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Abstract

The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and

have paved the path for the full integration of UAVs, as intelligent objects, into the

Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data

offloading process in a multi-server Mobile Edge Computing (MEC) environment,

by adopting principles and concepts from game theory and reinforcement learning.

Initially, the autonomous MEC server selection for partial data offloading is per-

formed by the UAVs, based on the theory of the stochastic learning automata. A

non-cooperative game among the UAVs is then formulated to determine the UAVs’

data to be offloaded to the selected MEC servers, while the existence of at least one

Nash Equilibrium (NE) is proven exploiting the power of submodular games. A best

response dynamics framework and two alternative reinforcement learning algorithms

are introduced that converge to an NE, and their trade-offs are discussed. The overall

framework performance evaluation is achieved via modeling and simulation, in terms

of its efficiency and effectiveness, under different operation approaches and scenarios.
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Glossary

Artificial Intelligence the theory and development of computer systems able to per-

form tasks that normally require human intelligence, such as visual

perception, speech recognition, decision-making, and translation be-

tween languages.

Game Theory the branch of mathematics concerned with the analysis of strategies

for dealing with competitive situations where the outcome of a par-

ticipant’s choice of action depends critically on the actions of other

participants.

Machine Learning an application of artificial intelligence (AI) that provides sys-

tems the ability to automatically learn and improve from experience

without being explicitly programmed.

Mobile Edge Computing a form of network architecture that enables cloud com-

puting to be done at the edge of a mobile network.

Nash Equilibrium (in economics and game theory) a stable state of a system involv-

ing the interaction of different participants, in which no participant

can gain by a unilateral change of strategy if the strategies of the

others remain unchanged.

Reinforcement Learning an area of machine learning concerned with how software
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Glossary

agents ought to take actions in an environment so as to maximize

some notion of cumulative reward.

Unmanned Aerial Vehicles an aircraft piloted by remote control or onboard com-

puters

x



Chapter 1

Introduction

As the age of the Internet of Things (IoT) steadily grows and the number of connected

devices grows into the billions, automation and control of wireless networks is at the

forefront of research. Next generation networks, like 5G and beyond are expected

to handle the capacity of multiple heterogeneous devices each with diverse computa-

tional and communication capabilities; these devices are expected to exchange and

process large amounts of data. In an effort to automate and control traffic through

the networks these devices will perform their computing tasks in an autonomous

matter. Thus, Artificial Intelligence (AI) has presented itself as a powerful tool to

support autonomous human-like decision making in next generation networked de-

vices. AI was founded on and is supported by multi-disciplinary techniques, such

as machine learning, control theory, game theory, optimization theory, and meta-

heuristics [1]. Many of these mathematical models have their roots in economics;

however, as networks became more and more crowded it became imperative to use

new techniques to design future networks. Therefore, models that already set their

precedence in economics became the guiding force for AI and the evolution of next

generation networks.

1



Chapter 1. Introduction

Nevertheless, applying these new models to the current network is not enough

to make improvements on future networks; not only must we apply AI and its tech-

nology, we must also change the network architecture. As a result of the increased

computational demands of the nearly billions of devices connected to the network a

new architecture representing the practice of processing data near the edge of the

network [2], otherwise known as Multi-Access Edge Computing or Mobile Edge Com-

puting (MEC) has gained momentum as a solution to handle the increased load of

the network. More importantly, MEC meets the devices’ Quality of Service (QoS)

requirements in terms of delay, latency, and energy efficiency. Because of this, MEC

is utilized to reduce the amount of data offloading from IoT devices to the cloud

and decrease service access latency [2]. Since IoT devices have limited processing

capabilities and the overall goal is to decrease the traffic through the network and

manage it in an autonomous manner [3], MEC has presented itself as a networking

architecture capable of rapid analysis and immediate processing of data.

IoT devices are a large proponent of MEC and recently research has focused

on Unmanned Aerial Vehicles (UAVs), also known as drones. Recently, there has

been heavy investment in the development of UAVs and multi-UAV systems that

can collaborate and complete missions more efficiently. Thus, new and developing

technologies, like 5G and beyond have significant potential on UAVs equipped with

sensors for delivering IoT services, requiring the execution of computationally inten-

sive tasks [4]. Therefore, it is expected that UAVs will offload data in masses to the

network; in such cases, MEC arises as a powerful tool to support the operation of

these drones [5].

Motivated by the aforementioned arguments and observations, this thesis pro-

poses an AI-driven data offloading approach to enable the UAVs to optimally offload

part of their data to a set of MEC servers for further processing by combining key

principles and methodologies from Game Theory and Reinforcement Learning.

2



Chapter 1. Introduction

1.1 Related Work

1.1.1 Artificial Intelligence

Intelligence is defined as the ability to acquire and apply knowledge and skills. Such

skills include decision making, speech recognition, language translation, visual per-

ception, and others. Therefore, Artificial Intelligence (AI) is the theory and devel-

opment of computer systems to apply these skills in a human-like manner while at

the same time learning to apply these skills better each time. The rise of 4G LTE,

the release of 5G, and the latest 6G white paper have been the driving forces behind

wireless networks; more specifically, mobile networks have set the tone for the rise of

AI.

The role of AI in mobile networks has been researched in [6]. AI has proven to

be a successful tool for applications such as computer vision, language processing,

and autonomous driving; with the growing trend of AI empowered applications and

IoT devices researches expect a large number of these intelligent applications to be

deployed at the edge of wireless networks. Therefore, 6G wireless networks will

be designed to leverage advanced wireless communications and mobile computing

technologies to support AI-enabled applications at various edge mobile devices with

limited communication, computation, hardware and energy resources [6]. Research

into mobile networks has set the tone for research into AI enabled heterogeneous

networks.

Also, the role of AI-based techniques and their use in heterogeneous networks

(HetNets) is discussed in [7]. Research into AI-based techniques like self - configu-

ration, self-healing, and self-optimization as researched in [7] can be very beneficial

for architectures like MEC. In [8], the benefits that AI will have on all networking

architectures are discussed. AI enabled networks can help develop a future vision of

3



Chapter 1. Introduction

cognitive networks that will show network-wide intelligent behavior to solve problems

of network heterogeneity, performance, and quality of service (QoS) [8]. Research

into AI driven networking architectures is paving the way for IoT devices to smartly

and autonomously offload/upload data to/from the network.

1.1.2 Game Theory

Game theory is the study of the ways in which interacting choices of economic agents

produce outcomes with respect to the utilities of those agents [9]. Game theory, al-

though original a mathematical model for studying problems in economics [10], has

been applied to multiple disciplines including Political Science, Biology, and Psychol-

ogy. More recently game theory has become a popular model in Computer Science

and Logic design; furthermore, cognitive radio networks have benefited greatly from

game theory. Because of the successful application of game theory in cognitive ra-

dio networks, other network architectures, such as cellular networks [11] and Mobile

Edge Computing networks, have also adopted game theory to deal with distributed

decision-making-related problems, like the resource management problem.

