267 research outputs found

    Game theoretic aspects of distributed spectral coordination with application to DSL networks

    Full text link
    In this paper we use game theoretic techniques to study the value of cooperation in distributed spectrum management problems. We show that the celebrated iterative water-filling algorithm is subject to the prisoner's dilemma and therefore can lead to severe degradation of the achievable rate region in an interference channel environment. We also provide thorough analysis of a simple two bands near-far situation where we are able to provide closed form tight bounds on the rate region of both fixed margin iterative water filling (FM-IWF) and dynamic frequency division multiplexing (DFDM) methods. This is the only case where such analytic expressions are known and all previous studies included only simulated results of the rate region. We then propose an alternative algorithm that alleviates some of the drawbacks of the IWF algorithm in near-far scenarios relevant to DSL access networks. We also provide experimental analysis based on measured DSL channels of both algorithms as well as the centralized optimum spectrum management

    Compensation-based Game for Spectrum Sharing in the Gaussian Interference Channel

    Get PDF
    This paper considers an optimization problem of sum-rate in the Gaussian frequency-selective channel. We construct a competitive game with an asymptotically optimal compensation to approximate the optimization problem of sum-rate. Once the game achieves the Nash equilibrium, all users in the game will operate at the optimal sum-rate boundary. The contributions of this paper are twofold. On the one hand, a distributed power allocation algorithm called iterative multiple waterlevels water-filling algorithm is proposed to efficiently achieve the Nash equilibrium of the game. On the other hand, we derive some sufficient conditions on the convergence of iterative multiple waterlevels water-filling algorithm in this paper. Through simulation, the proposed algorithm has a significant improvement of the performance over iterative water filling algorithm and achieves the close-to-optimal performance

    Dynamic Spectrum Leasing for Bi-Directional Communication: Impact of Selfishness

    Get PDF
    In this paper, we propose a beamforming-based dynamic spectrum leasing (DSL) technique to improve the spectral utility of bi-directional communication of the legacy/primary spectrum users through the help of colocated secondary users. The secondary users help for a time interval to relay the data between two primary terminals using physical layer network coding and beamforming to attain bi-directional communication with high spectral utility. As a reimbursement, the secondary users, cognitive radios (CRs) in our case, get exclusive access to the primary spectrum for a certain duration. We use Nash bargaining to determine the optimal division of temporal resources between relaying and reimbursement. Moreover, we consider that a fraction of secondary nodes can act selfishly by not helping the primary, yet enjoy the reimbursement time. We measure the utility of the DSL scheme in terms of a metric called time-bandwidth product (TBP) ratio quantifying the number of bits transmitted in direct communication versus DSL. We show that if all secondary nodes act honestly, more than 17-fold increase in the TBP ratio is observed for a sparse CR network. However, in such a network, selfish behavior of CR nodes can reduce the gain by more than a factor of 2

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Competitive Spectrum Management with Incomplete Information

    Full text link
    This paper studies an interference interaction (game) between selfish and independent wireless communication systems in the same frequency band. Each system (player) has incomplete information about the other player's channel conditions. A trivial Nash equilibrium point in this game is where players mutually full spread (FS) their transmit spectrum and interfere with each other. This point may lead to poor spectrum utilization from a global network point of view and even for each user individually. In this paper, we provide a closed form expression for a non pure-FS epsilon-Nash equilibrium point; i.e., an equilibrium point where players choose FDM for some channel realizations and FS for the others. We show that operating in this non pure-FS epsilon-Nash equilibrium point increases each user's throughput and therefore improves the spectrum utilization, and demonstrate that this performance gain can be substantial. Finally, important insights are provided into the behaviour of selfish and rational wireless users as a function of the channel parameters such as fading probabilities, the interference-to-signal ratio

    Transmit-power control for cognitive radio networks: Challenges, requirements and options

    Get PDF
    A critical design challenge for cognitive radio networks is to establish a balance between transmit power and interference. In recent years, several approaches for regulating the transmit power of secondary users in cognitive radio networks have been proposed. This report explores the challenges and requirements of power control in cognitive radio networks. The report details two algorithms that have attracted research attention, namely the iterative water-filling algorithm and the no-regret learning algorithm. The two algorithms are compared by considering their application to a simple model, given the same conditions and assumptions. Furthermore, an adaptive scheme is introduced. The scheme incorporates both algorithms into the design of the cognitive engine, which is the functional unit responsible for power control. The conceptual architecture of the cognitive engine is presented. Simulation results for the iterative water-filling algorithm and the no-regret learning algorithm are presented. The number of iterations it takes for the algorithms to attain equilibrium are compared and used as a basis to establish the operational procedures of the hybrid-adaptive scheme. The operational procedures of the scheme are illustrated with a test application scenario. Several application scenarios are further presented to show how secondary users in cognitive radio networks can adaptively switch between the two operational strategies

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network
    corecore