performance (true positive (TP) rate, false positive (FP) rate, TP-FP
rate and the number of labeled T-F units) and speaker identification (SID) accuracy in % for
various methods in anechoic conditions (T60 = 0 s).

SNR in dBA
T60 in s Methods % −5 0 5

Mean

0

IBM

TP rate 100 100 100 100

SPEC

FP rate 0 0 0 0
TP-FP rate 100 100 100 100
T-F units 26.1 37.2 48.8 37.4

SID accuracy 97.1 98 98.4 97.8

IBM

TP rate 64.9 72.3 78.2 71.8

SNR

FP rate 0 0 0 0
TP-FP rate 64.9 72.3 78.2 71.8
T-F units 16.9 26.9 38.2 27.3

SID accuracy 92.5 97.8 98.9 96.4

Proposed

TP rate 59 66.3 72.5 65.9

a priori

FP rate 2.4 3.1 3.9 3.1
TP-FP rate 56.6 63.2 68.6 62.8
T-F units 17.2 26.6 37.4 27.1

SID accuracy 90.5 97.8 98.9 95.7

Proposed

TP rate 54.8 61.6 68.1 61.5
FP rate 3.2 3.7 4.1 3.7

TP-FP rate 51.6 57.9 64.0 57.8
T-F units 16.6 25.2 35.4 25.8

SID accuracy 84.8 94.9 97.6 92.4

Palomäki

TP rate 45 53.8 61 53.3

ITD

FP rate 4.5 6.4 8.3 6.4
TP-FP rate 40.5 47.4 52.7 46.9
T-F units 15.1 24 34.1 24.4

SID accuracy 79.5 93.4 97.6 90.2

Palomäki

TP rate 42.5 49.2 54.5 48.7

ITD & ILD

FP rate 3.5 4.9 6.3 4.9
TP-FP rate 39.0 44.3 48.2 43.8
T-F units 13.7 21.4 29.8 21.6

SID accuracy 67.1 80.9 90.3 79.4

reverberant (T60 = 0.29 s) conditions, respectively. When comparing the model proposed

by Palomäki et al. with and without ILD constraint, it can be seen that the model with ILD

constraint produces a lower false positive rate (FP rate) in both anechoic and reverberant

conditions. But at the same time, the true positive rate (TP rate) is noticeably lower,

which consequently limits speaker identification performance. Especially in the reverberant

condition, speaker identification accuracy of Palomäki ITD& ILD is on average 15.9%

below Palomäki ITD. We believe that these results can be explained by the employed
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Table 5.3: Mask estimation performance (true positive (TP) rate, false positive (FP) rate, TP-FP
rate and the number of labeled T-F units) and speaker identification (SID) accuracy in % for
various methods in reverberant conditions (T60 = 0.29 s).

SNR in dBA
T60 in s Methods % −5 0 5

Mean

0.29

IBM

TP rate 100 100 100 100

SPEC

FP rate 0 0 0 0
TP-FP rate 100 100 100 100
T-F units 18.4 27.8 38.1 28.1

SID accuracy 95.3 97.5 97.7 96.8

IBM

TP rate 68.6 77.1 83.5 76.4

SNR

FP rate 5.9 10.1 16 10.7
TP-FP rate 62.7 67.0 67.5 65.7
T-F units 17.5 28.7 41.7 29.3

SID accuracy 85.4 94.8 97.3 92.5

Proposed

TP rate 58.7 64.5 69.9 64.3

a priori

FP rate 12.6 14.7 17.8 15
TP-FP rate 46.1 49.8 52.1 49.3
T-F units 21.1 28.6 37.6 29.1

SID accuracy 78.9 90.9 95.6 88.5

Proposed

TP rate 52.5 55 58.4 55.3
FP rate 12.2 12.2 13.5 12.7

TP-FP rate 40.3 42.8 44.9 42.6
T-F units 19.7 24.1 30.6 24.8

SID accuracy 74.5 88.1 93.9 85.5

Palomäki

TP rate 37.5 41.9 45.7 41.7

ITD

FP rate 12.2 13 14.7 13.3
TP-FP rate 25.3 28.9 31.0 28.4
T-F units 16.8 21 26.5 21.5

SID accuracy 61.9 80.6 89.3 77.3

Palomäki

TP rate 34.7 37 38.8 36.8

ITD & ILD

FP rate 11.2 11.6 13 11.9
TP-FP rate 23.5 25.4 25.8 24.9
T-F units 15.6 18.7 22.8 19

SID accuracy 47.1 61.8 75.3 61.4

ITD look-up table and the precomputed ILD template2, which are both trained with a

single source in anechoic conditions. Such a training imposes very strict constraints on

the expected ITDs and ILDs. However, it has been shown that binaural cues that are

associated with a target source depend on the presence of interfering sources and their

2 Both the mapping function and the ILD template were derived for the same HRTFs used in our
experiments. Note that training these functions with reverberant HRTFs did not improve the performance
of the model.



116 5.4 Experiments

relative strength to the target (Roman et al., 2003). Also, reverberation has a severe

effect on the ILD cue (Ihlefeld and Shinn-Cunningham, 2004, Shinn-Cunningham et al.,

2005), which will cause the ILD constraint to remove many T-F units from the mask,

although the underlying template function does not match with the acoustic condition in

which the model is applied.

The proposed method achieves significantly higher TP rates and lower FP rates in com-

parison with Palomäki ITD. Whereas speaker recognition performance of both methods is

comparable in the anechoic condition, the proposed method substantially outperforms

Palomäki ITD in the presence of reverberation. Especially at lower SNRs, the speaker iden-

tification performance of the proposed model is about 12% above the one by Palomäki ITD.

In contrast to the model of Palomäki et al., due to the multi-conditional training, the

proposed binaural front-end is designed to operate in a variety of acoustic conditions,

including reverberation and multi-source scenarios.

When replacing the speech detection module in the proposed model with a priori knowledge

about the locations of the target and the interfering source, it can be seen that performance

is quite similar in terms of TP rates and FP rates for SNRs as low as 0 dBA. This suggests

that the speech detection module is able to robustly determine the location of the target

source. Only for negative SNRs, more substantial differences can be observed, especially

in terms of speaker identification accuracy. This difference can be explained by the

increased error rate of the speech detection module at negative SNRs, as reported in

Tab. 5.1.

Finally, we compare the two formulations of the ideal binary mask. It is interesting to

note that while the mask produced by IBMSPEC generally contains more T-F units than

IBMSNR in the anechoic condition, the mask is more sparse in reverberant conditions.

Nevertheless, IBMSPEC consistently outperforms the IBM based on the a priori SNR in all

experimental conditions. This implies that in order to improve on existing mask estimation

techniques, the effect of reverberation should be taken into account to reduce the degrading

effect of spectral variations that are caused by strong reflections.
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5.4.3 Experiment 3: Speaker identification depending on the
number of interfering noise sources

The third experiment compares the speaker identification performance of the proposed

binaural scene analyzer with various MFCC-based recognizers using a reduced set of

10 speakers. Furthermore, the influence of the number of interfering noise sources is

investigated.