Game theory has been adopted in the Network Science field to deal with single-

resource management problems, such power control, rate control and others. In [12],

a power management control problem in Code Division Multiple Access (CDMA)-

based wireless networks is introduced and a non-cooperative game among the users

is formulated to determine their optimal uplink transmission power that will bring

the system in a steady state, i.e., Nash Equilibrium point. This problem has been

extended in [13], in order to consider the usage-based pricing (i.e., convex pricing

with respect to the users’ uplink transmission power) that is imposed to the users re-

garding their transmission and the corresponding interference that they create within

the communication environment. A similar problem is addressed in [14], considering

4



Chapter 1. Introduction

linear pricing to the users’ uplink transmission power and determining the non-

cooperative game’s Nash Equilibrium, i.e., the users’ optimal uplink transmission

power. In [15], the problem of power control via adopting a game-theoretic approach

is addressed in multi-tier wireless communication networks, considering macro-cells

and femto-cells. Moreover, in [16], the power control problem is addressed by adopt-

ing the theory of S-modular games, i.e., when a user increases its transmission power,

the rest of the users decrease their strategy due to the increased interference in the

communication environment. This work has been extended in [17], by considering

the application in CDMA wireless cellular networks.

Game theory has been also adopted to solve resource management problems

in device-to-device communication [18], wireless powered communication networks,

where the devices charge their batteries through the radio frequency signals trans-

mitted by the transmitter within the communication environment [19], as well as in

communication networks adopting single carrier frequency division multiple access

technique, where on top of the power that should be determined by each user, the

optimal channel allocation should also be calculated [20].

Additionally, in [21], the authors discuss game theory and its role in networking

for multiple resources [22]. In the problem of multi-resources allocation [23], the goal

is to find a Nash equilibrium state of the given network regarding QoS metrics such as

transmission power and/or rate [24]. In [25], the authors tackle the problem of power

and rate allocation in wireless cellular networks, by transforming the problem to a

single-variable non-cooperative game and determining its Nash Equilibrium. This

problem has been also addressed in [26], by directly addressing the two variables

resource management problem as a non-cooperative game, where the authors show

that it is an S-modular game and they determine its Nash Equilibrium, i.e., the

optimal uplink transmission power and data rate.

Based on the above discussion, it is evident that Game Theory is a powerful tool

5



Chapter 1. Introduction

to address resource management problems in various types of wireless communica-

tion networks, considering various types of resources, multi-tier architectures, and

multiple access techniques. Also, Game Theory enables the mobile devices to make

autonomous decisions and adopt human-like behavior, therefore, it becomes a critical

part of the Artificial Intelligent initiative.

In [27, 28] the authors discuss using game theory with learning to find the pure

Nash equilibrium of the network. In each of the papers game theory is used as a

learning automaton to select a Wireless Internet Service Provider (WISP) or cell,

respectfully. In each of the papers discussed above game theory is used to guide

the network to a Nash equilibrium. Using the ideas from this research we develop a

system of UAVs that will utilize game theory coupled with learning to reach a Nash

equilibrium, i.e. where every drone has chosen an optimal MEC.

1.1.3 Reinforcement Learning

Reinforcement Learning is an area of Machine Learning concerned with agents taking

a suitable action to maximize their reward. In an RL system, the agents attempt to

learn the best action to take based on interactions with an unstable environment; the

learning agent is not instructed specifically what action to take, instead it determines

the the best action which maximizes its long-term reward. The selected action causes

the current state of the environment to transition to the next state and the learning

agent receives a scalar reward value that evaluates the effect of the state transition

[29].

In [30,31] the authors present two log-linear learning algorithms, B-logit and Max-

logit; both algorithms are uncoupled and sequential, have one player perform learning

at a time. Log-linear learning is a learning algorithm that provides guarantees on

the percentage of time that the action profile will be at a potential maximizer in

6



Chapter 1. Introduction

potential games [32]. Binary log-linear learning (B-logit) is a variant of log-linear

learning, its purpose is to handle constrained action sets. Therefore, B-logit is able

to handle environments where the future actions of the players are limited based on

their current action [30]. B-logit has been used in [33–35] to study Heterogeneous

Networks, Wireless Communication Networks, and Opportunistic Spectrum Access

(OSA) networks. These papers show that B-logit is an optimal algorithm in finding

the pure Nash equilibrium of the system within a few hundred iterations, given the

system is shown to be a potential game.

Max log-linear learning (Max-logit) is another variant of log-linear learning which

retains the favorable equilibrium selection property with the provably fastest con-

vergence speed over other learning algorithms in the γ-logit family, having a conver-

gence time that is on average 33.85% faster than B-logit [31]. Max-logit has been

used in [34–36] to study Heterogeneous Wireless Sensor Networks, Wireless Commu-

nication Networks, and Opportunistic Spectrum Access (OSA) networks. Similar to

B-logit, these papers show that Max-logit is an optimal algorithm in finding the pure

Nash equilibrium of the system within a few hundred iterations, given the system

is shown to be a potential game, with the added benefit of being the fastest γ-logit

learning algorithm.

1.1.4 Mobile Edge Computing

Mobile Edge Computing (MEC) is showing a rising popularity as a crucial solution

to increasing IoT devices’ QoS metrics by bringing computing resources to the edge

of the network and in close proximity to the end users. In [5, 37–43] the authors

discuss the benefits of MEC for smart mobile devices and smart objects in general.

As the age of number of smart mobile devices connected to the network grew, so

did the amount of traffic in the network; because of this increase in traffic a new

7
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paradigm was needed to handle this, thus the concept of MEC came to light. The

main benefits of the MEC technology are: its potential to reduce the latency, provide

location-awareness, improve the performance of the mobile applications, reduce the

energy consumption of the mobile devices by alleviating the burden of executing

their computing tasks locally, and provide accurate computing outcomes in a time-

wise manner [37]. As we enter further into the age of IoT billions of devices have

come online and further increased traffic through the network; therefore, MEC has

presented itself as a necessary tool for IoT devices’ data offloading.

In [5] the authors discuss using game theory and reinforcement learning to support

the autonomous and distributed operation of the MEC servers as well as the process

of data offloading by the devices. In [38] the authors research a MEC system with

multiple mobile users; a single-user MEC system is a highly researched system and

is an easy environment to control. With this research a multi-user MEC system

that utilizes game theoretic and reinforcement learning approaches to intelligently

manage the network is proposed.

1.1.5 Unmanned Aerial Vehicles

An unmanned aerial vehicle (UAV) , or drone is an aircraft with no human pilot on

board. UAVs are one component in an unmanned aircraft system; the entire systems

consists of the UAV, a ground-based controller, and a system of communication

between the two. UAVs were originally designed and used for military applications;

however, there has been a recent influx in drones being used for both private, public,

and commercial projects. Like most IoT devices, UAVs are constrained by their

battery power and computational capabilities. Because of these constraints we must

consider ways to reduce transmission power and reduce the amount of data that is

processed locally. Therefore, UAVs will benefit greatly from the MEC architecture.

