70 research outputs found

    Biologically Inspired Robots

    Get PDF

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Aeacus: The Design and Realization of an Ant-Like Robotic Platform

    Get PDF
    A large volume of recyclable material is inescapably placed in landfills, despite modern recycling efforts. In order to create an effective way of recovering such material, we have designed and manufactured an ant-like robot with the potential to do so. The robot is equipped with the capacity to navigate through the uneven terrain of a trash heap with the ability to lift objects greater than its own weight. The robot is also designed with the intent of becoming part of a swarm to more effectively work over a large area, mimicking an ant colony

    Analytical Workspace, Kinematics, and Foot Force Based Stability of Hexapod Walking Robots

    Get PDF
    Many environments are inaccessible or hazardous for humans. Remaining debris after earthquake and fire, ship hulls, bridge installations, and oil rigs are some examples. For these environments, major effort is being placed into replacing humans with robots for manipulation purposes such as search and rescue, inspection, repair, and maintenance. Mobility, manipulability, and stability are the basic needs for a robot to traverse, maneuver, and manipulate in such irregular and highly obstructed terrain. Hexapod walking robots are as a salient solution because of their extra degrees of mobility, compared to mobile wheeled robots. However, it is essential for any multi-legged walking robot to maintain its stability over the terrain or under external stimuli. For manipulation purposes, the robot must also have a sufficient workspace to satisfy the required manipulability. Therefore, analysis of both workspace and stability becomes very important. An accurate and concise inverse kinematic solution for multi-legged robots is developed and validated. The closed-form solution of lateral and spatial reachable workspace of axially symmetric hexapod walking robots are derived and validated through simulation which aid in the design and optimization of the robot parameters and workspace. To control the stability of the robot, a novel stability margin based on the normal contact forces of the robot is developed and then modified to account for the geometrical and physical attributes of the robot. The margin and its modified version are validated by comparison with a widely known stability criterion through simulated and physical experiments. A control scheme is developed to integrate the workspace and stability of multi-legged walking robots resulting in a bio-inspired reactive control strategy which is validated experimentally

    Novel Reconfigurable Walking Machine Tool Enables Symmetric and Nonsymmetric Walking Configurations

    Get PDF
    Current research on walking robots strives to achieve a higher efficiency, a better load capacity, and an increased adaptability. Parallel kinematic manipulators (PKMs) are characterized by high payload and accuracy, but conventional PKMs with fixed configurations are limited to constrained workspaces in known structured environments. In this article, we propose a parallel reconfigurable walking machine tool that overcomes these limits by adapting its configuration and gaits to different scenarios. A lightweight and compact positioning system with shape memory alloy actuation is presented to achieve reconfiguration capabilities. Furthermore, kinematic, stability, and force analyses are reported to determine the optimal walking gaits in three different scenarios (with inclined slopes at different angles) and four robot configurations. Finally, a set of experiments with the physical prototype validates the proposed models. The results show that symmetric configurations present a better performance at lower ground inclinations (0.5% error), whereas asymmetric configurations can climb on slope conditions that would prevent the use of conventional PKMs (18% or 10°)

    Multistable Phase Regulation for Robust Steady and Transitional Legged Gaits

    Get PDF
    We develop robust methods that allow specification, control, and transition of a multi-legged robot’s stepping pattern—its gait—during active locomotion over natural terrain. Resulting gaits emerge through the introduction of controllers that impose appropriately-placed repellors within the space of gaits, the torus of relative leg phases, thereby mitigating against dangerous patterns of leg timing. Moreover, these repellors are organized with respect to a natural cellular decomposition of gait space and result in limit cycles with associated basins that are well characterized by these cells, thus conferring a symbolic character upon the overall behavioral repertoire. These ideas are particularly applicable to four- and six-legged robots, for which a large variety of interesting and useful (and, in many cases, familiar) gaits exist, and whose tradeoffs between speed and reliability motivate the desire for transitioning between them during active locomotion. We provide an empirical instance of this gait regulation scheme by application to a climbing hexapod, whose “physical layer” sensor-feedback control requires adequate grasp of a climbing surface but whose closed loop control perturbs the robot from its desired gait. We document how the regulation scheme secures the desired gait and permits operator selection of different gaits as required during active climbing on challenging surfaces

    Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics

    Get PDF
    In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neuromorphic Auditory Sensor was integrated within the iCub robotic platform, being the first time that an event-based cochlea is used in a humanoid robot. Then, the conclusions obtained are presented and new features and improvements are proposed for future works.En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimiento de las arquitecturas de procesamiento de audio neuromórfico en tiempo real propuestas. Se utilizó un generador central de patrones guiado por audio para controlar un robot hexápodo en tiempo real utilizando redes neuronales pulsantes en SpiNNaker. A continuación, se implementó una aplicación de integración sensorial que combina la localización de fuentes de sonido y la evitación de obstáculos para la navegación de robots autónomos. Por último, se integró el Sensor Auditivo Neuromórfico dentro de la plataforma robótica iCub, siendo la primera vez que se utiliza una cóclea basada en eventos en un robot humanoide. Por último, en este trabajo se presentan las conclusiones obtenidas y se proponen nuevas funcionalidades y mejoras para futuros trabajos

    Information transfer and causality in the sensorimotor loop

    Get PDF
    This thesis investigates information-theoretic tools for detecting and describing causal influences in embodied agents. It presents an analysis of philosophical and statistical approaches to causation, and in particular focuses on causal Bayes nets and transfer entropy. It argues for a novel perspective that explicitly incorporates the epistemological role of information as a tool for inference. This approach clarifies and resolves some of the known problems associated with such methods. Here it is argued, through a series of experiments, mathematical results and some philosophical accounts, that universally applicable measures of causal influence strength are unlikely to exist. Instead, the focus should be on the role that information-theoretic tools can play in inferential tests for causal relationships in embodied agents particularly, and dynamical systems in general. This thesis details how these two approaches differ. Following directly from these arguments, the thesis proposes a concept of “hidden” information transfer to describe situations where causal influences passing through a chain of variables may be more easily detected at the end-points than at intermediate nodes. This is described using theoretical examples, and also appears in the information dynamics of computer-simulated and real robots developed herein. Practical examples include some minimal models of agent-environment systems, but also a novel complete system for generating locomotion gait patterns using a biologically-inspired decentralized architecture on a walking robotic hexapod

    TOWARDS A NOVEL RESILIENT ROBOTIC SYSTEM

    Get PDF
    Resilient robotic systems are a kind of robotic system that is able to recover their original function after partial damage of the system. This is achieved by making changes on the partially damaged robot. In this dissertation study, a general robot, which makes sense by including active joints, passive joints, passive links, and passive adjustable links, was proposed in order to explore its resilience. Note that such a robot is also called an under-actuated robot. This dissertation presents the following studies. First, a novel architecture of robots was proposed, which is characterized as under-actuated robot. The architecture enables three types of recovery strategy, namely (1) change of the robot behavior, (2) change of the robot state, and (3) change of the robot configuration. Second, a novel docking system was developed, which allows for the realization of real-time assembly and disassembly and passive joint and adjustable passive link, and this thus enables the realization of the proposed architecture. Third, an example prototype system was built to experiment the effectiveness of the proposed architecture and to demonstrate the resilient behavior of the robot. Fourth, a novel method for robot configuration synthesis was developed, which is based on the genetic algorithm (GA), to determine the goal configuration of a partially damaged robot, at which the robot can still perform its original function. The novelty of the method lies in the integration of both discrete variables such as the number of modules, type of modules, and assembly patterns between modules and the continuous variables such as the length of modules and initial location of the robot. Fifth, a GA-based method for robot reconfiguration planning and scheduling was developed to actually change the robot from its initial configuration to the goal configuration with a minimum effort (time and energy). Two conclusions can be drawn from the above studies. First, the under-actuated robotic architecture can build a cost effective robot that can achieve the highest degree of resilience. Second, the design of the under-actuated resilient robot with the proposed docking system not only reduces the cost but also overcomes the two common actuator failures: (i) an active joint is unlocked (thus becoming a passive joint) and (ii) an active joint is locked (thus becoming an adjustable link). There are several contributions made by this dissertation to the field of robotics. The first is the finding that an under-actuated robot can be made more resilient. In the field of robotics, the concept of the under-actuated robot is available, but it has not been considered for reconfiguration (in literature, the reconfiguration is mostly about fully actuated robots). The second is the elaboration on the concept of reconfiguration planning, scheduling, and manipulation/control. In the literature of robotics, only the concept of reconfiguration planning is precisely given but not for reconfiguration scheduling. The third is the development of the model along with its algorithm for synthesis of the goal reconfiguration, reconfiguration planning, and scheduling. The application of the proposed under-actuated resilient robot lies in the operations in unknown or dangerous environments, for example, in rescue missions and space explorations. In these applications, replacement or repair of a damaged robot is impossible or cost-prohibited
    corecore