The average speaker identification accuracy for one target speaker in reverberant conditions

(T60 = 0.29 s) is presented in Fig. 5.4. Panels (A)-(C) show performance depending on

the number of interfering sources, ranging from (A) one to (C) three simultaneously active

factory noise sources that are randomly placed at different spatial locations. As expected,

the speaker identification accuracy decreases with decreasing SNR for all methods.

The performance of the MFCC-based recognizer MFCCMono quickly deteriorates with

decreasing SNR. The system MFCCBinaural, that selects the better ear feature space

according to the estimated location of the target speaker, provides a substantial benefit

over the monaural MFCC recognizer. This improvement can be in the range of 20% at

lower SNRs. A possible explanation may be that the better ear signal has a better SNR

than the monaural signal, in addition, there is less spectral distortion due to the head

shadow. We found that the advantage ofMFCCBinaural depends on the spatial separation

between the target and the interfering noise sources and increases with increasing spatial

separation. An additional performance gain is achieved by MFCCBinaural NR, where

noise reduction is applied prior to MFCC extraction. This improvement is rather small for

scenarios with one interfering noise source and moderately increases when two or three

noise sources are present simultaneously.

In turn, the proposed system MDProposed is outperforming the best MFCC-based

recognizer in terms of speaker identification accuracy, especially at low SNRs. Regarding

acoustic mixtures with one interfering noise source, the performance of the proposed

system is close to the system MD IBMSNR that utilizes a priori SNR information, which

indicates that the estimated binary mask that is provided by the binaural front-end is

of high accuracy. The proposed system shows a stronger dependency on the number of

interfering noise sources as compared to MFCC-based recognizers. In general, performance

decreases with increasing number of noise sources, most noticeably when comparing

results for scenarios with one and two interfering noise sources. This dependency might

be related to the fact that the spatial separation between the target and the interfering

sources effectively decreases with increasing number of noise sources. The average
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Figure 5.4: Experiment 3: Average speaker recognition performance in % for a set of 10 speakers
in reverberant conditions (T60 = 0.29 s) in the presence of (A) one, (B) two and (C) three
simultaneously interfering factory noise sources. The average recognition performance is plotted
over a series of 20 simulations. Results are presented for three categories of methods, namely the
IBM-based MD recognizers (dash-dotted lines), the proposed MD system (solid lines) and the
MFCC-based recognizers (dashed lines). The standard error of recognition performance across all
20 simulations was below 3% for all experimental conditions.
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azimuth spacing for mixtures with 1, 2 and 3 interfering noise sources is 70.4 ◦, 52.3 ◦

and 41.1 ◦ respectively. It is reasonable to assume that the mask estimation is more

challenging for mixtures with more closely spaced sound sources. The fact that no such

dependency is observed for MD systems that utilize the ideal binary mask suggests that

the mask estimation of the proposed method can potentially be improved, especially for

multi-source scenarios with closely spaced sound sources.

At higher SNRs (20 dBA), MFCC-based recognizers provide some advantage over the

proposed MD system, which is presumably caused by the fact that the distribution of

MFCC features is more adequately modeled by Gaussian mixtures with diagonal covariance

matrices compared to spectral features. This observation is consistent with results reported

in previous studies (Palomäki et al., 2004a, Srinivasan et al., 2006).

In order to investigate the influence of the speech detection module on speaker identifica-

tion accuracy, performance is also shown for the proposed system MDProposed a priori

that is employing a priori knowledge about the azimuth locations of the speech and noise

sources. The distance between this method and MDProposed can be interpreted as

the error that is introduced by the speech detection module. As shown in Fig. 5.4, the

performance of both methods is very similar, suggesting that the speech detection module

is able to robustly detect the azimuth location of the target. This interpretation is also

supported by the low localization error for mixtures with one target speaker, which is

reported in Tab. 5.1.

Best results are achieved by the MD classifier that is using the ideal binary mask based

on the spectral criterion MD IBMSPEC, because it considers both the masking effect of

interfering noise and the deteriorating effect caused by reverberation.

5.4.4 Experiment 4: Multi-talker speaker identification

The fourth experiment compares the proposed method with the best performing baseline

systems according to the third experiment using acoustic mixtures with one and two

simultaneously active target speakers. Furthermore, the MFCC-based co-channel rec-

ognizer (Saeidi et al., 2010) is evaluated. The full set of 34 speakers is used for this

experiment.

The average speaker identification accuracy is depicted in Fig. 5.5 and Fig. 5.6 as a

function of the SNR. Results are individually shown for mixtures with one and two
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Figure 5.5: Experiment 4: Average speaker identification accuracy in % of one target speaker
for a set of 34 speakers in reverberant conditions (T60 = 0.29 s) in the presence of (A) one,
(B) two, and (C) three interfering factory noise sources. The gray and black symbols decode
recognition performance based on one and two sentences, respectively. Results are presented
for four categories of methods, namely the IBM-based MD recognizer (dash-dotted lines), the
proposed MD system (solid lines), the MFCC-based recognizers (dashed lines) and the MFCC-based
Co-channel recognizer (dotted lines).
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Figure 5.6: Experiment 4: Average speaker identification accuracy in % of two competing target
speakers for a set of 34 speakers in reverberant conditions (T60 = 0.29 s) in the presence of
(A) one, (B) two, and (C) three interfering factory noise sources. The gray and black symbols
decode recognition performance based on one and two sentences, respectively. Results are
presented for four categories of methods, namely the IBM-based MD recognizer (dash-dotted
lines), the proposed MD system (solid lines), the MFCC-based recognizers (dashed lines) and the
MFCC-based Co-channel recognizer (dotted lines).
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competing target speakers (see Fig. 5.5 and Fig. 5.6). The MFCC-based recognizer

MFCCBinaural NR that combines better-ear selection and noise reduction is working

quite robust for mixtures with one target source and is by far superior to the conventional

monaural MFCC-based recognizer. However, this benefit is noticeably reduced when two

target speakers are simultaneously present. Because the front-end for MFCC feature

extraction does not distinguish between target and interfering sources, the resulting

feature vector reflects to some extent properties of all acoustic sources that are present

in the acoustic scene. Apparently, the presence of a second target speaker, which is

not ignored by the MFCC-based recognizer, creates a systematic bias that clearly limits

speaker recognition performance.

The systemMFCCCo-channel NR3, which combines the multi-talker training with the noise

reduction front-end described in Section 5.3.2, is able to alleviate the mismatch between

the trained speaker models and the observed co-channel mixtures, thus substantially

outperforming the monaural MFCC-based recognizers in two-talker mixtures. Note that a

considerably larger amount of data is required for training the co-channel system. However,

it can not reach the performance level of the proposed missing data recognizer, which

aims at separating the contribution of both speakers.