8
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In [44–47] the authors discuss utilizing UAVs in Public Safety Networks (PSNs)

and how to control and automate the drones to improve energy efficiency. In [44,45]

the authors utilize the theory of minority games to have the drones perform their

tasks in an independent and distributed manner, then they apply a non-cooperative

game theoretic approach to optimize the drones’ uplink transmission power. In [46]

the authors utilize prospect theory to find a pure Nash equilibrium of the system.

Lastly, in [47] the authors suggest a UAV-assisted public safety system based on

game theory and reinforcement learning; using a binary log-linear learning algorithm

the authors were able to prove a pure Nash equilibrium state of the system with

regards to the drones’ cost function.

The above literature shows one use for drones, that being for disaster stricken

areas. However, as 5G networks and beyond evolve further the use of drones becomes

diverse. Drones can be used in private, public, or commercial projects to perform

certain compute intensive tasks (i.e. facial recognition or detection and prevention).

1.2 Contributions & Outline

Despite the significant advances that have been obtained in each of the aforemen-

tioned areas in isolation, limited research work has been performed in empowering

the UAVs’ operation and decision-making with adopting the AI technology. AI tech-

niques have been traditionally focused on machine learning frameworks with appli-

cations primarily in robotics and image processing, by mainly adopting the artificial

neural networks [48]. Game theory has arisen as a crucial element and aspect in AI

today, gaining ground in particular in multi-agent systems. In principle, multiple

agents can either compete or collaborate to accomplish a task with accuracy and

efficiency - the foundation for reinforcement learning in AI. In this paper we adopt

a similar philosophy and perspective to support the UAVs autonomous intelligent

9



Chapter 1. Introduction

decision making by adopting game theory and reinforcement learning [1].

To the best of our knowledge, this is the first work in the existing literature where

the use of AI techniques, e.g., reinforcement learning and game theory, enables the

UAVs to promote human-like decision-making, in terms of selecting a MEC server to

offload their computational tasks, and determining the optimal amount of offloaded

data to maximize the perceived QoS. The key scientific contributions of our work,

that differentiate it from the rest of the existing literature, are summarized as follows:

1. A multi-UAVs and multi-MEC servers environment is considered. The utility

of each UAV is formulated as a function of the amount of data that is offloaded

to a selected MEC server considering the UAV’s transmission cost, the local

computing cost, as well as the impact on its perceived QoS by the transmission

cost of the rest of the UAVs in combination with the exploitation of the MEC

server’s computing resources (chapter 2).

2. Based on the theory of submodular games, artificial intelligence is embodied

in the decision of the optimal data offloading of each UAV (Section 3.1). A

non-cooperative game among the UAVs is formulated with the objective to

maximize each UAV’s utility function. The game is proven to be submodular,

and thus the existence of an NE is shown (Section 3.2).

3. Towards each UAV determining the NE in an autonomous manner, three al-

gorithms are proposed: (i) Best Response Dynamics (Section 3.3), (ii) Max

Log-Linear (Max-logit) learning, and (iii) Binary Log-Linear (B-logit) learn-

ing. The latter two algorithms are based on the principles of reinforcement

learning (Section 3.4).

4. The MEC server selection by each UAV is achieved by intelligently considering

each server’s reward function depending on its relative computing capability

and distance from the UAVs, as well as the QoS that it can potentially provide

10
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to the UAVs. Each UAV acts as a stochastic learning automaton (SLA), which

intelligently selects a MEC server to process its data (chapter 4).

5. A series of simulation experiments are realized to evaluate the performance

and the inherent attributes of the proposed artificial intelligent UAVs’ data

offloading approach in the mobile edge computing environment, while a detailed

comparative numerical study is presented to demonstrate its benefits (chapter

5). Finally, chapter 6 concludes the paper.

11



Chapter 2

System Model and UAV’s Utility

Function

The communication and computing environment described within is defined as:

1. the set of MEC servers S = {1, . . . , s, . . . , |S|}, and

2. the set of UAVs D = {1, . . . , d, . . . , |D|}

denoted as |S| and |D|, respectively. Each UAV has a computing task defined as:

Td = (Id, Cd, φd)

where Id[bits] denotes the total input bits of the computation and Cd[CPUcycles]

denotes the number of CPU cycles required to carry out the computing task Td.

Additionally, the parameter φd[CPUcyclesbits
] designates the computational complexity

of the computing task requested by the UAV; the value of φd depends on the nature

of the application, therefore, a higher φd value indicates a more computationally

intensive task. Additionally, each MEC server s ∈ S has a computational capability

12



Chapter 2. System Model and UAV’s Utility Function

denoted by Fs[CPUcyclessec
], this computational capability Fs defines the MEC server’s

ability to process all of the UAVs offloaded data. Likewise, each UAV d ∈ D has a

local computational capability denoted by Fd[CPUcyclessec
]; additionally, the parameter

ρd[ Watts
CPUcycles

] denotes the UAVs local power consumption to process the (remaining)

data from the computing task. We consider that each UAV has a fixed maximum

power to transmit its data to the chosen MEC server denoted by PMax.

Each UAV d ∈ D selects one MEC server s ∈ S to offload either a portion or all of

its data in order for the UAVs computing task to be processed, while the remaining

data of the computing task are processed locally by the UAV. Therefore, each UAV

decides in an autonomous and distributed manner to offload bd bits of data to the

selected MEC server, while the rest of the computational task’s data i.e., (Id − bd)

bits, are processed locally by the UAV, where bd ∈ Ad = [0, Id].

A holistic utility function for each UAV is defined below. The utility function

captures the UAV’s perceived QoS prerequisites’ satisfaction by processing its data

in the selected MEC server. The holistic utility function is introduced in six factors,

however the factors are not meant to be viewed as just parts but instead understood

and then viewed as a whole.

