100 research outputs found

    Reconfigurable Gate Driver Toward High-Power Efficiency and High-Power Density Converters

    Get PDF
    Les systĂšmes de gestion de l'Ă©nergie exigent des convertisseurs de puissance pour fournir une conversion de puissance adaptĂ©e Ă  diverses utilisations. Il existe diffĂ©rents types de convertisseurs de puissance, tel que les amplificateurs de puissance de classe D, les demi-ponts, les ponts complets, les amplificateurs de puissance de classe E, les convertisseurs buck et derniĂšrement les convertisseurs boost. Prenons par exemple les dispositifs implantables, lorsque l'Ă©nergie est prĂ©levĂ©e de la source principale, des convertisseurs de puissance buck ou boost sont nĂ©cessaires pour traiter l'Ă©nergie de l'entrĂ©e et fournir une Ă©nergie propre et adaptĂ©e aux diffĂ©rentes parties du systĂšme. D'autre part, dans les stations de charge des voitures Ă©lectriques, les nouveaux tĂ©lĂ©phones portables, les stimulateurs neuronaux, etc., l'Ă©nergie sans fil a Ă©tĂ© utilisĂ©e pour assurer une alimentation Ă  distance, et des amplificateurs de puissance de classe E sont dĂ©veloppĂ©s pour accomplir cette tĂąche. Les amplificateurs de puissance de classe D sont un excellent choix pour les casques d'Ă©coute ou les haut-parleurs en raison de leur grande efficacitĂ©. Dans le cas des interfaces de capteurs, les demi-ponts et les ponts complets sont les interfaces appropriĂ©es entre les systĂšmes Ă  faible et Ă  forte puissance. Dans les applications automobiles, l'interface du capteur reçoit le signal du cĂŽtĂ© puissance rĂ©duite et le transmet Ă  un rĂ©seau du cĂŽtĂ© puissance Ă©levĂ©e. En outre, l'interface du capteur doit recevoir un signal du cĂŽtĂ© haute puissance et le convertir vers la cĂŽtĂ© basse puissance. Tous les systĂšmes mentionnĂ©s ci-dessus nĂ©cessitent l'inclusion d'un pilote de porte spĂ©cifique dans les circuits, selon les applications. Les commandes de porte comprennent gĂ©nĂ©ralement un dĂ©calage du niveau de commande niveau supĂ©rieur, le levier de changement de niveau infĂ©rieur, une chaĂźne de tampon, un circuit de verrouillage sous tension, un circuit de temps mort, des portes logiques, un inverseur de Schmitt et un mĂ©canisme de dĂ©marrage. Ces circuits sont nĂ©cessaires pour assurer le bon fonctionnement des systĂšmes de conversion de puissance. Un circuit d'attaque de porte reconfigurable prendrait en charge une vaste gamme de convertisseurs de puissance ayant une tension d'entrĂ©e V[indice IN] et un courant de sortie I[indice Load] variables. L'objectif de ce projet est d'Ă©tudier intensivement les causes de diffĂ©rentes pertes dans les convertisseurs de puissance et de proposer ensuite de nouveaux circuits et mĂ©thodologies dans les diffĂ©rents circuits des conducteurs de porte pour atteindre une conversion de puissance avec une haute efficacitĂ© et densitĂ© de puissance. Nous proposons dans cette thĂšse de nouveaux circuits de gestion des temps mort, un Shapeshifter de niveau plus Ă©levĂ© et un Shapeshifter de niveau infĂ©rieur avec de nouvelles topologies qui ont Ă©tĂ© pleinement caractĂ©risĂ©es expĂ©rimentalement. De plus, l'Ă©quation mathĂ©matique du temps mort optimal pour les faces haute et basse d'un convertisseur buck est dĂ©rivĂ©e et expĂ©rimentalement prouvĂ©e. Les circuits intĂ©grĂ©s personnalisĂ©s et les mĂ©thodologies proposĂ©es sont validĂ©s avec diffĂ©rents convertisseurs de puissance, tels que les convertisseurs semi-pont et en boucle ouverte, en utilisant des composants standard pour dĂ©montrer leur supĂ©rioritĂ© sur les solutions traditionnelles. Les principales contributions de cette recherche ont Ă©tĂ© prĂ©sentĂ©es Ă  sept confĂ©rences prestigieuses, trois articles Ă©valuĂ©s par des pairs, qui ont Ă©tĂ© publiĂ©s ou prĂ©sentĂ©s, et une divulgation d'invention. Une contribution importante de ce travail recherche est la proposition d'un nouveau gĂ©nĂ©rateur actif CMOS intĂ©grĂ© dĂ©diĂ© de signaux sans chevauchement. Ce gĂ©nĂ©rateur a Ă©tĂ© fabriquĂ© Ă  l'aide de la technologie AMS de 0.35”m et consomme 16.8mW Ă  partir d'une tension d'alimentation de 3.3V pour commander de maniĂšre appropriĂ©e les cĂŽtĂ©s bas et haut d'un demi-pont afin d'Ă©liminer la propagation. La puce fabriquĂ©e est validĂ©e de façon expĂ©rimentale avec un demi-pont, qui a Ă©tĂ© mis en Ɠuvre avec des composants disponibles sur le marchĂ© et qui contrĂŽle une charge R-L. Les rĂ©sultats des mesures montrent une rĂ©duction de 40% de la perte totale d'un demi-pont de 45V d'entrĂ©e Ă  1MHz par rapport au fonctionnement du demi-pont sans notre circuit intĂ©grĂ© dĂ©diĂ©. Le circuit principal du circuit d'attaque de grille cĂŽtĂ© haut est le dĂ©caleur de niveau, qui fournit un signal de grande amplitude pour le commutateur de puissance cĂŽtĂ© haut. Une nouvelle