In general, the proposed system MDProposed shows a significant performance gain over

all MFCC-based recognizers. For mixtures with one target speaker, this advantage is

mostly found for very low SNRs. When two target speakers are simultaneously present,

however, the benefit of the proposed method covers a wide range of SNRs and is especially

pronounced at higher SNRs (starting at 5 dBA). This coincides with the SNR at which

the speech detection module is still able to predict the azimuth of two speakers within 5 ◦

accuracy (see Tab. 5.1), thus the binary masks are estimated for the azimuth directions

which correspond to the real positions of the speakers.

As expected, the highest speaker recognition accuracy is achieved by the MD classi-

fier MD IBMSPEC that is based on a priori information about the reliable T-F units.

Especially at lower SNRs, there is a substantial gap between the ideal and the pro-

posed MD recognizer, suggesting that there is quite some room for improving the mask

estimation.

3 Note that the co-channel approach is a monaural system. We tested several modifications of the
co-channel system and selected the one with the best performance. It is conceivable that the co-channel
approach would also benefit from binaural information.
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We also investigated the effect of using two sentences to determine the speaker identities.

For mixtures with one target speaker, using two sentences for recognition consistently

improves performance for all methods. However, for mixtures with two simultaneously

active target speakers, a smaller improvement is found for the MFCC-based systems

when two sentences are concatenated. As already mentioned, the presence of a second

target speaker is likely to cause a mismatch between training and testing, which can

obviously not be reduced by increasing the observation time of the classifier. In contrast,

the performance gain of MDProposed can be as large as 15% at an SNR of 20 dBA when

two sentences are used for recognition. Because the MD recognizer already operates on a

restricted set of T-F units that is believed to contain reliable information about the target

source only, a longer test sequence presumably supplies additional evidence about the

speaker identity. Also, the co-channel system MFCCCo-channel NR shows a substantial

performance improvement in the range of up to 15% when increasing the time interval

used for recognition, most likely due to the reduced mismatch between the training and

testing condition.

Finally, when comparing the overall speaker identification accuracy for the set of 10

speakers (third experiment) with the full set of 34 speakers (fourth experiment), it can

be seen that the advantage of the MD recognizer over MFCC-based systems reduces

as the set of speakers increases. A similar trend was reported in the context of speech

recognition (Srinivasan et al., 2006).

5.4.5 Experiment 5: Joint localization and speaker recognition

The last experiment evaluated the joint localization and speaker identification performance

of the proposed method for multi-source mixtures consisting of three interfering factory

noise sources, one or two simultaneously active target speakers, and reverberation (T60 =

0.29 s). Similar to the fourth experiment, the full set of 34 speakers is used and two

sentences are concatenated for recognition.

In order to simultaneously compare the localization accuracy of the target speakers and the

recognition accuracy of their identities, the performance of both tasks is jointly visualized

by means of a two-by-two confusion matrix. The localization accuracy represents the

percentage of correctly localized target speakers for which the estimated azimuth is within

an absolute error margin of 5◦ compared to their real position.

The SNR-dependent confusion matrices are shown in Fig. 5.7 for mixtures with one and
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Figure 5.7: Experiment 5: SNR-dependent confusion matrices showing the joint localization
accuracy and speaker recognition performance of the proposed binaural scene analyzer for mixtures
consisting of one or two simultaneously active target speakers in the presence of three factory
noise sources in a reverberant environment (T60 = 0.29 s).

two target speakers. For each individual confusion matrix, the sum along the first column

represents the speaker identification accuracy, whereas the sum along the first row shows

the localization accuracy. The first element of the main diagonal represents the joint

localization and recognition performance, which signifies that both tasks were successfully

accomplished by the proposed system.

It can be seen that the joint performance is very close to the overall speaker identification

accuracy, which implies that most of the errors are induced by the speaker recognition

stage. Indeed, the localization performance of the proposed model is very robust for a wide

range of SNRs. Even for mixtures with two concurrent target speakers and three interfering

noise sources, in 96.9% of the cases the azimuth of both speakers is correctly localized for

SNRs as low as 5 dBA. However, there is a substantial discrepancy between the localization

accuracy and the speaker identification accuracy, which is larger for mixtures with two

competing speakers and generally increases with decreasing SNR. This gap may indicate

that although the correct azimuth location of the target speaker is available, the accuracy

of the estimated binary mask at very low SNRs is not sufficient to robustly determine the
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identities of the detected speakers. Further research is required to improve the quality of

the estimated binary mask for complex multi-source scenarios.

5.5 Discussion and conclusions

In this chapter we have presented a binaural scene analyzer that is able to jointly localize,

detect and recognize a predefined number of target speakers in the presence of reverbera-

tion and interfering noise. The proposed system consists of three main building blocks: a

binaural front-end for robust localization, a module for speech source detection and a

stage for speaker identity recognition.

It was shown that the proposed speech detection module is able to robustly detect a

predefined number of target speakers in multi-source scenarios. Based on this established

link between the localization and the recognition stage, the proposed system is able

to selectively focus on processing speech sources in the presence of interfering noise.

The system does not require a priori knowledge about the azimuth position of the

target sources, which is often a limitation for practical applications such as hearing

aids.

A detailed ROC analysis was performed to compare the quality of the estimated binary

mask of the proposed binaural front-end with the system proposed by Palomäki et al.

(2004b). The analysis revealed that the proposed system produces binary masks that

are closer to the ideal binary masks for both anechoic and reverberant conditions. The

proposed front-end has two major advantages: it is designed to operate in reverberant,

multi-source scenarios and it jointly analyzes both ITD and ILD cues.

The estimated azimuth position of the target speaker can be used to substantially improve

performance of MFCC-based recognizers by selecting the better ear feature space for

recognition. Regarding acoustic scenes with one target speaker, the improvement in

terms of speaker identification accuracy was found to be in the range of 20% at low

SNRs. An additional moderate improvement was achieved by applying a noise reduction

scheme prior to extracting the MFCC coefficients. However, MFCC-based systems only

perform well in acoustic scenes with one target source. This restriction is induced by the

front-end for MFCC feature extraction which is not able to distinguish between target

and interfering sources (e.g. the interfering noise sources and concurrent speakers).

Whereas MFCC coefficients are, to some extent, able to cope with interfering noise, the
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presence of a second target speaker clearly biases the resulting MFCC feature vector which

consequently limits speaker identification performance. This sensitivity of MFCC-based

recognizers to the presence of multiple target speakers can be significantly reduced by

the co-channel approach (Saeidi et al., 2010), which incorporates a multi-conditional

training stage with two-talker mixtures to alleviate the mismatch between training and

testing.

Overall, the proposed binaural scene analyzer is more robust compared to the MFCC-based

systems, especially at lower SNRs. Considering acoustic mixtures with a single interfering

noise source, the performance of the proposed binaural scene analyzer is close to the

classifier that uses the ideal binary mask based on the a priori SNR. However, when

increasing the number of interfering noise sources, the advantage of the proposed system

decreases in comparison to the MFCC-based recognizers. Apparently, with decreasing

spatial separation between target and interfering sources, it is more difficult to identify

reliable T-F units of the target speaker by only exploiting binaural cues. In order to further

improve the estimation of the binary mask, the analysis of binaural cues could be extended

by additionally exploiting monaural cues such as pitch (Christensen et al., 2009, Woodruff

and Wang, 2010b).