The first term of the UAV’s utility function represents its perceived satisfaction

from offloading a part or all of its computational task’s data and is defined as follows:

w1bd(
∑
∀s∈S

Fs −

∑
∀s∈S

Fs∑
∀d∈D

Id
e

wFd∑
∀d∈D

Fd ∑
∀i 6=d

bi −

∑
∀s∈S

Fs∑
∀d∈D

Id
bd) (2.1a)

Term 2.1a is an increasing term, i.e. as the value of bd increases, the UAV’s per-

ceived satisfaction also increases; this is because, as the UAV offloads more of its

computational task’s data, it will save more of its personal resources. Nevertheless,

this term is also driven by the overall computational capability of the entire MEC

system and the amount of data the other UAVs offload to the MEC system. That is

to say, as the other UAVs offload more data to the MEC system the less the system
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Chapter 2. System Model and UAV’s Utility Function

will be able to serve the UAV, therefore driving the UAV to offload less data. The

second term of the UAV’s utility function represents the UAV’s transmission cost

and is defined as follows:

−w2P
Maxbd
Id

(2.1b)

Term 2.1b is a decreasing term, i.e. as the percentage of bits offloaded increases, the

power required to transmit those bits from the UAV to the MEC server increases,

thus lowering the UAV’s perceived satisfaction. The third term of the UAV’s utility

function represents the robustness of the MEC system by observing the amount of

bits that the other UAVs offload and is defined as follows:

−w2P
Maxc

Id

∑
∀i 6=d

bi (2.1c)

In term 2.1c the constant c is a negative constant where −1 < c < 0; therefore, term

2.1c is an increasing term. With that said, if the rest of the UAVs tend to offload

large amounts of their computational task’s bits to be processed by the MEC system

then the examined UAV receives positive feedback, i.e. the UAV perceives the MEC

system as being robust. The fourth term of the UAV’s utility function represents the

UAV’s local computing cost associated with processing the remaining data locally

and is defined as follows:

−w3(Id − bd)φdρd (2.1d)

Term 2.1d is a decreasing term, i.e. as the number of bits processed locally by the

UAV increases, the UAV’s perceived satisfaction decreases. The fifth term of the

UAV’s utility function observes the amount of data offloaded by the other UAVs

relative to the computational capability of the entire MEC system as is defined as

follows:

w1c
∑
∀s∈S

Fs
∑
∀i 6=d

bi (2.1e)
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Chapter 2. System Model and UAV’s Utility Function

Term 2.1e is an decreasing term that serves as positive feedback to the UAV, i.e. the

examined UAV tends to offload more of its computational task’s bits if it observes

the other UAVs tending to the same behavior. Lastly, the sixth term of the UAV’s

utility function captures the cost that the UAV experiences by the exploitation of the

MEC system’s computational capabilities by itself and the other UAVs. The sixth

term is defined as follows:

−w1c
∑
∀i 6=d

bi[

∑
∀s∈S

Fs∑
∀d∈D

Id
(

∑
∀i 6=d

bi) +
bd

∑
∀s∈S

Fs∑
∀d∈D

Id
e

wFd∑
∀d∈D

Fd

] (2.1f)

Term 2.1f is an increasing term, i.e. as the examined UAV and the other UAVs tend

to utilize the MEC system’s overall computational capabilities, the examined UAV’s

perceived satisfaction increases.

As stated, the terms are not meant to be viewed as individual equations or

separate parts, they are meant to be viewed as pieces that go together to form one

holistic utility function as shown below:

Ud(bd,b−d) = w1bd(
∑
∀s∈S

Fs −

∑
∀s∈S

Fs∑
∀d∈D

Id
e

wFd∑
∀d∈D

Fd ∑
∀i 6=d

bi

−

∑
∀s∈S

Fs∑
∀d∈D

Id
bd)−

w2P
Maxbd
Id

− w2P
Maxc

Id

∑
∀i 6=d

bi

− w3(Id − bd)φdρd + w1c
∑
∀s∈S

Fs
∑
∀i 6=d

bi

− w1c
∑
∀i 6=d

bi[

∑
∀s∈S

Fs∑
∀d∈D

Id
(

∑
∀i 6=d

bi) +
bd

∑
∀s∈S

Fs∑
∀d∈D

Id
e

wFd∑
∀d∈D

Fd

]

(2.2)

In equation 2.2 w,w1, w2 and w3 are positive constants which represent weighting

parameters. These weighting parameters are specifically selected to ensure each

individual term of the UAVs utility function has the same order of magnitude. Thus,

presented is a holistic utility function utilized by each UAV to capture its perceived

QoS prerequisites’ satisfaction based on the amount of data that is offloaded to a
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Chapter 2. System Model and UAV’s Utility Function

selected MEC server considering the UAV’s transmission cost, the local computing

cost, as well as the impact on its perceived QoS by the transmission cost of the rest

of the UAVs in combination with the exploitation of the MEC server’s computing

resources.
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Figure 2.1: Artificial Intelligence Empowered UAVs Data Offloading Framework in
Mobile Edge Computing

Figure 2.1 depicts the proposed AI-empowered UAVs data offloading model in

a mobile edge computing environment; the proposed model consists of UAVs deter-

mining in an intelligent and autonomous matter how much of their computing task’s

data to offload and to which MEC server to offload that data. In the first stage, each

UAV acts as a stochastic learning automaton (SLA). In the SLA stage each UAV

determines the optimal MEC server to offload its data in each time slot (chapter 4).

After completion of SLA and within the duration of the same time slot, each UAV

determines its data offloading strategy, i.e. to which MEC server to offload to (de-

termined in SLA stage) and how much of the computing task’s data to offload. This

is determined via the UAVs participating in a non-cooperative game (chapter 3). In

order to determine the Nash Equilibrium of the non-cooperative game we propose

three algorithms: the best response dynamics, max log-linear, and binary log-linear.
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Chapter 3

Artificial Intelligent UAV’s Data

Offloading

In the network, each UAV acts as an artificial intelligence node by making decisions

in an autonomous matter as to which MEC server to offload to as well as how much of

its computing task’s data to offload to that server. In this chapter, a non-cooperative

game-theoretic approach based on the theory of submodular games is presented. This

environment will enable the UAVs to decide the optimal amount of data to offload

to the optimal MEC server in a human-like manor via learning. The process of the

MEC server selection via SLA will be discussed in chapter 4.

As a non-cooperative game the proposed environment consists of agents (i.e. the

UAVs) seeking to maximize their utility in a selfish manner. In this chapter we will

discuss the consequences of an agent attempting to increase their utility by changing

their strategy on the other agents in the system. Additionally, we will discuss three

algorithms, i.e. Best Response Dynamics and two RL approaches – Max Log-linear

and Binary Log-linear – that enable to UAVs to update their strategies and ultimately

maximize their utility in a distributed and intelligent manner.
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Chapter 3. Artificial Intelligent UAV’s Data Offloading

3.1 Data Offloading: An S-Modular Game Per-

spective

The game, G = [D, {Ad}d∈D, {Ud}d∈D] is a non-cooperative game formulated by the

UAVs; as stated before, D is the set of UAVs, Ad = [0, Id] is the set of data that the

UAV d needs to process for the computation task Td, and Ud denotes the UAV’s utility

function. The outcome of the game is a Nash Equilibrium (NE) b∗ = [b∗1, . . . ,b∗|D|],

where b∗ denotes the amount of data that each UAV offloads. The NE is a stable

point for the overall multi-UAVs and multi-MEC servers system examined herein. At

the NE, each UAV offloads an amount of its computing task’s data to the selected

MEC server in order to maximize its utility function, as follows:

max
bd∈Ad

Ud(bd,b−d), ∀d ∈ D,

s.t. 0 ≤ bd ≤ Id

(3.1)

Towards proving the existence of at least one NE of the non-cooperative game G as

a solution to the maximization problem represented by equation 3.1, we will adopt

one theory of S-modular games.

