839 research outputs found

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System

    Get PDF
    Transaction-based energy (TE) management and control has become an increasingly relevant topic, attracting considerable attention from industry and the research community alike. As a result, new techniques are emerging for its development and actualization. This paper presents a comprehensive review of TE involving peer-to-peer (P2P) energy trading and also covering the concept, enabling technologies, frameworks, active research efforts and the prospects of TE. The formulation of a common approach for TE management modelling is challenging given the diversity of circumstances of prosumers in terms of capacity, profiles and objectives. This has resulted in divergent opinions in the literature. The idea of this paper is therefore to explore these viewpoints and provide some perspectives on this burgeoning topic on P2P TE systems. This study identified that most of the techniques in the literature exclusively formulate energy trade problems as a game, an optimization problem or a variational inequality problem. It was also observed that none of the existing works has considered a unified messaging framework. This is a potential area for further investigation

    Electric vehicle as a service (EVaaS):applications, challenges and enablers

    Get PDF
    Under the vehicle-to-grid (V2G) concept, electric vehicles (EVs) can be deployed as loads to absorb excess production or as distributed energy resources to supply part of their stored energy back to the grid. This paper overviews the technologies, technical components and system requirements needed for EV deployment. Electric vehicle as a service (EVaaS) exploits V2G technology to develop a system where suitable EVs within the distribution network are chosen individually or in aggregate to exchange energy with the grid, individual customers or both. The EVaaS framework is introduced, and interactions among EVaaS subsystems such as EV batteries, charging stations, loads and advanced metering infrastructure are studied. The communication infrastructure and processing facilities that enable data and information exchange between EVs and the grid are reviewed. Different strategies for EV charging/discharging and their impact on the distribution grid are reviewed. Several market designs that incentivize energy trading in V2G environments are discussed. The benefits of V2G are studied from the perspectives of ancillary services, supporting of renewables and the environment. The challenges to V2G are studied with respect to battery degradation, energy conversion losses and effects on distribution system

    QoE-aware power management in vehicle-to-grid networks:a matching-theoretic approach

    Get PDF
    Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid

    Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game-Theoretic Approach

    Get PDF
    Traditionally, energy consumers pay non-commodity charges (e.g. transmission, environmental and network costs) as a major component of their energy bills. With the distributed energy generation, enabling energy consumption close to producers can minimize such costs. The physically constrained energy prosumers in power networks can be logically grouped into virtual microgrids (VMGs) using communication systems. Prosumer benefits can be optimised by modelling the energy trading interactions among producers and consumers in a VMG as a Stackelberg game in which producers lead and consumers follow. Considering renewable (RES) and non-renewable energy (nRES) resources, and given that RES are unpredictable thus unschedulable, we also describe cost and utility models that include load uncertainty demands of producers. The results show that under Stackelberg equilibrium (SE), the costs incurred by a consumer for procuring either the RES or nRES are significantly reduced while the derived utility by producer is maximized. We further show that when the number of prosumers in the VMG increases, the CO2 emission cost and consequently the energy cost are minimized at the SE. Lastly, we evaluate the peer-to-peer (P2P) energy trading scenario involving noncooperative energy prosumers with and without Stackelberg game. The results show that the P2P energy prosumers attain 47% higher benefits with Stackelberg game

    Peer-to-peer energy trading in a prosumer based community microgrid: a game-theoretic model

    Get PDF
    This paper proposes a novel game-theoretic model for peer-to-peer (P2P) energy trading among the prosumers in a community. The buyers can adjust the energy consumption behavior based on the price and quantity of the energy offered by the sellers. There exist two separate competitions during the trading process: 1) price competition among the sellers; and 2) seller selection competition among the buyers. The price competition among the sellers is modeled as a noncooperative game. The evolutionary game theory is used to model the dynamics of the buyers for selecting sellers. Moreover, an M-leader and N-follower Stackelberg game approach is used to model the interaction between buyers and sellers. Two iterative algorithms are proposed for the implementation of the games such that an equilibrium state exists in each of the games. The proposed method is applied to a small community microgrid with photo-voltaic and energy storage systems. Simulation results show the convergence of the algorithms and the effectiveness of the proposed model to handle P2P energy trading. The results also show that P2P energy trading provides significant financial and technical benefits to the community, and it is emerging as an alternative to cost-intensive energy storage systems

    An adaptive agent-based system for deregulated smart grids

    Get PDF
    The power grid is undergoing a major change due mainly to the increased penetration of renewables and novel digital instruments in the hands of the end users that help to monitor and shift their loads. Such transformation is only possible with the coupling of an information and communication technology infrastructure to the existing power distribution grid. Given the scale and the interoperability requirements of such future system, service-oriented architectures (SOAs) are seen as one of the reference models and are considered already in many of the proposed standards for the smart grid (e.g., IEC-62325 and OASIS eMIX). Beyond the technical issues of what the service-oriented architectures of the smart grid will look like, there is a pressing question about what the added value for the end user could be. Clearly, the operators need to guarantee availability and security of supply, but why should the end users care? In this paper, we explore a scenario in which the end users can both consume and produce small quantities of energy and can trade these quantities in an open and deregulated market. For the trading, they delegate software agents that can fully interoperate and interact with one another thus taking advantage of the SOA. In particular, the agents have strategies, inspired from game theory, to take advantage of a service-oriented smart grid market and give profit to their delegators, while implicitly helping balancing the power grid. The proposal is implemented with simulated agents and interaction with existing Web services. To show the advantage of the agent with strategies, we compare our approach with the “base” agent one by means of simulations, highlighting the advantages of the proposal
    corecore