Our experimental results indicate that there is a significant gap in speaker identification

performance when comparing acoustic scenes with one and two simultaneously active

target speakers. In the present study, multi-source scenarios consisted of a number

of simultaneously active speech and noise sources that were completely overlapping.

However, the amount of overlapping speech in a meeting or telephone conversation has

been estimated to be in the range of 10% (Shriberg et al., 2001). Also, the experimental

results obtained in this study are based on simulations, and further tests with real recordings

are required. Future research will focus on more realistic multi-source scenarios with

natural overlap and turn-taking.

Furthermore, it was shown that the ideal binary mask, which considers both the effect of

reverberation and interfering noise, outperformed the mask based on the a priori SNR.

This suggests that two mechanisms may be required in order to further improve on existing

mask estimation techniques: one that segregates the target from the background, and a

second one that selects reliable T-F units that are not contaminated by reverberation.

A task for future research is to investigate how to combine the segregation mask, as

proposed in this chapter based on binaural cues, with a mask that assesses the reliability

of individual T-F units in terms of reverberation, either based on modulation analysis
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(Palomäki et al., 2004a, 2006) or by exploring the effect of temporal masking (Kim et al.,

2011).

In this work, we assumed prior knowledge about the number of active target speakers

that are present in the acoustic scene. An important aspect for future investigations is to

automatically determine the number of active speech sources.

Finally, is was demonstrated that the proposed binaural scene analyzer is able to jointly

localize and recognize two simultaneously active target speakers in the presence of

reverberation and three interfering noise sources.

5.A Appendix: Speech detection module

In this appendix we justify the design of the speech detection module as described in

Section 5.2.2. First, the ability of three different features to discriminate between speech

and noise sources is evaluated. Secondly, it is shown that applying a weight to the

log-likelihood ratio of the missing data classifier further improves the speech detection

accuracy of the proposed speech detection module.

5.A.1 Feature extraction

In the context of speech recognition, missing data (MD) classification is usually performed

with spectral features which reflect the energy of individual frequency channels (Cooke

et al., 2001). As the proposed speech detection module aims at discriminating between

speech and noise, two alternative features are also evaluated in the framework of missing

data classification.

The input signal (sampled at a rate of 16 kHz) is first split into auditory channels using

a bank of F = 32 gammatone filters that cover the range of 80 to 5000 Hz. Note that

signals of the left and the right ear are averaged prior to feature extraction. Features are

based on 20 ms frames using a shift of 10 ms.

First, a smoothed envelope ef is obtained by low-pass filtering the half-wave rectified

output of the f th gammatone channel with a time constant of 10 ms. A map of

auditory nerve firing rates, a so-called ratemap, is computed by averaging the smoothed

envelope ef over B adjacent samples with a shift of O samples and subsequent cube-root
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compression

FR (t, f ) =

(
1

B

B−1∑
b=0

ef (t O + b)

)1/3

. (5.A.1)

As an alternative, the mean absolute deviation of the envelope within a frame is used to

reflect the amount of fluctuation

FAD (t, f ) =
1

B

B−1∑
b=0

|ef (t O + b)− ēf | , (5.A.2)

where ēf refers to the mean envelope of frame t. Similar to FR, the feature magnitude

of FAD is lower for speech-dominant T-F units compared to units that are corrupted by

noise. Thus, for feature FR and FAD it is possible to use bounded marginalization (Cooke

et al., 2001) where the true value of the unreliable feature components is constrained to

be between zero and the observed feature magnitude.

A third feature is based on the observation that speech-dominant areas typically show a

higher amount of periodicity compared to noise (Atlas and Hengky, 1985). The harmonic

structure of speech tends to excite a similar auto-correlation pattern across neighboring

frequency channels. This synchrony is expected to be reduced due to the influence of noise.

Following Shao et al. (2010), the synchrony is computed by correlating the normalized

auto-correlation pattern Af of the hair cell response hf across neighboring frequency

channels

FS (t, f ) =
1

τmax

τmax−1∑
τ=0

Af (t, τ)Af+1 (t, τ + 1) , (5.A.3)

where τ indexes the time lag and τmax refers to the maximum delay. The hair cell response

hf is obtained by applying half-wave rectification and square-root compression to output

of the f th gammatone channel. Time lags corresponding to frequencies as low as 80 Hz

are considered. Because no useful bounds can be defined for feature FS, unbounded

marginalization (Cooke et al., 2001) is performed for this feature.

As described in Section 5.2.2, two GMMs, denoted as λSpeech and λNoise, are trained

with features based on monaural and anechoic speech and noise files. To compensate

for the mismatch caused by reverberation, interfering noise and HRTF filtering, spec-

tral normalization (Palomäki et al., 2004a) is performed for feature FR and FAD. As

the synchrony feature FS is based on normalized auto-correlation patterns, its mag-

nitude is limited to values between [−1, 1]. Therefore, no additional normalization is

required.
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5.A.2 Azimuth-weighted log-likelihood ratio

Based on Eq. (5.6) and Eq. (5.7), the speech detection module determines a set of Ŝ
log-likelihood ratios

{
pSpeech

1 , . . . , pSpeech

Ŝ

}
which specifies the evidence of all detected

speech sources. The final selection of the speech sources is performed by rearranging the

set of likelihood ratios in descending order{
pSpeech

1 ≥ pSpeech
2 ≥ . . . ≥ pSpeech

Ŝ

}
(5.A.4)

and selecting the azimuth locations corresponding to the S highest values.

In order to emphasize speech source candidates that are more frequently represented

in the azimuth histogram, and therefore, are more likely to reflect the real position of

speech sources, a weight is applied to each individual speech source candidate which

reflects the a priori probability that this source was active in the acoustic scene. This

weight is approximated by the normalized azimuth histogram and the azimuth-weighted

log-likelihood ratio for each individual speech source candidate pSpeech,W
n is computed

according to Eq. (5.8). Similar to the first method, the resulting weighted log-likelihood

ratios are ranked in descending order, and the azimuth positions corresponding to the S
highest values reflect the most likely speech sources{

pSpeech,W
1 ≥ pSpeech,W

2 ≥ . . . ≥ pSpeech,W

Ŝ

}
. (5.A.5)

5.A.3 Experimental results

Acoustic sources were simulated by convolving monaural audio files with binaural room

impulse responses (BRIR). The receiver (KEMAR) was placed at seven evaluation positions

in a simulated room of dimensions 6.6 x 8.6 x 3 m at 1.75 m above the ground, as shown

in Fig. 5.3. For evaluation, the same acoustic setup is used as described in Section 5.3.1.