We propose that the non-cooperative game presented herein has the S-modular

type structure introduced by Topkis in [49]. These forms of non-cooperative games

exhibit interesting properties that are important in applications; these properties

include:

1. a Nash equilibrium exists

2. it (the NE) can be attained using greedy best-response type algorithms, and

3. best response policies are monotone in other players’ policies [50].

Games that are S-modular fall into two categories, either supermodular or submodu-

lar. We start of by defining supermodular games as games characterized by strategic
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Chapter 3. Artificial Intelligent UAV’s Data Offloading

complementarities, i.e. when one player increases its strategy, the other players fol-

low suite. Supermodular games are simple and well behaved and are known to have

pure strategy Nash equilibrium. Supermodular games are analytically appealing and

they have an outstanding property, that being that many solutions yield the same

predictions [51].

In [51,52] the authors attempt to utilize the theory of supermodularity to show the

existence of at least one unique Nash equilibrium. In [51] the theory of supermodular

games is used to analyze a game with a multidimensional strategy space, i.e. the

users’ uplink transmission power and data rate allocation; likewise, in [52] the theory

of supermodular games is used to analyze a game with a single dimensional strategy

space, i.e. the users’ transmission power. Albeit, in [52] the proposed game was not

supermodular and in [51] the proposed game was not supermodular without first

modifying the strategy space, this is because the games did not meet the following

requirement:

Definition 1 the utility fi for player i is supermodular if and only if ∀x, y ∈ S the

following holds true [50]

fi(x ∧ y) + fi(x ∨ y) ≥ fi(x) + fi(y)

Remark 1 if it is submodular, then the opposite inequality holds true.

We also note that if fi is twice differentiable, then supermodularity is equivalent to:

∂2fi(x)
∂xi∂xj

≥ 0

for all x ∈ S and j 6= i.

Remark 2 if it is submodular, then the opposite inequality holds true.
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A submodular game is a game characterized by diminishing returns, i.e. adding

an element to a smaller subset of S makes a bigger difference to the function values

than adding it to a larger subset of S [53]. In [53] the authors utilize the theory

of submodular games to show the existence of a pure Nash Equilibrium in their

non-cooperative game. Additionally, submodular games exhibit the characteristic of

strategic substitutes, i.e. when one player decides to increase its action, the other

players follow up by lowering their action since they perceive a negative feedback

from the system. We propose that our non-cooperative game displays characteristics

of submodular games.

Definition 2 The non-cooperative game G is submodular, if for all the UAVs, the

following conditions hold true.

1. Ad is a compact subset of an Euclidean space.

2. Ud(bd,b−d) is smooth, submodular in bd, and has non-increasing differences in

(bd,b−d), i.e., ∂2Ud(bd,b−d)
∂bd∂bi

≤ 0.

The submodular games are characterized by strategic substitutes implying that

an increase in the actions of one UAV leads the other UAVs to decrease their actions,

i.e., amount of offloaded data, accordingly. In a submodular game, there always exist

external equilibria: a largest element bd = sup{bd ∈ Ad : BR(bd,b−d) ≥ bd} and a

smallest element bd = inf{bd ∈ Ad : BR(bd,b−d) ≤ bd} of the equilibrium set, where

BR(·) denotes the UAV’s d, d ∈ D best response strategy to other UAVs’ strategies.

3.2 Problem Solution

The theory of submodularity captures the UAVs data offloading problem very well,

given that if a UAV increases its action, i.e. decides to offload a larger percentage of
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its computing task’s bits, then the interference in the communication environment

increases and the MEC system has to process more data. Therefore, the rest of the

UAVs experience congestion in both the communication and computing environments

and accordingly lower their actions, i.e. decide to offload a lower percentage of their

computing task’s bits.

Theorem 1 The non-cooperative game G = [D, {Ad}d∈D, {Ud}d∈D] is submodular

for all bd ∈ Ad and has at least one Nash Equilibrium.

Proof 1 The strategy space Ad = [0, Id] is a compact subset of an Euclidean space.

The UAV’s utility function Ud(bd,b−d), as defined in Eq. 2.2, is smooth, as it

has derivatives of all orders everywhere in its domain Ad. Towards showing that

the utility function Ud(bd,b−d) is submodular and has non-increasing differences in

(bd,b−d), we determine its second order partial derivative, as follows.

∂2Ud(bd,b−d)
∂bd∂bi

= −

∑
∀s∈S

Fs∑
∀d∈D

Id
· e

Fd∑
∀d∈D

Fd
·w

(1 + c)w1

We conclude that ∂2Ud(bd,b−d)
∂bd∂bi

≤ 0, as 1 + c ≥ 0, thus the non-cooperative game

G is submodular and has at least one Nash Equilibrium, which is defined as:

b∗d = argmax
bd∈Ad

Ud(bd,b−d)

Thus, the UAV data offloading problem proposed is a non-cooperative, submod-

ular game. As stated above, S-modular type games are known to have at least one

Nash equilibrium and the NE can be found using greedy best response type algo-

rithms. Therefore, described below is the best response dynamics approach used to

determine the NE of the UAVs data offloading problem.
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3.3 Best Response Dynamics (BRD) Approach

A best response dynamics approach is adopted in order to enable the UAVs to deter-

mine the optimal amount of their computing task’s bits to offload to the MEC server.

The best response algorithm will allow the UAVs’ strategies to converge to the NE.

Based on this, the UAVs make intelligent, human-like data offloading decisions in an

autonomous matter. The UAVs best response strategy in the Euclidean space Ad is

denoted as:

BR(bd,b−d) = b∗d = argmax
bd∈Ad

Ud(bd,b−d) (3.2)

Theorem 2 In the non-cooperative game G = [D, {Ad}d∈D, {Ud}d∈D], the UAVs’

strategies converge to a Nash Equilibrium.

Proof 2 In order to prove that the UAVs’ strategies converge to a NE, we have to

prove that each UAV’s best response strategy is a standard function. A function f

is standard, if the following three conditions hold true.

A Positivity: f(x) > 0;

B Monotonicity: if x ≥ x′, then f(x) ≥ f(x′), and

C Scalability: for all a > 1, af(x) ≥ f(ax) for all x > 0, where x = [x1, . . . , x|D|]

is a NE.

Regarding the non-cooperative game G = [D, {Ad}d∈D, {Ud}d∈D], we can easily

show that the above three conditions hold true, as follows.

A bd > 0, thus BR(bd,b−d) > 0, via Eq. 3.2;

B If bd ≥ b′d, then via Eq. 3.2 we have BR(bd,b−d) ≥ BR(b′d,b−d), and
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C For all a > 1, BR(bd,b−d) is monotonous with respect to bd in Ad, thus

aBR(bd,b−d) ≥ BR(abd,b−d).

