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Energy Peer-to-Peer Trading in Virtual Microgrids
in Smart Grids: A Game-Theoretic Approach

Kelvin Anoh, (Member IEEE), Sabita Maharjan, (Member IEEE), Augustine Ikpehai, (Member IEEE), Yan
Zhang, (Senior Member IEEE), Bamidele Adebisi, (Senior Member IEEE)

Abstract—Traditionally, energy consumers pay non-commodity
charges (e.g. transmission, environmental and network costs)
as a major component of their energy bills. With the
distributed energy generation, enabling energy consumption close
to producers can minimize such costs. The physically constrained
energy prosumers in power networks can be logically grouped
into virtual microgrids (VMGs) using communication systems.
Prosumer benefits can be optimised by modelling the energy
trading interactions among producers and consumers in a VMG
as a Stackelberg game in which producers lead and consumers
follow. Considering renewable (RES) and non-renewable energy
(nRES) resources, and given that RES are unpredictable thus
unschedulable, we also describe cost and utility models that
include load uncertainty demands of producers. The results show
that under Stackelberg equilibrium (SE), the costs incurred by a
consumer for procuring either the RES or nRES are significantly
reduced while the derived utility by producer is maximized. We
further show that when the number of prosumers in the VMG
increases, the CO2 emission cost and consequently the energy
cost are minimized at the SE. Lastly, we evaluate the peer-to-peer
(P2P) energy trading scenario involving noncooperative energy
prosumers with and without Stackelberg game. The results show
that the P2P energy prosumers attain 47% higher benefits with
Stackelberg game.

Index Terms—CO2 emission, communication, energy trading,
non-cooperative game, non-renewable energy, peer-to-peer,
Stackelberg game, virtual microgrid.

NOMENCLATURE

αi second order greenhouse penalty constant for i
βi first order greenhouse penalty constant for i
εii uncertainty load demand quantity of i
Γ Stackelberg game
γi constant keeping ln(·) from tending to −∞
λi Lagrangian multiplier associated with prosumer i
E set of energy trading graph edges
P set of energy trading nodes (or peers)
A set of all producers
B set of all consumers
D dual decomposition variable
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Eminj minimum amount of energy required by j
G energy trading graph
L(·) Lagrangian of (·)
N set of indices of producers i
P(g)
j grid energy price sold to prosumer j
P(g)
t unit of energy transfer price by the grid
S optimal value of W
T trading period
V utility derived as producer objective
W social welfare
Zi energy cost objective of consumer
µi step size
∇f(x) subgradient of f(x)
∂(z) partial derivative of z
CiE total cost of excess energy sold by producer i
E

(b)
ij excess energy units producer i sold to j

E
(c)
i energy consumed by prosumer i

E
(g)
i energy generated by producer i

Emini energy consumed by i’s non-flexible load
eii energy generated and consumed locally by i
Eij energy sold by prosumer i to j
Eji energy sold by prosumer j to i
f(x) function of x
kij willingness of i to sell to j
N Total number of prosumers
ni set of indices of customers of producer i
P

(b)
ji energy price paid by prosumer j to i
P

(v)
t,ji energy transmission price paid by prosumer j to i
P g grid price
P si selling price of prosumer i
P vt,i i’s excess energy transmission price by i
Pg,i price of energy generated by prosumer i
Pt,i price of generated energy transferred by prosumer i
qi total energy generated and bought
Ui total utility of prosumer i
subscript ij denotes the flow of commodity from i to j
subscript ji denotes the flow of price (cost) paid by j to i

I. INTRODUCTION

In the UK, non-commodity charges account for 55-65%
of energy bills [1] and network charges alone account for
about 25% of that figure [2]. Peer-to-peer (P2P) energy trading
offers a unique approach to produce and sell energy at the
edge of the network and can help in reducing such charges.
When these prosumers are coordinated using communication
systems [3], [4], significant power network values could be
achieved including reduced pollution and, increased energy
network efficiency and security [5].
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Reliable communication systems play vital roles in smart
grids [3], [6]. For example, communication infrastructure can
be leveraged to regroup prosumers into logical clusters called
virtual microgrids (VMGs) in order to improve performance
and aid network management cost reduction [3], [4], [7].
When realised, optimal grouping can improve efficiency of
the energy network by allowing the prosumers to trade locally,
thereby reducing the non-commodity charges.

The interactions of uncoordinated P2P energy prosumers in
a large area can be both varied and complicated. Thus, optimal
trading strategies, such as game theory, are needed to optimize
resources and costs to enhance prosumer benefits [6], [8], [9].
In this study, we explore the art of optimising energy trading
cost using game theory in VMGs. The main contributions are:

• a clustering scheme for heterogeneous prosumers seeking
to trade energy within their locality. The model not only
supports existing communication systems but also fits
well with emerging 5G and edge computing technologies.
• a game theoretical framework to model the interactions

between producers and consumers in a VMG for
prosumers equipped with renewable energy resources.
We also formulate a Stackelberg game with producers as
leaders and consumers as followers, and optimize both
the cost for consumers and the utility for producers. We
prove that a unique Stackelberg equilibrium (SE) exists.
• given that power generation from renewable energy

resources (RES) are not predictable and thus
unschedulable, we formulate the energy trading cost and
utility models in terms of load demand uncertainty for
VMG energy trading system equipped with RES only
and that are also grid-connected.
• Lastly, we solve the social welfare problem under

P2P energy trading scenario for non-cooperative energy
prosumers. The result shows reduced energy trading costs
for the consumer and enhanced utility for the producer
compared to the SE with the added advantage of reduced
emission for increasing number of prosumers.