A set of 600, 4-source mixtures (one speech source) and 600, 5-source mixtures (two

speech sources) are generated for various SNR conditions. Speech and noise sources

(different from the material used to train the speech detection module) were randomly

positioned within the azimuth range of [−90◦, 90◦], while having an angular distance of

at least 15◦ to the nearest source. For a given multi-source mixture, performance is

evaluated by comparing the positions of the detected speech sources to their real positions.

A speech source is correctly detected only if the deviation from the real position is within

an absolute error margin of 5 ◦.
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Table 5.A.1: Speech detection accuracy in % of one and two speech sources in the presence of
reverberation (T60 = 0.29 s) and three interfering noise sources for different features using the
MD recognizer.

1 speech source SNR in dBA (factory noise)
3 noise sources −5 0 5 10 20

MD FR 68.9 86.2 94.1 97.6 98.9
MD FAD 74.9 94.8 98.8 99.2 98.9
MD FS 40.1 63.5 76.2 82.5 94.2

2 speech sources SNR in dBA (factory noise)
3 noise sources −5 0 5 10 20

MD FR 55.9 66.3 78.6 85 89.3
MD FAD 56.5 69 82.8 88 87.4
MD FS 43 52.3 62.5 70.3 79.7

First, the performance of the proposed system is evaluated using the three different

features described in Section 5.A.1. The speech detection accuracy of the MD-recognizer

based on Eq. (5.A.4) for mixtures with one and two speech sources is shown in Tab. 5.A.1.

The synchrony feature FS showed the overall lowest performance. One possible explanation

might be that the characteristic periodicity of speech is not only reduced by interfering

noise but also due to the presence of multiple speech sources. Since all classifiers are

trained with single-source mixtures, it seems that the classifier trained with the synchrony

feature is least capable of generalizing to more complex acoustic scenes. The performance

of feature FR and FAD is comparable at high SNRs. However, with decreasing SNR,

feature FAD consistently outperformed the ratemap feature FR. This advantage is

observed for both scenarios with one and two target speakers and might be related to

the fact that the mean average deviation is invariant to the overall signal level. In the

following the MD-based classifier is based on feature FAD.

In the second experiment, the effect of using the the azimuth-weighted log-likelihood ratio

is analyzed. Therefore, the performance of the MD-based speech detection based on

Eq. (5.A.4) is compared with the implementation according to Eq. (5.A.5). Furthermore,

the speech detection is compared to two baseline systems. To demonstrate the added

value of the speech detection module, the first baseline system, denoted as Azimuth

histogram, solely relies on the estimated azimuth information. Speech sources are classified

by selecting the S most prominent peaks in the azimuth histogram. Obviously, with

decreasing SNR, the locations of the noise sources will dominate the azimuth histogram,

and, consequently, the speech sources will not be seen. Secondly, a classifier based on 13

mel frequency cepstral coefficients (MFCCs) and their first-order dynamic coefficients

with cepstral mean normalization is trained to discriminate between speech and noise.
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Figure 5.A.1: Speech detection accuracy in % of two speech sources in the presence of three
factory noise sources and reverberation as a function of (A) the SNR and (B) the reverberation
time T60.

The classifier is trained with the same material that was used for the speech detection

module. Based on a frame-by-frame decision, a modified azimuth histogram is computed

by only using frames that were classified as being dominated by speech. Again, the S
most dominant peaks reflect the detected speech sources. This second baseline system is

referred to as MFCC.

The accuracy of detecting two simultaneously active speech sources in the presence

of three non-stationary factory noise sources and reverberation is shown in Fig. 5.A.1.

Panel (A) presents the speech detection accuracy as a function of the SNR for a fixed



132 5.A Appendix: Speech detection module

reverberation time of T60 = 0.29 s. In panel (B), performance is shown for a fixed SNR

of 0 dBA depending on the reverberation time T60.

As expected the first baseline system is only able to reflect the positions of both speech

sources in conditions with high SNR, but performance rapidly drops with decreasing

SNR. The MFCC-based selection of speech-dominant frames substantially improved

the speech detection accuracy. However, the MD-based system is significantly more

robust, especially at low SNRs and conditions with strong reverberation. Furthermore,

the selection of the most likely speech sources based on the azimuth-weighted likeli-

hood values using Eq. (5.A.5) provides a distinct performance gain for all experimental

conditions.
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6
General Conclusions

This final chapter summarizes the main contributions of this dissertation and provides

suggestions for further research.

6.1 Conclusions

The main objective of this thesis was to develop new algorithms that are capable of

automatically retrieving information about complex acoustic scenes by means of binaural

analysis and pattern recognition techniques. The primary focus of this work was the

localization, detection and recognition of multiple speech sources in challenging acoustic

environments, including interfering noise sources and reverberation.

In Chapter 2 we have developed a probabilistic model for robust sound source localization

based on the supervised learning of binaural cues. The basis of this model was the

azimuth-dependent distribution of interaural time and level differences (ITDs and ILDs)

which was approximated by a set of Gaussian mixture model (GMM) classifiers. In

order to achieve robust sound source localization in reverberant multi-source scenarios, a

multi-conditional training stage was employed to capture the uncertainties of binaural

cues resulting from room reverberation, the presence of multiple competing sound sources,
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and changes in the source-receiver configuration. To obtain a robust indication of the

most dominant sound source azimuth per time frame, the evidence of sound source

direction is integrated across frequency channels. A comprehensive analysis demonstrated

the contribution of ITD and ILD cues and highlighted the benefit of jointly evaluating

interaural time and level differences to achieve robust sound source localization. The

experimental results showed that the proposed model is able to generalize for unknown

source/receiver configurations and for absorption characteristics that were different from

the ones used to train the model. A comparison with different auditory front-ends has

shown that preserving the fine structure information of the ITDs at higher frequencies can

be effectively exploited by the GMM-based classifier, which consequently improved sound

source localization (cf. Section 2.5.2). The evaluation with up to four competing speech

sources also revealed that the frame-based error rates of the proposed localization model

are substantially below the error rates produced by binaural state-of-the-art localization

methods. In contrast to other approaches, the performance of the proposed model,

evaluated with up to four competing speakers, is almost independent of the number of

speech sources.

Furthermore, a histogram analysis of the frame-based localization estimates has been

proposed in order to predict the number of active sound sources that are present in the

acoustic scene. Experimental results demonstrated that the number of active sound

sources could be reliably estimated (above 90% accuracy) for mixtures with up to three

competing speech sources in the presence of reverberation (up to a reverberation time

of T60 = 0.58 s).

The localization model presented in Chapter 2 was consequently used in Chapter 3 to

create a two-dimensional localization map by grouping individual time-frequency (T-F)

units according to the spatial location of the most dominant sound source. In order

to further increase the reliability of the estimated sound source direction of individual

T-F units, a spectro-temporal integration stage was employed, which integrates spatial

evidence across neighboring T-F units that are believed to belong the same spatial location.

The integration stage was realized and controlled by a two-dimensional bilateral filter.