The algorithm that implements the aforementioned UAVs’ best response dynam-

ics converging to the non-cooperative game G’s NE is presented in Algorithm 1. The

complexity of the BRD algorithm is O(|D|Ite), Ite >> |D| (Chapter 5), where Ite

is the total number of iterations required for the algorithm to converge to the NE.

Algorithm 1 Best Response Dynamics
1: Input: S, D, Td, ρd, ∀d ∈ D
2: Output: Profile Strategy at NE: b∗d
3: Initialization: ite = 0, Convergence = 0, bd

(ite=0)

4: while Convergence == 0 do
5: ite = ite+ 1;
6: for d=1 to D do
7: UAV d determines b∗(ite)d w.r.t. b−d

∗(ite−1)(Eq.3.2) and receives U (ite)
d

8: end for
9: if bd

∗(ite) == bd
∗(ite−1) then

10: Convergence = 1

11: end if
12: end while

3.4 Reinforcement Learning Approach

As alternatives to the Best Response Dynamics approach described above, two Re-

inforcement Learning algorithms will be utilized, namely the Binary Log-Linear (B-

logit) and Max Log-Linear (Max-logit) algorithms. These algorithms will be utilized

as artificial intelligence algorithms to enable the UAVs to decide in an autonomous

and distributed manner the amount of their computing task’s data that each one
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should offload to their chosen MEC server. These approaches require no infor-

mation exchange between the UAVs in order for the non-cooperative game G to

converge to the NE. The Binary Log-Linear and Max Log-Linear algorithms conver-

gence to a NE is proven in [54]. In B-logit and Max-logit algorithms, we assume

that each UAV has a discrete space of strategies from which it can choose from, i.e.

bd ∈ Ad = {bmind , . . . , bmaxd } and initially it selects a random amount of information

b
(ite=0)
d with equal probability Pr(b(ite=0)

d ) = 1
|Ad|

. At each iteration the algorithm

selects a random UAV to perform exploration and learning, while the other UAVs

maintain their previous strategy. Therefore, at the ite iteration the UAV d explores

an alternative amount of information b′d(ite) as its new strategy with equal probability
1
|Ad|

; the UAV then receives a respective utility U ′d
(ite)(b′d(ite),b(ite)

−d ) associated with

exploring the chosen strategy (exploration phase). At the ite iteration, UAV d up-

dates its strategy, i.e. the amount of its computing task’s data that it will offload to

the MEC server, according to the following probabilistic learning rules, i.e., Eq. 3.3a

and 3.3b regarding the B-logit approach, and Eq. 3.3c and 3.3d with reference to the

Max-logit approach, while the rest of the UAVs maintain their previously selected

strategy (learning phase).

Pr(b(ite)
d = b

′(ite)
d ) = eU

′(ite)
d

·β

eU
(ite−1)
d

·β + eU
′(ite)
d

·β
(3.3a)

Pr(b(ite)
d = b

(ite−1)
d ) = eU

(ite−1)
d

·β

eU
(ite−1)
d

·β + eU
′(ite)
d

·β
(3.3b)

Pr(b(ite)
d = b

′(ite)
d ) = eU

′(ite)
d

·β

max(eU
(ite−1)
d

·β, eU
′(ite)
d )

(3.3c)

Pr(b(ite)
d = b

(ite−1)
d ) = eU

(ite−1)
d

·β

max(eU
(ite−1)
d

·β, eU
′(ite)
d )

(3.3d)

where b(ite−1)
d , U (ite−1)

d are the UAV’s d strategy and utility at the (ite− 1) iteration,

respectively. The B-logit and Max-logit algorithms are presented below in Algorithm
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2 and Algorithm 3. The complexity of the Max-logit/B-logit algorithm is O(Ite′),

Ite′ >> |D| (Chapter 5), where Ite′ is the total number of iterations required for

the algorithms to converge to the NE.
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Algorithm 2 B-logit
1: Input: S, D, Td, ρd, ∀d ∈ D
2: Output: Profile Strategy at NE: b∗d
3: Initialization: β = 1000, ε = 1018, T , ite = 0, Convergence = 0, bd

(ite=0)

4: while Convergence == 0 do
5: ite = ite+ 1;
6: UAV d selects b

′(ite)
d with equal probability 1

|Ad|
, receives U

′(ite)
d and updates

b
(ite)
d based on Eq.3.3a, 3.3b

7: The other UAVs keep their previous actions, i.e., b(ite)
−d = b(ite−1)

−d

8: if |(

T∑
ite=0

|D|∑
d=1

(U (ite)
d )

T
−
|D|∑
d=1

U ite
d )|≤ ε then

9: Convergence = 1

10: end if
11: end while

Algorithm 3 Max-logit
1: Input: S, D, Td, ρd, ∀d ∈ D
2: Output: Profile Strategy at NE: b∗d
3: Initialization: β = 1000, ε = 1018, T , ite = 0, Convergence = 0, bd

(ite=0)

4: while Convergence == 0 do
5: ite = ite+ 1;
6: UAV d selects b

′(ite)
d with equal probability 1

|Ad|
, receives U

′(ite)
d and updates

b
(ite)
d based on Eq.3.3c, 3.3d

7: The other UAVs keep their previous actions, i.e., b(ite)
−d = b(ite−1)

−d

8: if |(

T∑
ite=0

|D|∑
d=1

(U (ite)
d )

T
−
|D|∑
d=1

U ite
d )|≤ ε then

9: Convergence = 1

10: end if
11: end while

26



Chapter 4

MEC Server Selection Through

Reinforcement Learning

This chapter introduces a reinforcement learning algorithm based on the theory of

stochastic learning automata (SLA). In the SLA algorithm, the game is played once

in every slot according to the mixed strategy profile of the players. In every slot, the

players receive a payoff and update their strategy profile based on the payoff. If the

chosen action receives a positive payoff, then the probability the player will choose the

same action again increases; whereas, the probability of choosing the other actions

decreases. This updating strategy is known in the literature as linear reward-inaction

and is the update strategy used in the following SLA algorithm. Since the strategy

update of each player solely relies on that player’s individual information, the linear

reward-inaction is considered to be completely distributed. For this reason, the SLA

algorithm is an efficient solution for the incomplete, dynamic and uncertain informa-

tion in wireless communication networks [55]. In [55] the authors further investigate

the usage of the SLA algorithm in distributed wireless games; it is determined that

the SLA algorithm is a powerful tool for wireless networks and can be applied to

various wireless optimization problems. For this reason, we explore SLA as a means
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for enabling the UAVs to select and optimal MEC server as described below.