The remaining part of this paper is organized as follows:
In Section II, we provide literature review and describe the
system model in Section III. We formulate the problem in
Section IV. In Section V, we evaluate the social benefits of
non-cooperative energy trading while we present our main
results in Section VI. Section VII concludes the paper.

II. RELATED WORK

P2P energy trading scheme has recently gained traction
with diverse motivations [3], [4], [6], [7], [10]–[14]. The
motivations include modelling the psychological behaviour of
the traders, the problems of feed-in tariff (FiT), the imposition
of energy dispatch limits on distributed energy generators
(DEG) by some local governments [13], [15] and incentives
[16], [17]. These plethora of research literature that use P2P
algorithm in the energy sector can be generally grouped into
three areas [13], [18]; electric vehicles [19], microgrid [3],
[20] and distribution network [21]. This study focuses on the
microgrid area. It uses the evolving IoT and edge computing
technologies [22], [23] to form VMGs to manage DEGs.

The idea is inspired by the microgeneration of energy at
the edge of the distribution network [24], as renewable energy
generation is now prevalent in residential and commercial
buildings, and the pervasive nature of wireless communication
technologies. Without altering the physical topology of power
network, VMG scheme allows logical grouping of prosumers
using communication systems as the key enabler [3], [4] as
shown in Fig. 1. Coordinating prosumers locally in VMGs
could provide significant advantages to power systems, such as
increasing network efficiency and security, reducing pollution
and alleviating the burden of investing in upstream energy
generation and transmission [5]. In terms of communication
networks, the costs of traversing a wide (or metropolitan) area
network to complete energy transactions is overcome.

We approach the study of interactions among the prosumers
as a noncooperative game. In the game, players make
decisions independently [25] with the leader (e.g. seller)
making the first move. The players in VMGs are managed
using communication systems. Unlike [26] that considered the
interactions between microgrid operators (or aggregators [27])
and prosumers of a homogeneous energy trading system as
a noncooperative game, we consider the case heterogeneous
energy prosumers since they cannot be practicably isolated.

Noncooperative game theoretic approaches including the
Nash game, Stackelberg game and others to study energy
trading is widely reported [9], [15], [25]–[30]. Some of
these studies involve where the utility companies attempt to
maximize their revenue while the consumers are interested
in maximizing their own pay-offs [28]. Nash game has also
been applied to study energy trading in DSM, where there
is one utility company and multiple consumers [9]. In [30],
the authors derived a Nash equilibrium (NE) to maximize
utility for geographically distributed energy storage units and
unfairness between high and low capacity consumers at NE
[27]. Apart from Nash game, Stackelberg game has been used
to maximize seller utility and to minimize user costs [29].
NE is a specific solution for noncooperative games where
each player in the game can not get a higher payoff by
deviating unilaterally. Noncooperative game equilibrium is a
more general concept that includes NE but extends to include
other equilibrium concepts as well such as SE.

The authors in [20] studied P2P energy trading to balance
local generation and demand for grid-connected renewable
energy generators. In [31], Stackelberg game was applied
to optimize energy trading among multiple prosumers and
multiple consumers. The study in [3] examined distributed
energy trading involving multiple prosumers and multiple
generators for multiple VMGs. These consumers may range
from local energy generators from renewable sources such as
wind, solar or geothermal, to residential units, commercial
units, industry and cooperative sellers. Each VMG could
involve a VPP for prosumers with storage facilities.

III. SYSTEM MODEL

Consider reducing the cost incurred by the energy consumer
and maximizing utility for the producer. A prosumer can act as
an energy generator or consumer at different trading intervals.
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Figure 1: Energy prosumers formed into virtual clusters; each virtual cluster shows N -prosumers that connect to RAN via an ETA. Note that the prosumers
are heterogeneous in terms of energy resources and generation capacity.

Since there are multiple producers and consumers involved,
attaining optimal pricing as well as utility for the consumers
and producers respectively, can be complicated. We introduce
a game theory-based approach to optimize energy trading costs
in a single VMG. This important area has not been reported
in other studies investigating VMG such as [3], [4], [32], [33].

A. Background

Communication systems play a crucial role informing VMG
as shown in Fig. 1. The computational agents can reside
in local edge computing systems or in a cloud [22], [23].
Assuming a wireless communication systems, the radio access
network (RAN) is equipped with eNode-B (eNB) and MEC
facilities; e.g. the emerging 5G standard [34], [35]. The RAN
is connected to the network cloud and enables prosumers to
identify local energy trading neighbours in its VMG. In this
case, the prosumers connect to the MEC via the eNB in a
machine-type communication (MTC) fashion. The software
configured on the MEC which achieves the transactional
service together with the external communication hardware
will be referred to as energy trading agent (ETA).

In terms of communication network, VMG relieves data
transfer over the core network and encourages information
processing within the edge communication infrastructure using
the evolving MEC. In terms of power network, it encourages
local energy trading as prosumers can find buyers and sellers
within its neighbourhood. In terms of the environment, energy
loss due to long distance transmission will be reduced and thus
CO2 emission will be cut down.

In this study, the ETA coordinates the transaction messaging
services between producers and consumers. Examples of
communication infrastructure that may implement the ETA
include NB-IoT, LoRaWAN, Wi-Fi, WIMAX, or LTE-MTC
[36], [37]. The prosumers have finite energy generation

capacity and also need to act as energy consumers at times.
This phenomenon makes the peers interdependent. The energy
prosumers are also equipped with communication (hardware)
and application (software) with which they exchange energy
trading messages with other prosumers over the ETA. The
combined hardware and software infrastructure are referred to
as energy trading client (ETC). We assume that the ETC is
able to connect wirelessly to the ETA via the eNB. Except
for the recent study [22] on the cost uncertainties due to
communication systems in a single VMG, no other study has
investigated the problem of optimising energy trading costs
and utility for prosumers in a given VMG. This problem is
addressed in this study, by first considering the energy trading
interactions among prosumers as a game.