structure de dĂ©calage de niveau avec un dĂ©lai de propagation minimal doit ĂȘtre prĂ©sentĂ©e. Nous proposons une nouvelle topologie de dĂ©calage de niveau pour le cĂŽtĂ© haut des drivers de porte afin de produire des convertisseurs de puissance efficaces. Le SL prĂ©sente des dĂ©lais de propagation mesurĂ©s de 7.6ns. Les rĂ©sultats mesurĂ©s montrent le fonctionnement du circuit prĂ©sentĂ© sur la plage de frĂ©quence de 1MHz Ă  130MHz. Le circuit fabriquĂ© consomme 31.5pW de puissance statique et 3.4pJ d'Ă©nergie par transition Ă  1kHz, V[indice DDL] = 0.8V , V[indice DDH] = 3.0V, et une charge capacitive C[indice L] = 0.1pF. La consommation Ă©nergĂ©tique totale mesurĂ©e par rapport Ă  la charge capacitive de 0.1 Ă  100nF est indiquĂ©e. Un autre nouveau dĂ©calage vers le bas est proposĂ© pour ĂȘtre utilisĂ© sur le cĂŽtĂ© bas des pilotes de portes. Ce circuit est Ă©galement nĂ©cessaire dans la partie Rₓ du rĂ©seau de bus de donnĂ©es pour recevoir le signal haute tension du rĂ©seau et dĂ©livrer un signal de faible amplitude Ă  la partie basse tension. L'une des principales contributions de ces travaux est la proposition d'un modĂšle de rĂ©fĂ©rence pour l'abaissement de niveau Ă  puissance unique reconfigurable. Le circuit proposĂ© pilote avec succĂšs une gamme de charges capacitives allant de 10fF Ă  350pF. Le circuit prĂ©sentĂ© consomme des puissances statiques et dynamiques de 62.37pW et 108.9”W, respectivement, Ă  partir d'une alimentation de 3.3V lorsqu'il fonctionne Ă  1MHz et pilote une charge capacitive de 10pF. Les rĂ©sultats de la simulation post-layout montrent que les dĂ©lais de propagation de chute et de montĂ©e dans les trois configurations sont respectivement de l'ordre de 0.54 Ă  26.5ns et de 11.2 Ă  117.2ns. La puce occupe une surface de 80”m × 100”m. En effet, les temps morts des cĂŽtĂ©s hauts et bas varient en raison de la diffĂ©rence de fonctionnement des commutateurs de puissance cĂŽtĂ© haut et cĂŽtĂ© bas, qui sont respectivement en commutation dure et douce. Par consĂ©quent, un gĂ©nĂ©rateur de temps mort reconfigurable asymĂ©trique doit ĂȘtre ajoutĂ© aux pilotes de portes traditionnelles pour obtenir une conversion efficace. Notamment, le temps mort asymĂ©trique optimal pour les cĂŽtĂ©s hauts et bas des convertisseurs de puissance Ă  base de Gan doit ĂȘtre fourni par un circuit de commande de grille reconfigurable pour obtenir une conception efficace. Le temps mort optimal pour les convertisseurs de puissance dĂ©pend de la topologie. Une autre contribution importante de ce travail est la dĂ©rivation d'une Ă©quation prĂ©cise du temps mort optimal pour un convertisseur buck. Le gĂ©nĂ©rateur de temps mort asymĂ©trique reconfigurable fabriquĂ© sur mesure est connectĂ© Ă  un convertisseur buck pour valider le fonctionnement du circuit proposĂ© et l'Ă©quation dĂ©rivĂ©e. De plus le rendement d'un convertisseur buck typique avec T[indice DLH] minimum et T[indice DHL] optimal (basĂ© sur l'Ă©quation dĂ©rivĂ©e) Ă  I[indice Load] = 25mA est amĂ©liorĂ© de 12% par rapport Ă  un convertisseur avec un temps mort fixe de T[indice DLH] = T[indice DHL] = 12ns.Power management systems require power converters to provide appropriate power conversion for various purposes. Class D power amplifiers, half and full bridges, class E power amplifiers, buck converters, and boost converters are different types of power converters. Power efficiency and density are two prominent specifications for designing a power converter. For example, in implantable devices, when power is harvested from the main source, buck or boost power converters are required to receive the power from the input and deliver clean power to different parts of the system. In charge stations of electric cars, new cell phones, neural stimulators, and so on, power is transmitted wirelessly, and Class E power amplifiers are developed to accomplish this task. In headphone or speaker driver applications, Class D power amplifiers are an excellent choice due to their great efficiency. In sensor interfaces, half and full bridges are the appropriate interfaces between the low- and high-power sides of systems. In automotive applications, the sensor interface receives the signal from the low-power side and transmits it to a network on the high-power side. In addition, the sensor interface must receive a signal from the high-power side and convert it down to the low-power side. All the above-summarized systems require a particular gate driver to be included in the circuits depending on the applications. The gate drivers generally consist of the level-up shifter, the level-down shifter, a buffer chain, an under-voltage lock-out circuit, a deadtime circuit, logic gates, the Schmitt trigger, and a bootstrap mechanism. These circuits are necessary to