Experimental results showed that this integration stage reduced the overall localization

error and increased the amount of reliable T-F units in the estimated binary mask

for acoustic mixtures consisting of two competing speech sources in the presence of

reverberation.

In Chapter 4, a noise-robust framework for automatic speaker recognition (ASR) has been
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presented. The approach builds on missing data (MD) classification where a so-called

ideal binary mask (IBM) is utilized to divide the T-F representation of a noisy target

signal into reliable (those being dominated by the target) and unreliable (those being

dominated by background noise) T-F units. Noise-robustness is achieved by combining

the MD-based recognition of speaker identities with the adaptation of speaker models

using a universal background model (UBM). It was shown that the UBM-based adaptation

of speaker models can effectively reduce the sensitivity of MD-based recognizers to

erroneously labeled T-F units in the ideal binary mask. The combination was shown to be

especially beneficial for acoustic scenarios with highly non-stationary background noise,

which corroborates the practical relevance of this contribution.

Furthermore, the problem of estimating the ideal binary mask in noisy environments has

been addressed. To accomplish this, the local signal-to-noise ratio (SNR) was assessed

by comparing the estimated noise power with the estimated power spectrum of speech

in individual T-F units. For this purpose, a comprehensive comparison of several noise

estimation and noise reduction schemes was performed in a variety of different background

noise scenarios. A detailed receiver operating characteristic (ROC) analysis revealed

that erroneously labeling noise-dominated T-F units as being reliable (false positive)

is most detrimental for the recognition of speaker identities. Consequently, the mask

estimation for best recognition performance was achieved by a conservative labeling

of T-F units, keeping the false positive rate as low as about 2%. Although there are

quite some commonalities in the methods that are being applied in the field of noise

reduction and ideal binary mask estimation, the experimental results clearly demonstrated

the fundamental limitation of noise reduction algorithms to improve the performance

of MFCC-based speaker recognition systems. The key advantage of MD-based speaker

recognition over an MFCC-based recognizer with a noise reduction front-end is that it

does not rely on a precise estimation of the instantaneous SNR which has fundamental

limits but rather relaxes this requirement by utilizing a binary classification of reliable T-F

units that are dominated by the target.

In Chapter 5, a binaural scene analyzer was proposed which is able to simultaneously

localize, detect and recognize a predefined number of speakers in the presence of in-

terfering noise sources and reverberation. The system combined the two previously

developed building blocks, namely the binaural front-end for robust sound source local-

ization presented in Chapter 2, and the framework for noise-robust automatic speaker

recognition described in Chapter 4. In order to link the localization with the recognition

stage, a speech detection module has been proposed which is able to detect a predefined
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number of speech sources in the presence of interfering noise sources. Therefore, a set

of speech source candidates is created first by selecting azimuth positions with relevant

sound source activity. The speech detection module then estimates the ideal binary

mask, which represents the contribution of each individual speech source candidate on

a T-F basis. Based on this segmentation, an MD-based classifier exploits the distinct

spectral characteristics of speech and noise signals in order to select the most likely speech

source positions among all candidate positions. In this way, the binaural scene analyzer

is able to automatically focus on processing speech sources without assuming a priori

knowledge about the spatial location of the target speakers. Experiments demonstrated

that the proposed binaural scene analyzer is capable of simultaneously localizing and

recognizing the identity of multiple speakers in adverse acoustic conditions. Furthermore,

it was shown that having access to the estimated position of the target source, which

can be reliably estimated by the speech detection module, can significantly increase the

performance of MFCC-based recognizers by selecting the better ear feature space for

recognition. However, MFCC-based recognition is limited to acoustic scenes where only

one target speaker is present. As soon as two target speakers are simultaneously active,

the MFCC feature vector reflects the properties of both speakers, which substantially

degrades performance. In contrast, the proposed system estimates the binary mask for

each detected speech source based on spatial evidence that is provided by the binaural

front-end. As a result, the system can recognize the identity of multiple competing target

speakers.

6.2 Suggestions for future research

In this section we will provide an overview about possible future research directions.

The concept of missing data classification has been extensively used throughout this

dissertation. For the required identification of reliable and unreliable elements in the T-F

representation of complex acoustic scenes, we have exploited two different modalities:

the estimation of the local signal-to-noise ratio presented in Chapter 4 and the grouping

of T-F elements according to common spatial location in Chapter 5. It was shown in

Chapter 5 that the accuracy of the estimated binary mask based on binaural cues decreases

with increasing number of competing speech sources and interfering noise sources, which

in turn limits the overall speaker identification accuracy. A plethora of other strategies

might be employed to estimate the ideal binary mask. For example, Bregman’s gestalt
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principles provide a set of primitive grouping cues that could all potentially be exploited. It

is likely that different cues may provide complementary information about the reliability of

individual T-F units. A joint analysis of various cues should therefore allow for an improved

mask estimation in contrast to exclusively relying on the analysis of one cue. However,

only a few attempts have been devoted to jointly analyze the evidence that is provided

by different cues. In the context of monaural speech source separation, classification

approaches have been proposed to combine evidence from several monaural cues, such

as pitch and modulation, in order to estimate the ideal binary mask in the presence of

background noise (Seltzer et al., 2004, Han and Wang, 2011). In comparison, e.g., with a

local SNR criterion, improved performance was reported for the joint analysis of monaural

cues. An alternative approach that combines monaural and binaural cues for robust sound

source localization was recently presented by Woodruff and Wang (2010a,b, 2012). The

monaural cue (pitch) was used to achieve sequential organization by grouping T-F units

that are dominated by the same acoustic source. This grouping was then used to control

the integration of binaural cues across contiguous T-F units for improved localization of

speech sources in reverberation. In order to further improve the estimation of the ideal

binary mask in binaural acoustic scenes with interfering noise sources and reverberation,

the major challenge for future research is to successfully combine and integrate the

evidence that is supplied by different cues.

On a related point, most of the approaches that aim at estimating the IBM assume that

the decision about the reliability of an individual T-F unit is independent of the neighboring

T-F units. However, it was shown in Chapter 3 that integrating the evidence of sound

source location across adjacent time and frequency units that are believed to be dominated

by one source can effectively increase the accuracy of localization estimates for multiple

speech sources in reverberation. Further research is required to validate these experimental

results for acoustic scenarios with background noise and to confirm that this benefit also

relates to improvements in terms of speaker identification accuracy.

On a more fundamental level, the task of estimating the ideal binary mask can be

formulated as a joint segregation and recognition problem, as performed by the speech

fragment decoding (SFD) technique (Barker et al., 2001, Barker and Coy, 2005, Barker

et al., 2005, Coy and Barker, 2005). The system tries to simultaneously find the optimal

segmentation of reliable and unreliable T-F units and to determine the most likely output

sequence. This approach has the potential advantage over a conventional missing data

recognizer that it can account for errors in the estimated binary mask. Therefore, it could

be worthwhile to apply the SFD technique in the context of binaural scene recognition.
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In addition, the SFD idea could be further extended to also consider a variety of different

grouping cues for T-F segmentation.