B. System Design

Consider energy P2P trading in a single VMG as shown in
the Fig. 1, wherein there are {A = {Ai : ∀i ∈ N}} producers
and {B = {Bj : ∀j ∈ ni}} consumers; ni ⊆ N is a set of
indices of consumers that buy energy from producer i, N =
{1, 2, · · · , N} and N is the number of prosumers. BothAi and
Bj are physically connected in a power distribution network,
and are also allowed to trade energy. The peer connectivity
may be denoted using an energy trading graph G = (P,E)
with set of edges E ⊂ P × P and P = {P1, · · · , PN}
is a set of peers. Prosumers can act (and are referred to)
as consumers when they need to buy energy. In the model,
Ai sets up its own energy price and the consumer has the
liberty to choose who to purchase energy from. Typically, the
energy price defined by Ai is cheaper than the grid-price at
the prevailing transaction interval. Thus, the price set by Ai
depends on the prices set by other Ai’s and the grid. This type
of coupling between prosumers’ trading strategies necessitates
the use of game theory to model the interaction between the
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Figure 2: Energy and price flow (transmissions) during P2P energy trading
(from prosumer i to j and vice versa).

producers and consumers. Specifically, we adopt a multi-leader
multi-follower Stackelberg game.

Given the prices set by {Ai : ∀i ∈ N}, {Bj : ∀j ∈ ni}
chooses its own energy price {P (b)

ji ∈ P si : ∀i ∈ N , j ∈ ni}
and {P (b)

ji ≤ P si : ∀i ∈ N , j ∈ ni}, where P (b)
ji is the price

which the consumer can afford to buy from producer i and
P si is the selling price of the producer. Also, we note that
{P (b)

ji ∈ (P si
⋃
P g) : ∀i ∈ N , j ∈ ni} which implies that

the price paid by consumer j is drawn from either P si or
P g , where P g is the price set by the grid. Based on P (b)

ji set
by Bj , Ai unveils the quantity of energy (E

(g)
i − eii) that it

is willing to sell after satisfying its non-flexible load Emini ;
E

(g)
i is the amount of energy generated by producer i and
{eii : ∀i ∈ N} is the amount of energy that the producer
chooses to consume. The energy and price flows are illustrated
in Fig. 2. It shows that when the producer and consumer agree
to trade, the energy (E(b)

ij ) is sent from producer i to consumer
j and the money (P (b)

ji ) flows from consumer j to producer i.
The Stackelberg game is characterised by i) sequential actions
in which the leader makes the first move, followed by optimal
reaction from the followers ii) information asymmetry such
that the amount of energy on offer is not revealed until the
price is mutually agreed. In our model the producer is the
leader and the consumer is the follower; these positions can
be taken by any prosumer depending on its circumstance at a
given trading period. We consider a game where P2P energy
prosumers compete to satisfy their own goal. In this scenario,
the producer evaluates its non-flexible load requirement and
estimates any excess amount of energy for trading depending
on the pricing information that it receives from the consumer.
The consumer then considers the grid price to determine its
own bid for the excess energy from other prosumers within
the ETA service area.

Denote ni := {j : (Pi, Pj) ∈ E} to be all the set of peers
that can sell energy to Pi (i.e. ingoing-neighbours) and n−i :=
{j : (Pi, Pj) ∈ E} to be the set of all peers that can buy energy
from Pi (i.e. outgoing-neighbours). The energy trading model
described in [3] involves outgoing energy Eij ≥ 0 to prosumer
i and incoming energy Eji ≥ 0 to prosumer i. Let the energy
consumed by i be E(c)

i , then from [3]

E
(g)
i +

∑
j∈ni

Eji = E
(c)
i +

∑
j∈n−

i

Eij ∀i ∈ N , (1)

where ni ⊆ N is the set of neighbours of prosumer i.
The expression in (1) denotes the well-known energy balance
model which indicates that the total energy generated must be
equivalent to the total energy consumed. In terms of energy
generated, we can rewrite (1) as

E
(g)
i = E

(c)
i +

∑
j∈ni

(Eji − Eij) ,∀i ∈ N . (2)

By letting the price of every unit of energy (kWh) generated
by prosumer i be linear multiple of the quantity, then

CT =
∑
i∈N

E
(g)
i Pg,i +

∑
i∈N

E
(g)
i Pt,i (3)

where Pg,i represents the price of energy generated and Pt,i
represents the price of energy transferred by prosumer i.
Note that if a given quantity of energy is generated locally
and consumed locally, then Pt,i = 0. The model in (3)
represents the cost of energy locally generated and that bought
externally from another prosumer. Our interest is in a single
VMG and since each prosumer is selfish and concerned with
optimizing own energy production cost, the optimal energy
cost of generating E(g)

i units of energy can be expressed as

C?T = min
{Pg,i,Pt,i}

∑
i∈N

E
(g)
i Pg,i +

∑
i∈N

E
(g)
i Pt,i. (4)

If prosumer i always buys energy, then one of the ways of
minimizing its generation cost is by minimizing the energy
trading cost, e.g. by generating, trading locally or choosing
cheapest seller. Given a microgrid with many prosumers to
buy the energy from, the consumer can achieve its goal of
minimizing the cost for Eij units of energy by choosing the
cheapest price offer among the ni ⊆ N prosumers present in
the trading area. On the other hand, prosumer j is interested
in maximizing the utility it derives from consuming only eii.
The interdependence of consumer and producer coupled with
the complex exchange of trading information (i.e. quantity and
price) can be modelled as a Stackelberg game. In the game,
the consumer pursues minimizing energy trading cost while
the producer (seller) seeks to maximize the benefit it derives
from consuming eii only out of E(g)

i that it produces.

