70,320 research outputs found

    Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing

    Get PDF
    The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs\u27 data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to a NE, and their trade-offs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios

    Congestion Control for 6LoWPAN Networks: A Game Theoretic Framework

    No full text
    The Internet of Things (IoT) has been considered as an emerging research area where the 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Network) protocol stack is considered as one of the most important protocol suite for the IoT. Recently, the Internet Engineering Task Force has developed a set of IPv6 based protocols to alleviate the challenges of connecting resource limited sensor nodes to the Internet. In 6LoWPAN networks, heavy network traffic causes congestion which significantly degrades network performance and effects the quality of service (QoS) aspects e.g. throughput, end-to-end delay and energy consumption. In this paper, we formulate the congestion problem as a non-cooperative game framework where the nodes (players) behave uncooperatively and demand high data rate in a selfish way. Then, the existence and uniqueness of Nash equilibrium is proved and the optimal game solution is computed by using Lagrange multipliers and KKT conditions. Based on this framework, we propose a novel and simple congestion control mechanism called game theory based congestion control framework (GTCCF) specially tailored for IEEE 802.15.4, 6LoWPAN networks. GTCCF is aware of node priorities and application priorities to support the IoT application requirements. The proposed framework has been tested and evaluated through two different scenarios by using Contiki OS and compared with comparative algorithms. Simulation results show that GTCCF improves performance in the presence of congestion by an overall average of 30.45%, 39.77%, 26.37%, 91.37% and 13.42% in terms of throughput, end-to-end delay, energy consumption, number of lost packets and weighted fairness index respectively as compared to DCCC6 algorithm

    Feature Selection via Coalitional Game Theory

    Get PDF
    We present and study the contribution-selection algorithm (CSA), a novel algorithm for feature selection. The algorithm is based on the multiperturbation shapley analysis (MSA), a framework that relies on game theory to estimate usefulness. The algorithm iteratively estimates the usefulness of features and selects them accordingly, using either forward selection or backward elimination. It can optimize various performance measures over unseen data such as accuracy, balanced error rate, and area under receiver-operator-characteristic curve. Empirical comparison with several other existing feature selection methods shows that the backward elimination variant of CSA leads to the most accurate classification results on an array of data sets

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-HĂŒbner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro PezzĂ©, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    On Money as a Means of Coordination between Network Packets

    Full text link
    In this work, we apply a common economic tool, namely money, to coordinate network packets. In particular, we present a network economy, called PacketEconomy, where each flow is modeled as a population of rational network packets, and these packets can self-regulate their access to network resources by mutually trading their positions in router queues. Every packet of the economy has its price, and this price determines if and when the packet will agree to buy or sell a better position. We consider a corresponding Markov model of trade and show that there are Nash equilibria (NE) where queue positions and money are exchanged directly between the network packets. This simple approach, interestingly, delivers improvements even when fiat money is used. We present theoretical arguments and experimental results to support our claims
    • 

    corecore