As discussed in Chapter 4, MD-based recognizers require a correspondence between the

estimated binary mask and individual feature components, therefore, are constrained to

the usage of spectral features. In contrast to more compact feature representations, such

as the MFCCs, spectral features show a stronger dependency on the vocabulary size (see

Section 4.4.5 and Section 5.4.4), presumably because of the covariance between the

feature components. Further improvements can be expected when the spectral feature

space is preprocessed in order to decorrelate the filterbank energies while still preserving

the local meaning of individual feature components. In the context of speech recognition,

a simple filtering technique was used to decorrelate the sequence of filterbank energies,

and the resulting feature vector was shown to outperform cepstral coefficients in the task

of speech recognition (Nadeu et al., 1995, Paliwal, 1999, Nadeu et al., 2001). When

incorporating such a preprocessing stage in MD-based recognizers, a more compact

feature space representation might be achieved that better matches the assumption

of independent feature components that is implicitly implied by the choice of diagonal

covariance matrices in the GMM classifier. In addition, dereverberation techniques (Park

and Stern, 2007, Jeub et al., 2010, Habets, 2011) may be applied as a preprocessing step

in order to further enhance the spectral features prior to recognition and to reduce the

mismatch between the training stage and the recognition stage.

Since the developed binaural localization model in Chapter 2 is based on a Gaussian

mixture model framework, the model is scalable and can be easily extended to include time

and level differences derived from a microphone array with more than two microphones.

Furthermore, the current two-dimensional feature space consisting of ITDs and ILDs can

be naturally extended with additional features that are depending on the sound source

direction.

Currently, the localization model is either trained with binaural cues corresponding to one

radial distance of 1.5 m (see Chapter 2 and Chapter 3) or with a set of three different

radial distances (0.5 m, 1 m and 2 m, see Chapter 5). It was shown in Chapter 2 that

the localization performance of the proposed binaural front-end depends on the radial

distance between the source and the receiver and decreases with increasing radial distance.

In order to further improve the performance of the localization model at larger radial

distances, several localization models could be trained for specific radial distances, and a

distance estimation technique (either using monaural (Georganti et al., 2009, 2011) or
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binaural approaches (Vesa, 2009)) could be employed to properly select the appropriate

localization model for a particular radial distance.

The binaural scene analyzer presented in Chapter 5 requires that the number of target

speech sources that should be detected and recognized in the acoustic scene is known

a priori. Is was shown in Chapter 2 that a histogram of the frame-based azimuth estimates

can be used to reliably predict the number of active sound sources for mixtures with up

to three competing speakers in reverberation. But detecting the number of target speech

sources in a complex binaural mixture with multiple target speakers, various interfering

noise sources and reverberation is significantly more difficult than finding the overall

number of active sound sources in an acoustic scene. Therefore, this point remains an

important task for future investigations.

Finally, it is acknowledged that all the experimental results that are presented in this

dissertation are based on simulations. Further experiments with real recordings are

required to corroborate the effectiveness of the proposed binaural scene analyzer in real

acoustic environments. In addition, the spatial position of sound sources was stationary

and did not change over time. An important question is how to deal with moving sound

sources. In an attempt to approach this difficult problem for anechoic conditions, a

Hidden Markov Model (HMM) framework was proposed to track the azimuth of moving

sound sources (Roman and Wang, 2003, 2008).
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Summary

Binaural Scene Analysis

Localization, Detection and Recognition of Speakers
in Complex Acoustic Scenes

The human auditory system has the striking ability to robustly localize and recognize a

specific target source in complex acoustic environments while ignoring interfering sources.

Surprisingly, this remarkable capability, which is referred to as auditory scene analysis, is

achieved by only analyzing the waveforms reaching the two ears. Computers, however,

are presently not able to compete with the performance achieved by the human auditory

system, even in the restricted paradigm of confronting a computer algorithm based on

binaural signals with a highly constrained version of auditory scene analysis, such as

localizing a sound source in a reverberant environment or recognizing a speaker in the

presence of interfering noise. In particular, the problem of focusing on an individual speech

source in the presence of competing speakers, termed the cocktail party problem, has

been proven to be extremely challenging for computer algorithms.

The primary objective of this thesis is the development of a binaural scene analyzer that

is able to jointly localize, detect and recognize multiple speech sources in the presence

of reverberation and interfering noise. The processing of the proposed system is divided

into three main stages: localization stage, detection of speech sources, and recognition

of speaker identities. The only information that is assumed to be known a priori is the

number of target speech sources that are present in the acoustic mixture. Furthermore,

the aim of this work is to reduce the performance gap between humans and machines

by improving the performance of the individual building blocks of the binaural scene

analyzer.

First, a binaural front-end inspired by auditory processing is designed to robustly de-

termine the azimuth of multiple, simultaneously active sound sources in the presence

of reverberation. The localization model builds on the supervised learning of azimuth-

dependent binaural cues, namely interaural time and level differences. Multi-conditional

training is performed to incorporate the uncertainty of these binaural cues resulting from

reverberation and the presence of competing sound sources.

Second, a speech detection module that exploits the distinct spectral characteristics of

speech and noise signals is developed to automatically select azimuthal positions that are
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likely to correspond to speech sources. Due to the established link between the localization

stage and the recognition stage, which is realized by the speech detection module, the

proposed binaural scene analyzer is able to selectively focus on a predefined number of

speech sources that are positioned at unknown spatial locations, while ignoring interfering

noise sources emerging from other spatial directions.

Third, the speaker identities of all detected speech sources are recognized in the final stage

of the model. To reduce the impact of environmental noise on the speaker recognition

performance, a missing data classifier is combined with the adaptation of speaker models

using a universal background model. This combination is particularly beneficial in non-

stationary background noise.
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Samenvatting

Binaural Scene Analysis

Localization, Detection and Recognition of Speakers
in Complex Acoustic Scenes

Het menselijk auditief systeem is opmerkelijk goed in staat om in een complexe akoestische

omgeving, in aanwezigheid van verschillende interfererende bronnen, zowel de richting

als de aard van één specifieke bron te bepalen. Dit opmerkelijk vermogen, wat bekend

staat als auditieve scene analyse, komt tot stand enkel door de twee geluidsgolven die

onze oren bereiken, te analyseren. Computers zijn op dit moment niet in staat om deze

prestaties van het menselijk auditief systeem te evenaren, zelfs niet voor een vereenvoudigde

taak waar het computer algoritme werkt op basis van binaurale signalen in een sterk

beperkte versie van auditieve scene analyse, zoals het localiseren van een geluidsbron in

een omgeving met nagalm of het herkennen van een spreker met stoorgeluiden. Meer

specifiek is aangetoond dat het focusseren op één individuele spreker in de aanwezigheid

van meerdere concurrerende sprekers, bekend als het cocktail party probleem, een extreem

grote uitdaging vormt voor computeralgoritmen.