IV. PROBLEM FORMULATION

In this section, we formulate energy trading cost models for
prosumers equipped with renewable (RES) and non-renewable
energy resources (nRES).

A. Energy Cost Models (Buyer)

There are three components of total energy cost model [3].
These include the cost of energy generated and consumed
locally and the cost of all the energy bought from other
prosumers, which can be represented as E(b)

ij P
(b)
ji , where E(b)

ij

is the quantity of energy that prosumer j buys from other
prosumers i. Lastly, E(b)

ij P
(v)
t,ji is the energy transmission cost,

where P (v)
t,ji is the energy transmission price paid by consumer

j to producer i per kWh for E(b)
ij units of energy bought over a

unit distance. In addition to these, we account for the emission
cost Iji(qij),∀i ∈ N , j ∈ ni. Hence, by combining Iji(qij),
E

(b)
ij P

(b)
ji and E(b)

ij P
(v)
t,ji, the total cost can be expressed as

CiE =
∑
j∈ni

Iji(qij) +
∑
j∈ni

E
(b)
ij P

(b)
ji +

∑
j∈ni

E
(b)
ij P

(v)
t,ji+∑

j∈ni

(Eminj − E(b)
ij )P(g)

j +
∑
j∈ni

(Eminj − E(b)
ij )P(g)

t (5)
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where Eminj is the minimum energy requirement of the
consumer j, P(g)

t is the unit transfer price of the grid per
unit distance. Note, (5) suggests that consumer j can purchase
(Eminj −E(b)

ij ) to satisfy its minimum load from grid when its
peers do not have surplus energy or P (b)

ji ≥ P
(g)
j ; assuming

P
(v)
t,ji ≈ P

(g)
t . We make clear distinction on the energy sources

to facilitate the carbon target being pursued around the globe.
We define the emission cost as [38]

Iji(qij) = α2
jiqij + βjiqij , ∀i ∈ N , j ∈ ni (6)

where αji and βji are emission penalty variables and qij is
the total amount of energy generated and bought. Note that as
energy flows from prosumer i to j and cost (price i.e. money)
from prosumer j to i, we have denoted the variables as qij
and αij , respectively. In that case, substituting (6) into (5) the
total energy cost for the consumer takes the form

CiE =
∑
j∈ni

α2
jiqij +

∑
j∈ni

βjiqij +
∑
j∈ni

E
(b)
ij P

(b)
ji +

∑
j∈ni

E
(b)
ij P

(v)
t,ji

+
∑
j∈ni

(Eminj − E(b)
ij )P(g)

j +
∑
j∈ni

(Eminj − E(b)
ij )P(g)

t . (7)

For RES producer, αji = 0, βji = 0, thus Iji(qij) = 0. If the
producer generates energy from nRES, then both αji > 0
and βji > 0. Sample realistic energy cost models follow
two-step conservation rate or quadratic cost function [39].
At each trading period, the consumer minimizes the energy
trading cost for buying E

(b)
ij units of energy over a unit

distance at a transmission price Pt while the producer pursues
to maximize utility it derives from selling E(b)

ij units of energy.
Note that since the renewable energy source is unpredictable,
the renewable energy generators are unscheduleable.

B. Utility of the Energy Producer (Seller)

Suppose that the producer consumes {eii : 0 ≤ eii ≤ E(g)
i }

amount of energy, the total utility derived from consuming
a certain quantity of energy is realized from combining the
local utility of the prosumer and the revenue it generates after
selling its excess energy, i.e. (E

(g)
i − eii). From (2), we can

express the excess energy that can be sold by prosumer i as

E
(g)
i − eii =

∑
j∈ni

(Eji − Eij) ,∀i ∈ N . (8)

When (E
(g)
i − eii) > Emini , the prosumer has extra energy

and may be interested to sell. When (E
(g)
i − eii) ≤ Emini , the

prosumer may require to procure additional amount of energy.
These two conditions may attract the prosumers to engage in
an energy P2P trading.

The total utility of a prosumer for consuming only eii units
of energy out of what it generates can be expressed as

Ui(eii, E
(b)
ij ) =

∑
j∈ni

kij ln (γi + eii) +
∑
j∈ni

E
(b)
ij P

(b)
ji , (9)

where kij is the willingness [40] of prosumer i to sell
to prosumer j and γi is a constant. We have adopted the
ln(·)-based utility model because it leads to proportional fair
demand response, and is well accepted and widely used model

[28], [29], [41]. With γi > 0, the log(·)-based utility part in
(9) does not tend to −∞ when eii = 0; an example of γi = 1.
If we replace E(b)

ij by (E
(g)
i − eii), then total utility becomes

Ui(eii, E
(b)
ij ) =

∑
j∈ni

kij ln (γi + eii) +
∑
j∈ni

(E
(g)
i − eii)P

(b)
ji .