The proposed SLA algorithm will enable the UAVs to select the most beneficial

MEC server to process their computing task’s bits. Each MEC server will be char-

acterized by a reputation score. This reputation score increases as the MEC server’s

relative computational capability increases, as well as when the utilities of the users

served by the examined MEC server increase. In addition, if the MEC server’s rel-

ative distance from the users decreases, the reputation score increases. The formal

definition of the MEC servers’ reputation score is presented in Eq. 4.1.

rs =
( Fs∑
∀s∈S

Fs

∑
∀d∈D

Ud,sd∑
∀s∈S

∑
∀d∈D

Ud,sd

)∑
∀d∈D

dd,sd∑
∀s∈S

∑
∀d∈D

dd,sd

(4.1)

where sd denotes the MEC server that UAV d chooses to offload a portion of its

computing task’s data to and dd,sd
[m] denotes the distance of UAV d from the MEC

server sd that is serving it.

Initially, each UAV acts as an SLA gathering information from the system and

learning the most beneficial MEC server to offload a part of its computing task’s

data for further processing, while dynamically adapting to the multi-UAVs multi-

MEC servers environment. In each iteration of the SLA, each UAV selects a MEC

server to offload its data in a probabilistic manner by using the following action

probabilities:

Prd,s(t+ 1) = Prd,s(t) + brs(t)(1− Prd,s(t)), s(t+1) = s(t) (4.2a)

Prd,s(t+ 1) = Prd,s(t)− brs(t)Prd,s(t), s(t+1) 6= s(t) (4.2b)

where b, defined as 0 < b < 1 is a step-size parameter that determines the convergence

time of the SLA algorithm. Eq. 4.2a presents the probability Prd,s(t+ 1) of UAV d

in the time slot t+ 1 of selecting the same MEC server to be served from as in time

28



Chapter 4. MEC Server Selection Through Reinforcement Learning

slot t, while eq. 4.2b presents the probability of a UAV to select a different MEC

server than the one that was serving the UAV in the previous time slot. It is noted

that as the time evolves, each UAV selects per time slot a MEC server to partially

offload its data, and within the time slot, each UAV determines the NE (Chapter 3)

by following any of the three alternative approaches, i.e., best response dynamics,

B-logit, and Max-logit.

The algorithm that implements the aforementioned UAVs’ MEC server selection

is presented below in Algorithm 4. Assuming the SLA component uses the BRD algo-

rithm for the data offloading decision-making component, which as shown in Chapter

3.3 has a complexity of O(|D|Ite), then the algorithm’s complexity is O(T (|D|Ite)),

where T is the total number of time slots required for the SLA to converge. Since

the total number of time slots, T , scales well with the total number of drones, |D|

(Chapter 5), the SLA approach is characterized by low complexity.
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Algorithm 4 SLA
1: Input: S; D; Fs,∀s ∈ S; dd,sd

,∀d ∈ D, ∀s ∈ S; Ud,sd
,∀d ∈ D, ∀s ∈ S; b

2: Output: Profile Strategy at NE: MEC server s ∈ S that each UAV d ∈ D will

be served by
3: Initialization: t = 0; Prd,s(0) = 1

|S| ; Convergence = 0
4: while Convergence == 0 do
5: for d = 1 to |D| do
6: UAV d chooses a MEC server s to offload its data to based on its action

probability vector Prd,s(t) = [Prd,1, . . . , P rd,|S|]
7: end for
8: Run BRD (or Max-logit/B-logit)
9: for s = 1 to |S| do

10: MEC s determines the corresponding reputation score rs (4.1) based on the

UAVs that want to offload their data to it
11: end for
12: for d = 1 to |D| do
13: for ∀s ∈ S do
14: if s(t+1) = st then
15: Eq. 4.2a

16: else
17: Eq. 4.2b

18: end if
19: end for
20: end for
21: Check for convergence
22: if ∀d ∈ D, ∃sd ∈ S : |Prd,s(t)− 1|≤ ε, ε→ 0 then
23: Convergence = 0
24: else
25: t = t+ 1
26: end if
27: end while
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Numerical Results

In this chapter, a detailed numerical evaluation of the proposed data offloading frame-

work in a multi-UAVs multi-MEC environment is conducted. Initially, the perfor-

mance evaluation focuses on the pure operation characteristics of the proposed game

theoretic data offloading framework (Section 5.1), under the best response dynamics

(BRD) algorithm. Afterwards, the performance evaluation of the two alternative

reinforcement learning approaches (i.e., Max-logit and B-logit) to determine the op-

timal amount of offloaded data for each UAV, is studied in Section 5.2. Additionally,

a comparative analysis of the performance of the best response dynamics approach

against the Max-logit and B-logit algorithms is also presented.

In the subsequent analysis, considered is a multi-UAVs multi-MEC servers envi-

ronment consisting of |S|= 3 MEC servers and |D|= 80 UAVs, where each UAV’s

distance is randomly and uniformly distributed in the interval (10m, 400m). Also, for

demonstration purposes only, the following system parameterizations are assumed:

• Fs ∈ [1, 5]1012CPUcycles/sec

for each MEC server, and:
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• Id = [20, 100]MBytes

• Cd = [1, 5]109CPUcycles

• φd = Cd/Id

• ρd = 130W/CPUcycles

• w = 50, w1 = 1, w2 = 1.47 · 1020, and w3 = 106,

• PMax = 2W

for each UAV. The proposed framework’s evaluation was conducted via modeling

and simulation and executed in a MacBook Pro Laptop, 2.5GHz Intel Core i7, with

16GB LPDDR3 available RAM.

5.1 Pure Game Theoretic Framework Operation

Evaluation

Below we present the outcome of the BRD algorithm in Fig. 5.1. On the left vertical

axis is the UAVs’ average achieved utility and on the right vertical axis is the average

amount of offloaded data to the MEC servers; this is presented as a function of the

BRD algorithm’s iterations (bottom horizontal axis) and the actual execution time

required for the algorithm to converge to the NE (top horizontal axis). The results

reveal that the BRD algorithm converges to the NE is in less than 10 iterations which

corresponds to less than 1 millisecond, indicating that each UAV determines its data

offloading strategy in a relatively fast manner.

Referencing the MEC server selection part of the framework, Fig. 5.2 presents

the operation of the SLA algorithm, which enables the UAVs to select a MEC server
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Figure 5.1: Best Response Dynamics

to offload a percentage of their computing task’s bits. For the following numerical

results, the SLA algorithm’s learning parameter is defined as b = 0.7. Fig. 5.2a

presents, for a randomly selected UAV, the convergence of the action probabilities

towards one of the three MEC servers; Fig. 5.2a shows that the UAVs conclude to the

selection of an optimal MEC server relatively fast, occurring in less than 40 iterations

(equivalent to less than 1 second). Additionally, in the included subfigure a Monte

Carlo analysis is performed for 10, 000 runs of the SLA algorithm for the following

range of values of the learning parameter: b = 0.1, 0.2, . . . , 1. From the results of

this Monte Carlo analysis we conclude that as the learning parameter b increases,

the UAVs do not take as much time to explore the available MEC server options,

and thus converge to a selection faster, requiring less time and less iterations.