Het belangrijkste doel van dit proefschrift is het ontwikkelen van een binaurale scene-

analysator die in staat is om tegelijkertijd meerdere sprekers te detecteren, te herkennen

en te lokaliseren in de aanwezigheid van nagalm en stoorgeluiden. De signaalverwerking

in het voorgestelde systeem is verdeeld in drie modulen: een localisatie module, het

detecteren van spraakbronnen, en het herkennen van de identiteit van de sprekers. De

enige informatie die a priori als bekend wordt verondersteld is het aantal doelsprekers dat

aanwezig is in het akoestische signaal. Daarnaast beoogt dit proefschrift het onderscheid

in prestatie tussen mensen en machines te verkleinen door de prestaties van de individuele

bouwstenen van de binaurale scene-analysator te verbeteren.

Ten eerste is er een binaurale voorverwerking ontworpen, gebaseerd op de menselijke

auditieve verwerking, welke in staat is om betrouwbaar de azimut te bepalen van meerdere

gelijktijdig actieve geluidsbronnen in de aanwezigheid van nagalm. Het localisatiemodel

is gebaseerd op het trainen van een patroonherkenner (supervised learning) met az-

imutafhankelijke binaurale timing- en niveauverschillen. Om de onzekerheden in deze

binaurale timing- en niveauverschillen, welke het gevolg zijn van nagalm en de aanwezigheid

van stoorgeluiden, te incorporeren wordt er gebruik gemaakt van multi-conditionele train-

ing.
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Ten tweede is er een spraak-detectie-module ontwikkeld die gebruik maakt van de onder-

scheidende spektrale eigenschappen van spraak en ruis om automatisch die azimutposities

te selecteren waarvan het aannemelijk is dat ze corresponderen met spraakbronnen. Door

de zo verkregen verbinding tussen de localisatiemodule en de herkenningsmodule, die

gerealiseerd is door de spraak-detectie-module, is de binaurale scene-analysator in staat

om selectief te focusseren op een van te voren bepaald aantal spraakbronnen die over

onbekende posities verdeeld zijn, waarbij interfererende stoorbronnen op andere posities

genegeerd worden.

Ten derde wordt in de laatste module de identiteit van de sprekers herkend voor alle spraak-

bronnen die eerder werden gedetecteerd. Om de invloed van omgevingsgeluid op de sprek-

erherkenning te verkleinen wordt een classificator gebruikt die kan werken met ontbrekende

data (missing data classifier), gecombineerd met een adaptatie van de sprekermodellen op

basis van een universeel achtergrondmodel (universal background model). Deze combinatie

is vooral een voordeel bij niet-stationaire stoorgeluiden.
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Zusammenfassung

Binaural Scene Analysis

Localization, Detection and Recognition of Speakers
in Complex Acoustic Scenes

Das menschliche auditorische System ermöglicht es uns, eine spezifische akustische Quelle

in komplexen akustischen Szenen zu erkennen und zu lokalisieren und dabei zusätzlich

andere Störquellen auszublenden. Diese bemerkenswerte Fähigkeit beruht allein auf der

Analyse der akustischen Signale beider Ohren und wird unter dem Begriff der auditorischen

Szenenanalyse (engl. auditory scene analysis) zusammengefasst. Gegenwärtig existierende

Algorithmen, welche auf der Analyse von binauralen Signalen basieren, sind bisher nicht

in der Lage, diese Leistungsfähigkeit des auditorischen Systems zu erreichen. Selbst bei

einer stark vereinfachten Aufgabe, wie beispielsweise der Lokalisation einer Schallquelle

in verhallter Umgebung oder der Identifikation eines Sprechers im Störgeräusch, kön-

nen Algorithmen nicht an die Leistungsfähigkeit des auditorischen Systems anknüpfen.

Insbesondere die Konzentration auf einen Zielsprecher in Anwesenheit von weiteren konkur-

rierenden Sprechern, was oft auch als Cocktail Party Problem beschrieben wird, stellt für

Algorithmen nach wie vor eine besondere Herausforderung dar.

Diese Dissertation präsentiert einen Algorithmus zur Analyse von binauralen Szenen,

welcher eine simultane Lokalisation, Detektion und Identifikation von mehreren Sprechern

in akustisch komplexen Situationen, bestehend aus mehreren Sprechern und mehreren

Störgeräuschquellen, ermöglicht. Die Signalverarbeitung des entwickelten Systems besteht

aus den folgenden drei Abschnitten: 1. Die Lokalisation von Schallquellen, 2. Die

Detektion von Sprachquellen und 3. Die Identifikation von Sprechern. Die einzige

Annahme, die der Algorithmus benötigt, ist die Anzahl der Zielsprecher, die in der

akustischen Szene aktiv sind. Ein weiteres Ziel dieser Arbeit besteht darin, den Unterschied

der Leistungsfähigkeit zwischen Menschen und Maschinen durch Weiterentwicklung der

einzelnen Bausteine des binauralen Szenenanalysators zu verringern.

Die erste binaurale Vorverarbeitungsstufe, die teilsweise auf der menschlichen auditorischen

Verarbeitung basiert, ermöglicht eine robuste Lokalisation von mehreren konkurrierenden

Schallquellen in stark verhallten Umgebungen. Dieses Lokalisationsmodell besteht aus

einem Mustererkenner, welcher mit richtungsabhängigen interauralen Zeit- und Pegelun-

terschieden systematisch für alle Zielrichtungen trainiert wird. Um die Unsicherheiten

dieser binauralen Merkmale zu berücksichtigen, welche durch starken Nachhall und durch
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die Anwesenheit von mehreren konkurrierenden Schallquellen hervorgerufen werden kön-

nen, wird der Mustererkenner mit einer Vielzahl von verschiedenen akustischen Szenarien

trainiert (engl. multi-conditional training).

Die zweite Stufe des Systems besteht aus einem Spracherkennungsmodul, welches die un-

terschiedlichen spektralen Eigenschaften von Sprach- und Rauschsignalen auswertet. Auf

diese Weise kann das System automatisch die Richtungen selektieren, die am wahrschein-

lichsten zu Sprachquellen gehören. Durch diese Verbindung zwischen der Lokalisation

und der Identifikation ist der Algorithmus in der Lage, sich auf eine definierte Anzahl von

Sprachquellen mit unbekannter räumlicher Position zu konzentrieren und zusätzlich konkur-

rierende Störgeräuschquellen aus anderen Richtungen zu ignorieren.

In der dritten Stufe erfolgt die Sprecheridentifikation aller detektierten Sprachquellen.

Um den negativen Einfluss von Störgeräusch auf die Identifikationsleistung zu verringern,

wird ein Klassifikator verwendet, der in der Lage ist mit nichtverlässlichen Datenpunkten

zu arbeiten (engl. missing data classifier). Dieser Klassifikator wird mit der Adaptation

von Sprechermodellen mithilfe eines universellen Hintergrundmodells (engl. universal

background model) kombiniert. Diese Kombination ist insbesondere in Umgebungen mit

nicht-stationärem Störgeräusch vorteilhaft.
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