(10)

The model in (10) can be explained as having two variables;
the first variable kij ln(γi + eii) represents the local utility
derived by the prosumer for consuming eii units of E

(g)
i

while P (b)
ji (E

(g)
i − eii) is the revenue it receives for selling

the excess energy it generates after satisfying its local load
requirements. From (10), it is easy to show that producers
with higher willingness to sell (E

(g)
i − eii) tend to achieve

higher utility than prosumers with lower willingness.
Supposing a strictly RES trading system and considering

that RES is unschedulable, we can as well discuss both (7)
and (10) with respect to load uncertainty demand quantity,
εii. In that case, we rewrite (7) as follows

Ui(εii) =
∑
j∈ni

kij ln (γi + êii)) +
∑
j∈ni

Ê
(b)
ij P

(b)
ji , (11)

where Ê(b)
ij = (E

(g)
i − êii) and êii = (eii+εii). Also, in terms

of the load uncertainty the cost in (7) can be rewritten as

ĈiE =
∑
j∈ni

Ê
(b)
ij P

(b)
ji +

∑
j∈ni

Ê
(b)
ij P

(v)
t,ji +

∑
j∈ni

(Eminj − Ê(b)
ij )P(g)

j

+
∑
j∈ni

(Eminj − Ê(b)
ij )P(g)

t . (12)

Since (11) and (12) appeal to RES only, we shall continue
our discussion with the more general models, i.e. (7) and (10).
Notice that the uncertainty of producer’s loads and that RES
is unschedulable will affect the energy balance, in particularly,
the amount of energy consumed by the prosumer, namely eii
in (8) by εii units of energy.

C. Stackelberg Game Formulation

In this study, producers are prosumer with surplus energy
to sell and knows the grid price. Consumers have need to
buy energy to satisfy their minimum load requirement and are
interested in minimizing the cost of such energy "production".
In a Stackelberg game, leaders act first; in this study producers
(or leaders) announce the availability of, and willingness to
sell, their surplus energy. Consumers, as followers, follow this
announcement by announcing the price they are able to pay.
In Stackelberg game, while both the leader and the follower
pursue their own interests, the leader of the game reacts to the
behaviour of the follower to advertise own quantity of excess
energy that it is willing to sell. The leader and follower are
interested in optimizing their benefits and costs respectively.
Thus, let us start with the leader’s side.

The producer is interested in maximizing the utility it
derives from consuming only eii units of energy out of E(g)

i

units it generates. That is, (9) takes the form

U?i (eii, E
(b)
ij ) = max

eii
Ui(eii, E

(b)
ij ) ∀i ∈ N (13)
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where U?i is the optimal utility derived by prosumer i for
consuming eii units of energy it generates and also selling the
remaining quantity i.e. (E

(g)
i − eii). In that case, we estimate

the first order optimal quantity of energy it can sell to the
consumer by taking the first derivative of (10) and find that
(see Appendix A)

eii =
∑
j∈ni

kij

P
(b)
ji

− γi, 0 ≤ eii ≤ E(g)
i ∀i ∈ N . (14)

Note that kij > P
(b)
ji in (35), so that kij/P

(b)
ji >> 1. This

ensures that the energy consumed must satisfy eii ∈ R+.
Having received the amount of excess energy that the

producer is willing to sell to the consumer, the consumer
computes and gives the best price it can pay. To estimate the
optimal price the consumer can pay, it has to solve the problem

Ci?E = min
P

(b)
ji

CiE ∀i ∈ N , ∀j ∈ ni. (15)

Note that the energy consumption of each prosumer is
decoupled; i.e. it does not depend on how much the other
peers consume. This implies that the trading optimization
problem can be decomposed into ni sub-problems and solved
independently. The price realized from solving (15) becomes
the best price the consumer is willing to pay for the excess
amount of energy (E

(g)
i − eii) from the producer.

The consumer minimizes the cost of energy it buys by
solving (15) as in (39) to obtain (see Appendix B)

P
(b)†
ji =

√√√√ (−α2
ji − βji − P

(v)
t,ji + P(g)

j + P(g)
t )

(E
(g)
i + γi)

. (16)

In this case, P (b)†
ji is the best response that the consumer can

buy the excess energy (E
(g)
i − eii) from the producer. The

optimal energy consumed by the producer will be

e†ii =
∑
j∈ni

kij

P
(b)†
ji

− γi ∀i ∈ N (17)

SE for P2P Energy Resources: Consider a game Γ played
by N producers and ni consumers, by choosing (e†ii,P

(b)†
ji )

strategies, which can be expressed as

Γ = {A ∪ B, {ei}i∈N ,P(g), {P(b)}, {P(s)}, {Ui}i∈N ,CE}
(18)

where {P(b)} ∈ {P(s)}∪P(g) is the set of energy prices that
the consumer is able to pay and {ei}i∈N is the set of strategies
of producer i with {eii : 0 ≤ eii ≤ E

(g)
i }. The consumers

set their own strategies from obtaining P
(b)
ji ∈ (P(b) ∪ P(g))

which are usually constrained as P (b)
ji ≤ P

(s)
i ≤ P(g). The

Stackelberg game Γ with a set of strategies (e†ii, P
(b)†
ji ), attains

equilibrium if and only if the chosen strategies satisfy the
following criteria:

Ui(e
†
ii, P

(b)†
ji ) ≥ Ui(eii, P (b)†

ji ) ∀i ∈ N ,∀j ∈ ni (19)

also CiE(e†ii, P
(b)†
ji ) ≤ CiE(e†ii, P

(b)
ji ) ∀i ∈ N ,∀j ∈ ni. (20)

where P (b)†
ji ∈ P (b)

ji and e†ii ∈ eii. Once the game attains the
equilibrium, no member of the game will be able to deviate
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Figure 3: Producer utilities for RES and nRES at varying prices. Note that
P

(b)
ji,r is the unit price of RES and P

(b)
ji,nr is for nRES.

from the current strategy (e†ii,P
(b)†
ji ) because by doing so, the

player cannot achieve additional gain. To verify the existence
and uniqueness of the strategy chosen by a producer, we take
the second derivative of (9) i.e.,