achieve the proper functionality of the power converter systems. A reconfigurable gate driver would support a wide range of power converters with variable input voltage V[subscript IN] and output current I[subscript Load]. The goal of this project is to intensively investigate the causes of different losses in power converters and then propose novel circuits and methodologies in the different circuits of gate drivers to achieve power conversion with high-power efficiency and density. We propose novel deadtime circuits, level-up shifter, and level-down shifter with new topologies that were fully characterized experimentally. Furthermore, the mathematical equation for optimum deadtimes for the high and low sides of a buck converter is derived and proven experimentally. The proposed custom integrated circuits and methodologies are validated with different power converters, such as half bridge and open loop buck converters, using off-the-shelf components to demonstrate their superiority over traditional solutions. The main contributions of this research have been presented in seven high prestigious conferences, three peer-reviewed articles, which have been published or submitted, and one invention disclosure. An important contribution of this research work is the proposal of a novel custom integrated CMOS active non-overlapping signal generator, which was fabricated using the 0.35−”m AMS technology and consumes 16.8mW from a 3.3−V supply voltage to appropriately drive the low and high sides of the half bridge to remove the shoot-through. The fabricated chip is validated experimentally with a half bridge, which was implemented with off-the-shelf components and driving a R-L load. Measurement results show a 40% reduction in the total loss of a 45 − V input 1 − MHz half bridge compared with the half bridge operation without our custom integrated circuit. The main circuit of high-side gate driver is the level-up shifter, which provides a signal with a large amplitude for the high-side power switch. A new level shifter structure with minimal propagation delay must be presented. We propose a novel level shifter topology for the high side of gate drivers to produce efficient power converters. The LS shows measured propagation delays of 7.6ns. The measured results demonstrate the operation of the presented circuit over the frequency range of 1MHz to 130MHz. The fabricated circuit consumes 31.5pW of static power and 3.4pJ of energy per transition at 1kHz, V[subscript DDL] = 0.8V , V[subscript DDH] = 3.0V , and capacitive load C[subscript L] = 0.1pF. The measured total power consumption versus the capacitive load from 0.1pF to 100nF is reported. Another new level-down shifter is proposed to be used on the low side of gate drivers. Another new level-down shifter is proposed to be used on the low side of gate drivers. This circuit is also required in the Rₓ part of the data bus network to receive the high-voltage signal from the network and deliver a signal with a low amplitude to the low-voltage part. An essential contribution of this work is the proposal of a single supply reconfigurable level-down shifter. The proposed circuit successfully drives a range of capacitive load from 10fF to 350pF. The presented circuit consumes static and dynamic powers of 62.37pW and 108.9”W, respectively, from a 3.3 − V supply when working at 1MHz and drives a 10pF capacitive load. The post-layout simulation results show that the fall and rise propagation delays in the three configurations are in the range of 0.54 − 26.5ns and 11.2 − 117.2ns, respectively. Its core occupies an area of 80”m × 100”m. Indeed, the deadtimes for the high and low sides vary due to the difference in the operation of the high- and low-side power switches, which are under hard and soft switching, respectively. Therefore, an asymmetric reconfigurable deadtime generator must be added to the traditional gate drivers to achieve efficient conversion. Notably, the optimal asymmetric deadtime for the high and low sides of GaN-based power converters must be provided by a reconfigurable gate driver to achieve efficient design. The optimum deadtime for power converters depends on the topology. Another important contribution of this work is the derivation of an accurate equation of optimum deadtime for a buck converter. The custom fabricated reconfigurable asymmetric deadtime generator is connected to a buck converter to validate the operation of the proposed circuit and the derived equation. The efficiency of a typical buck converter with minimum T[subscript DLH] and optimal T[subscript DHL] (based on the derived equation) at I[subscript Load] = 25mA is improved by 12% compared to a converter with a fixed deadtime of T[subscript DLH] = T[subscript DHL] = 12ns