Fig. 5.2b depicts the evolution of the MEC servers’ reputation score (left vertical

axis) according to Eq. 4.1 and the corresponding UAVs’ average action probability

per MEC server (right vertical axis). From the data, we observe that the MEC server

with the highest reputation score also achieves a higher average probability of being

chosen to be served by a UAV over the other MEC servers; thus, the MEC server with
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the highest reputation score attracts more UAVs to offload their data to it. Fig. 5.2c

confirms this observation; in Fig. 5.2c, the MEC server with the highest reputation

score, i.e. MEC server 3, attracts more UAVs. Additionally, those UAVs that are

served by MEC server 3 achieve a higher average utility than the rest. Consequently,

MEC server 3 (or in general, the MEC server with the highest reputation score) will

also receive an increase in the amount of data offloaded to it from the UAVs it serves

compared with the other MEC servers (see Fig. 5.2d).
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5.2 Reinforcement Learning and Comparative

Evaluation

Initially, in this section the behavior of the two reinforcement learning approaches

(i.e., Max-logit and B-logit) introduced in Section 3.4 is studied and analyzed. Ad-

ditionally, the convergence of these two algorithms, used as alternatives to the BRD

algorithm, towards determining the optimal amount of each UAV’s computing task’s

data to offload is also analyzed. In particular Fig. 5.3a (Fig. 5.3c) and Fig. 5.3b

(Fig. 5.3d), present the UAVs’ welfare i.e., summation of all the UAVs’ utilities, and

the UAVs’ average amount of offloaded data respectively, for the Max-Logit (B-Logit)

algorithm, as a function of the corresponding required iterations (bottom horizontal

axis) and actual execution time (upper horizontal axis) and for different values of

the learning parameter β.

Regarding the two RL approaches, the results reveal that both converge to the

NE, by following the exploration and learning phases; however, the time required

to converge to the NE is achieved in a slower manner than compared to the BRD

algorithm, e.g. the BRD algorithm converges in milliseconds whereas the two RL

approaches converge in seconds. This increased convergence time is explained by the

exploration phase performed by the learning algorithms in order to learn the data

offloading strategy; whereas the BRD algorithm learns the data offloading strategy

by performing the optimization presented in Eq. 3.2. Moreover, it is confirmed

that the Max-logit algorithm converges to the NE faster than the B-logit algorithm.

Additionally, both algorithms show that for greater values of the learning parameter

β, the UAVs converge to a better NE in terms of amount of data offloaded [55] (Fig.

5.3b and 5.3d). Therefore, by offloading a greater portion of their computing task’s

data, each UAV achieves a greater utility, and consequently, their overall welfare is

also greater (as shown in Fig. 5.3a for Max-logit and 5.3c for B-logit).
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Subsequently, a comparative analysis of the BRD algorithm against the aforemen-

tioned reinforcement learning paradigm, in terms of the performance of the overall

proposed framework, is presented. For the comparison, we choose the Max-logit algo-

rithm among the reinforcement learning ones, since it presented better results com-

pared to the B-logit algorithm, as discussed above. Specifically, Fig. 5.4a presents

the UAVs’ amount of offloaded data at the NE as a function of the UAVs’ IDs for

the game-theoretic BRD algorithm and Max-logit reinforcement learning algorithm,

considering different action space sizes, i.e., 10, 1, 000, and 10, 000 available actions.

The results reveal that as the number of available actions increases, the Max-

logit algorithm converges to values of the amount of offloaded data closer to the

BRD algorithm’s values, thus, the corresponding mean square error decreases (Fig.

5.4b). In that respect the reinforcement learning approach (i.e., Max-logit) can

achieve similar results as the game-theoretic approach (i.e., BRD); however, without

requiring any information exchange among the UAVs, i.e., the data offloading vector

of the rest of the UAVs b−d. Specifically, it is also observed that the Max-logit

algorithm converges to a better NE among the available ones compared to the BRD

algorithm, even for a small number of available data offloading actions. Accordingly,

the UAVs achieve greater utilities under the Max-logit algorithm (Fig. 5.4c) as they

offload more data to the MEC servers for further processing (Fig. 5.4a).

Moreover, Fig. 5.4d and Fig. 5.4e present the UAVs’ average utility and the

execution time of the BRD, Max-logit, and B-logit algorithms. The results illustrate

that the UAVs achieve a greater average utility under the Max-logit algorithm, as

they converge to a better NE among the available ones as explained before (Fig.

5.4a). Also, the BRD algorithm has the smallest execution time, as it practically

solves a closed-form optimization problem, i.e., Eq. 3.2, and the UAVs do not invest

time in the exploration phase, unlike the reinforcement learning approaches. The

B-logit algorithm has the slowest execution time, as it slowly updates the action
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probabilities (Eq. 3.3a, 3.3b) compared to the Max-logit algorithm (Eq. 3.3c, 3.3d).
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Conclusions

In this work, an artificially intelligent system to support the data offloading system

for UAVs in a multi-MEC server environment is devised and evaluated through the

use of game theory and reinforcement learning. In particular, a non-cooperative

game among the UAVs is formulated to determine the UAVs data offloading scheme

to the MEC servers and the existence of at least on NE is proven. A best response

dynamics framework as well as two alternative reinforcement learning algorithms

were introduced towards proving the existence of a NE point for the data offload-

ing game; additionally, a reinforcement learning algorithm based on the theory of

stochastic learning automata was introduced for the purpose of autonomous MEC

server selection by the UAVs.

To handle the UAVs data offloading scheme we initially introduced the BRD

algorithm. This algorithm proved to converge to a NE point with respect to the UAVs

average offloaded bits and corresponding utility. The BRD algorithm converged

in a relatively fast manner, and the algorithm presented is characterized by a low

complexity. Alternatively, two reinforcement learning algorithms, namely Max-logit

and B-logit, were introduced; these algorithms have no data exchange between the
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UAVs and, instead have an exploration phase to better learn the available strategy

space. Both RL approaches proved to converge to an NE point; however, the cost of

removing the information exchange between the UAVs is a longer convergence time.

Furthermore, it is shown that the Max-logit algorithm not only converges faster than

the B-logit algorithm, but also it converges to an overall better NE point with regards

to the amount of offloaded data. Lastly, when comparing the BRD algorithm to the

Max-logit algorithm the data shows that Max-logit tends to once again converge to

a better NE point with regards to the amount of offloaded data.

To handle the MEC server selection portion of the system a reinforcement learning

algorithm based on the theory of stochastic learning automata was introduced. In

each time slot of the SLA either the BRD or one of the RL algorithms is run. It

has been proven that under the Max-logit algorithm the UAVs achieve a better NE

among those available, whereas under the BRD algorithm the convergence time is

much faster. Therefore, the optimal solution for the mulit-UAV multi-MEC server

environment in terms of autonomous MEC server selection and data offloading is to

run Max-logit inside the SLA per time slot. The overall framework was evaluated

via modeling and simulation, in terms of its efficiency and effectiveness,by studying

multiple operation approaches and scenarios.
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