∂2Ui
∂e2ii

= −
∑
j∈ni

kij

(eii + γi)
2 ∀i ∈ N (21)

which is strictly concave (i.e. ∂2Ui
∂e2ii

< 0). It follows that for

any price that the consumer chooses that satisfies P (b)
ji > 0,

there exists a unique eii chosen by the producer that satisfies
Emini ≤ eii ≤ E(g)

i . Similarly by taking the second derivative
of (15), for the cost paid by the consumer, it can be seen that
(see Appendix C)

∂2CiE

∂P
(b)2
ji

= P(g)
j

∑
j∈ni

kij

P
(b)3
ji

+ P(g)
t

∑
j∈ni

kij

P
(b)3
ji

−
∑
j∈ni

kijP
(v)
t,ji

P
(b)3
ji

+
∑
j∈ni

α2
i kij

P
(b)3
ji

+
∑
j∈ni

βikij

P
(b)3
ji

. (22)

Since αji and βji are usually small, for example α = 5×10−2

and β = 0.1 [42], then the last two terms in (22) tend to zero
so that the cost model is strictly convex (i.e. ∂2CiE

∂P
(b)2
ji

> 0). It

follows that a unique (i.e. optimal) price exists to procure a
unit of excess energy sold by the producer. Also there exist
unique amounts of energy that each consumer will buy from
each producer; thus constituting unique SE (e†ii, P

(b)†
ji ).

D. Characteristics of Proposed Cost Model at SE

Fig. 3 shows the impacts of varying energy prices on the
utility of the producer at a given willingness, k = 810. For
example, at low energy prices, the producers achieve low
utility for trading with RES; this increases with increasing
energy prices. This phenomenon is similarly true for nRES.
However, we note that due to the emission costs charged for
nRES, the producer achieves 20% utility higher for RES when
compared to nRES. Notice also that as the local consumption
of the energy produced increases, the utilities derived by the
producer reduces for both RES and nRES.
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Figure 4: Comparison of total emission costs considering the optimal energy
price for varying number of consumers

Considering the emission costs, we now demonstrate
emission reduction when the producers and consumers play the
game at SE. These results are compared in Fig. 4 taking into
consideration the amount of energy bought, the willingness
(k = 810) of a producer and the number of prosumers that
exist in a trading area. In the simulation, we set α = 5×10−2

and β = 0.1 as in [42]. We see that when the prosumers engage
in playing the game, the emission cost is significantly reduced.
Suppose that there exists a threshold of energy generation in
the given VMG (i.e. all the prosumers can generate a total
of E energy units), as expected, we also observe that as the
number of the prosumers in the area increases, the emission
cost reduces. This is because, there exists opportunities for
increased local generation and consumption. In addition, if the
consumer must buy energy from a local producer, the distance
covered in the trade is significantly reduced thus affecting the
emission cost.

V. SOCIAL WELFARE OF P2P PROSUMERS IN VMG
Social welfare (SW) is usually studied for collaborative

and non-collaborative prosumers aspiring to maximize benefits
[27]. From the foregoing non-cooperative game discussion,
we will further evaluate the energy trading cost and utility
performances with respect to the SW. We shall start with
analytical definition of SW considering the formulated utility
and cost models. SW of non-cooperating prosumers has been
studied using game theoretic [27] and blockchain [19], [43]
tools. Here, we model the SW of these prosumers engaging
in P2P energy trading within a single VMG as [44]

W =
∑
i∈N

Ui(eii, E
(b)
ij )− CiE(E

(b)
ij , P

(b)
ji ). (23)

For the given price, each prosumer attempts to adjust its power
consumption to maximize its benefit. In that case, the SW of
the prosumers participating in the game is

S = max
eii

∑
i∈N

Ui(eii, E
(b)
ij )− CiE(E

(b)
ij , P

(b)
ji ) (24a)

subject to:
∑
j∈ni

E
(b)
ij ≤ E

(g)
i , E

(b)
ij 6= 0,∀i ∈ N . (24b)

Constraint (24b) exclusively eliminates the prosumers with no
excess energy (i.e. E(b)

ij = 0) from participating in the trade.

The constraint is ascertained by the ETA as a precondition for
the prosumer to participate. The Lagrangian of (24) can be
expressed as follows

L(eii, E
(g)
i , E

(b)
ij , λi) =

∑
i∈N

Ui(eii, E
(b)
ij )−

∑
i∈N

CiE(E
(b)
ij , P

(b)
ji )

−
∑
i∈N

λi
( ∑
j∈ni

E
(b)
ij − E

(g)
i

)
(25)

where λi is the Lagrangian multiplier. The Lagrangian can
be rewritten in terms of producer’s and consumer’s respective
objectives. For example, we let the model (25) be written as

L
(
eii, E

(g)
i , E

(b)
ij ,λi

)
=
∑
i∈N

(
Ui(eii, E

(b)
ij )−

∑
i∈N

∑
j∈ni

λiE
(b)
ij

)
+
∑
i∈N

λiE
(g)
i −

∑
i∈N

CiE
(
E

(b)
ij , P

(b)
ji

)
. (26)

The common approach to solve this type of problem is by
decomposing (26) into a dual problem [41], [44]. Using the
dual decomposition principle [41], we can express (26) as

D (λi) = maxL(eii, E
(g)
i , E

(b)
ij , λi). (27)

As the producer and the consumer have different objectives,
(26) can be decomposed into two sub-problems as

D (λi) =
∑
i∈N
Vi(λi) + Zi(λi) (28)

where Vi(λi) = max
eii

(Ui(eii, E
(b)
ij )− λiE(b)

ij ), (29)

Zi(λi) = max
P

(b)
ji

∑
i∈N

λiE
(g)
i −

∑
i∈N

CiE(E
(b)
ij , P

(b)
ji ). (30)