    NASA Tech Briefs, February 2001

    Get PDF
    The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazin

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Silicon Integrated Arrays: From Microwave to IR

    Get PDF
    Integrated chips have enabled realization and mass production of complex systems in a small form factor. Through process miniaturization many novel applications in silicon photonics and electronic systems have been enabled. In this thesis I have provided several examples of innovations that are only enabled by integration. I have also demonstrated how electronics and photonics circuits can complement each other to achieve a system with superior performance.</p

    A Flexible, Low-Power, Programmable Unsupervised Neural Network Based on Microcontrollers for Medical Applications

    Get PDF
    We present an implementation and laboratory tests of a winner takes all (WTA) artificial neural network (NN) on two microcontrollers (ÎŒC) with the ARM Cortex M3 and the AVR cores. The prospective application of this device is in wireless body sensor network (WBSN) in an on-line analysis of electrocardiograph (ECG) and electromyograph (EMG) biomedical signals. The proposed device will be used as a base station in the WBSN, acquiring and analysing the signals from the sensors placed on the human body. The proposed system is equiped with an analog-todigital converter (ADC), and allows for multi-channel acquisition of analog signals, preprocessing (filtering) and further analysis

    NASA Tech Briefs, January 1990

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Science

    Manufacturing and characterisation of a fibre optic acoustic emission sensor

    Get PDF
    The value of Remote Condition Monitoring for the real-time evaluation of the structural integrity of critical components is undeniable. Fibre-reinforced polymer composites are a class of materials which offer significant advantages over conventional metal alloys used for manufacturing load bearing structures in cases where weight and/or energy consumption need to be kept to a minimum, for example automotive and aerospace applications. This is due to the excellent strength to weight ratio that FRPCs exhibit. However, their strongly anisotropic microstructure of poses significant challenges for Non-Destructive Evaluation of the actual structural health of components made from such materials. Acoustic Emission is a passive condition monitoring technique based on the detection of elastic stress waves emitted when damage evolves in a structure. Conventional piezoelectric AE sensors need to be surface-mounted as their embedding in FRPCs is impractical. Fibre Optic Acoustic Emission Sensors (FOAES) offer a distinct advantage since they are light weight, have small size and can be effectively embedded in composite laminates. Moreover, they can be multiplexed with the entire structure being monitored more effectively. This study has focused in the evaluation of the manufacturing process and characterisation of FOAES. Comparison of their performance with conventional commercial sensors was carried out

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    • 

    corecore