If the prosumer charges the consumer at price P
(b)
ji = λ?i

(i.e. strong duality), it can be shown that the total energy
procured by the consumers will be equivalent to the quantity
of the excess energy sold by the producer. This is a dual
decomposition problem that can be summarized as

D (λ?i ) = min
λi≥0
D (λi) . (31)

While producers solve (29), the consumer tries to minimize
costs charged to it by solving (30). At the optimal condition,
the prosumer charges the consumer λ?i per kWh for the (E

(g)
i −

eii) energy units it purchases.
Although (24) is convex and can be solved centrally, e.g.

by the ETA, a major setback is that the willingness parameter
(kij) is private, thus the ETA may not have enough information
to do so. Furthermore, solving the problem centrally would
lead to computational inefficiency and latency, and therefore
stale energy prices. Thus, given the distributed nature of the
prosumers, one of the ways to solve the dual problem is by
gradient projection method [44] in a distributed fashion. Let
a function f(x) : Rn → R, the subgradient of f(x) is the
gradient of f(x) at x (i.e. ∇f(x)) if f(x) is differentiable
[45]; in this case the subdifferential of D(λiτ ) at λiτ is ∂D(λiτ ).
It follows that we can iteratively obtain the pricing update as
follows at different trading intervals

λiτ+1 =

[
λiτ − µi

∂D(λiτ)
∂λi

]+
, ∀i ∈ N , ∀τ = 1, · · · , T (32)
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Figure 5: Comparison of renewable energy costs for playing the Stackelberg
game and the conventional case.

where µi is the step size and [x]
+ , max(0, x). When the

producers solve (29) and reveal the optimal quantity of energy
it would consume e?i (λ

i
τ ) given the new price update λiτ , then

the consumer solves (30) and provides the optimal price it
would pay as P (b)?

i (λiτ ). It follows that the price update is:

λiτ+1 =
[
λiτ + µi

( ∑
j∈ni

E
(b)
ij (λiτ )− E(g)

i (λiτ )
)]+ ∀i ∈ N

(33)

Hence, based on (24), the total social welfare benefit of the
prosumer can be expressed as

W?(eii, P
(b)
ji ) =

∑
i∈N

Ui(e
?
ii, E

(b)
ij )− CiE(E

(b)
ij , P

(b)?
ji ), (34)

where W?(·) is the social welfare of the nRES prosumers, e?ii
is the optimal amount of energy consumed which is realized by
the producer by solving (29) while P (b)?

ji is the optimal price
that the consumer is willing to pay to acquire E(b)

ij which it
realizes by solving (30).

VI. ILLUSTRATIVE RESULTS

Using the scenarios described above for RES and nRES,
we explore the case of one VMG among the VMGs of the
large energy trading area described in [3], [4]. The VMG is
characterised by N -prosumers. Our interest is to evaluate the
energy trading costs of a consumer for buying either RES
or nRES, or both and how the cost can be minimized for
the consumer and utility maximized for the producer in the
VMG. We assume that all the prosumers within the single
VMG are served by only one ETA such as LoRaWAN or
any other LP-WAN technology [36]. Each consumer connects
the prosumer facility to the ETA using an ETC as shown
in Fig. 1. We assume the LoRaWAN network is stable and
that the single VMG is composed of 10 prosumers with up
to 80 kWh energy generation capacities. These datasets are
generated as uniformly distributed random variables using
MATLAB tool. Using (16) and (17) in (7), we evaluate the
optimal energy trading costs for RES and nRES. We adopt the
energy pricing parameter, namely P

(g)
j = 16p for each unit

of energy produced [3] and P
(b)
ji = 12p. The transmission
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Figure 6: Pricing and producer consumption updates for different energy
trading periods.

cost charged to generators in the UK is P (g)
t ≈ 25p ( [46]

pp. 30), then P
(v)
t ≈ P

(g)
t ≈ 25p. Furthermore, we adopt

the environmental pollution parameters α = 2 × 10−2 and
β = 10−1 as in [42]. To ensure that kij/P

(b)
ji >> 1 condition

is met, we choose kij >> P
(b)
ji such as in [29]. We also invoke

the optimal pricing criteria realized at SE so as to compare
the outcome results with that of the conventional price. By
the term conventional, we imply random trading peer-to-peer
energy trading mechanism that does not involve any smart
trading mechanism such as the proposed game theory.

Algorithm 1 Social welfare scheme for P2P energy prosumers

1: Initialization: P
(b)
ji , E

(g)
i , E

(b)
ij , kij , P

(v)
t , P

(g)
t , βji, E

(b)
ij ,

2: αji, µ
i, λiτ , T . consumer, prosumer and grid parameters

3: for τ = 1 to T do
4: Solve (32) to realize λi?τ as in (33) at τ th trading

interval
5: Using the result in (32), solve (29) and (30),

respectively
6: Obtain e?ii from the solution of (29). . producer

energy consumption from the Stackelberg game.
7: Obtain P ?ji from the solution of (30). . consumer

price from the Stackelberg game.
8: Compute the optimal U?i (e?ii, E

(b)
ij ) using the

Stackelberg game parameters e?ii for the producer
9: Compute the optimal Ci?E (E

(b)
ij , P

(b)?
ji ) using the

Stackelberg game parameter P (b)?
ji for the consumer

10: Find the social welfare using W (U?i , C
i?
E )

11: if (E
(g)
i (λiτ )−

∑
j∈ni E

(b)
ij (λiτ )) > e†ii,∀i ∈ N then

12: Compute new price update:
13: λiτ+1 =

[
λiτ +µi

(∑
j∈ni E

(b)
ij (λiτ )−E(g)

i (λiτ )
)]+

14: if the stopping criteria is met: then
15: break the loop of iteration
16: end if
17: end if
18: end for

At first, we follow the time-varying pricing update model in
(33) to obtain the optimal price using Algorithm 1. The loop



1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2934830, IEEE
Transactions on Smart Grid

9

20 30 40 50 60 70 80

Amount of energy generated (kWh)

0

5

10

15

20

25

30

35

40

45

50

E
n
e
rg

y
 C

o
s
t 
(£

)
k = 90 (fixed)

k = 90 (opt)

k = 240 (fixed)

k = 240 (opt)

k = 450 (fixed)

k = 450 (opt)

Conventional fixed pricing 

(without Stackelberg game)

Optimal energy pricing 

(with Stackelberg game)

Figure 7: Evaluation of non-renewable energy trading costs for consumers
playing the Stackelberg game against the conventional case.

is iterated over τ = 1, · · · , T trading periods. The stopping
criteria is established as the point where the slack variable in
(33) is less than the best amount of energy consumed by the
producer, i.e. (E

(g)
i (λiτ ) −

∑
j∈ni E

(b)
ij (λiτ )) ≤ e†ii,∀i ∈ N .

This is because, the prosumer must consume e†ii energy units
to satisfy its local loads. The results of this iterative process
is shown in Fig. 6. Clearly, it shows that the prices decay as
the trading period increases. On the other hand, the producer
consumes more energy at such low prices period and sells
more at higher price period. However, the producer is at best
satisfaction at the point of intersection of the price and its
consumption, a kind of the phenomenal equilibrium price.

Fig. 5 presents the energy trading cost for our proposed
Stackelberg game-based model with RES. It shows that with
producers and consumers playing the Stackelberg game, the
energy trading cost incurred by the consumer is significantly
reduced at SE. Investigating the optimal cost rigorously, the
consumer requires to buy a small unit of energy when the
willingness to sell is small in order to satisfy its non-flexible
loads but indulges in revenue generation when the preference
increases (i.e. as a producer). These are also true for nRES
energy trading case as shown in Figs. 7-8. Notice that due to
the penalty from emissions as shown in Fig. 8, the trading
cost is higher for nRES prosumers (Fig. 7) than that of RES
prosumers (Fig. 5). Next, we consider the utilities derived by
producers of the non-cooperative game considering the cases
of SW and no-SW scenarios in P2P energy trading frameworks
as shown in Fig. 9. It is found that energy trading peers
using SW within the VMG achieve higher utility than the
conventional prosumers. This can be explained on the premise
of secrecy of information/lack of information sharing. Each
prosumer maintains its own local energy trading information
on the amount of energy and price. This phenomenon further
extends to the consumer as shown in Fig. 10. Due to SW,
consumers in the non-cooperative P2P energy trading game
pay lower energy cost than the conventionally trading P2P
consumers. It follows that incorporating these results into (34),
non-cooperative P2P prosumers achieve higher social welfare
than conventional P2P energy prosumers.
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VII. CONCLUSION

In this study, we optimized the social benefits of P2P
energy trading in virtual microgrids. We considered energy
prosumers that can take up the roles of producers or
consumers. When operating as consumers, they attempt
to minimize energy trading cost while as producers, they
seek to maximize their revenues/profits. The complicated
interactions of the producer-consumer set-up was investigated
as a non-cooperative Stackelberg game, and we showed that a
Stackelberg equilibrium exist and is unique. We also found that
at Stackelberg equilibrium, reducing the energy trading cost
reduces the CO2 emission too. Additionally, we observed that
prosumer utility depends on the willingness to sell energy and
amount of energy it chooses to consume. Lastly, we showed
that in non-cooperative game analysed using Stackelberg game
considering social welfare, prosumers achieve 47% higher
utility than the conventional (random) energy trading.

APPENDIX

A. Appendix A

By taking the first derivative of (10), we obtain

∂Ui
∂eii

=
∑
j∈ni

kij
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−
∑
j∈ni

P
(b)
ji = 0
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∑
j∈ni

kij

P
(b)
ji

− γi ∀i ∈ N . (35)

By replacing E(b)
ij with (E

(g)
i −eii) in (7), the energy trading

cost charged to the consumer is

CiE =
∑
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α2
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Substituting the eii in (35) into (36), we get

CiE =
∑
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B. Appendix B

Since each prosumer has the ability to produce and
consume, we let qij = E

(g)
i + E

(b)
ij , total amount of energy

produced; by using the term ’produced’, we imply the
combination of energy locally generated and that bought from
other prosumers. In this case, we can rewrite (6) as

Iji(qij) = α2
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(g)
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Combining (38) and (7), we can rewrite (15) as
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C. Appendix C

We can express the second derivative of (39) as

−
∑
j∈ni

α2
i kij

P
(b)3
ji

−
∑
j∈ni

βikij

P
(b)3
ji

+
∑
j∈ni

kijP
(v)
t,ji

P
(b)3
ji

− P(g)
j

∑
j∈ni

kij

P
(b)3
ji

− P(g)
t

∑
j∈ni

kij

P
(b)3
ji

= 0. (40)

Then, rearranging terms:
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which can be rewritten as

∂2CiE

∂P
(b)2
ji

= P(g)
j

∑
j∈ni

kij

P
(b)3
ji

+ P(g)
t

∑
j∈ni

kij

P
(b)3
ji

−
∑
j∈ni

kijP
(v)
t,ji

P
(b)3
ji

+
∑
j∈ni

α2
i kij

P
(b)3
ji

+
∑
j∈ni

βikij

P
(b)3
ji

= 0. (42)
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