38 research outputs found

    GRATIN: Accelerating Graph Traversals in Main-Memory Column Stores

    Get PDF
    Native graph query and processing capabilities have become indispensable for modern business applications in enterprise-critical operations on data that is stored in relational database management systems. Traversal operations are a basic ingredient of graph algorithms and graph queries. As a consequence, they are fundamental for querying graph data in a relational database management system. In this paper we present gratin, a concise secondary index structure to speedup graph traversals in main-memory column stores. Conventional approaches for graph traversals rely on repeated full column scans, making it an inefficient approach for deep traversals on very large graphs. To tackle this challenge, we devise a novel and adaptive block-based index to handle graphs efficiently. Most importantly, gratin is updateable in constant time and allows supporting evolving graphs with frequent updates to the graph topology. We conducted an extensive evaluation on real-world data sets from different domains for a large variety of traversal queries. Our experiments show improvements of up to an order of magnitude compared to a scan-based traversal algorithm

    FAQ

    Full text link

    An End-to-end Neural Natural Language Interface for Databases

    Full text link
    The ability to extract insights from new data sets is critical for decision making. Visual interactive tools play an important role in data exploration since they provide non-technical users with an effective way to visually compose queries and comprehend the results. Natural language has recently gained traction as an alternative query interface to databases with the potential to enable non-expert users to formulate complex questions and information needs efficiently and effectively. However, understanding natural language questions and translating them accurately to SQL is a challenging task, and thus Natural Language Interfaces for Databases (NLIDBs) have not yet made their way into practical tools and commercial products. In this paper, we present DBPal, a novel data exploration tool with a natural language interface. DBPal leverages recent advances in deep models to make query understanding more robust in the following ways: First, DBPal uses a deep model to translate natural language statements to SQL, making the translation process more robust to paraphrasing and other linguistic variations. Second, to support the users in phrasing questions without knowing the database schema and the query features, DBPal provides a learned auto-completion model that suggests partial query extensions to users during query formulation and thus helps to write complex queries

    Weiterentwicklung analytischer Datenbanksysteme

    Get PDF
    This thesis contributes to the state of the art in analytical database systems. First, we identify and explore extensions to better support analytics on event streams. Second, we propose a novel polygon index to enable efficient geospatial data processing in main memory. Third, we contribute a new deep learning approach to cardinality estimation, which is the core problem in cost-based query optimization.Diese Arbeit trĂ€gt zum aktuellen Forschungsstand von analytischen Datenbanksystemen bei. Wir identifizieren und explorieren Erweiterungen um Analysen auf Eventströmen besser zu unterstĂŒtzen. Wir stellen eine neue Indexstruktur fĂŒr Polygone vor, die eine effiziente Verarbeitung von Geodaten im Hauptspeicher ermöglicht. Zudem prĂ€sentieren wir einen neuen Ansatz fĂŒr KardinalitĂ€tsschĂ€tzungen mittels maschinellen Lernens

    Complaint-driven Training Data Debugging for Query 2.0

    Full text link
    As the need for machine learning (ML) increases rapidly across all industry sectors, there is a significant interest among commercial database providers to support "Query 2.0", which integrates model inference into SQL queries. Debugging Query 2.0 is very challenging since an unexpected query result may be caused by the bugs in training data (e.g., wrong labels, corrupted features). In response, we propose Rain, a complaint-driven training data debugging system. Rain allows users to specify complaints over the query's intermediate or final output, and aims to return a minimum set of training examples so that if they were removed, the complaints would be resolved. To the best of our knowledge, we are the first to study this problem. A naive solution requires retraining an exponential number of ML models. We propose two novel heuristic approaches based on influence functions which both require linear retraining steps. We provide an in-depth analytical and empirical analysis of the two approaches and conduct extensive experiments to evaluate their effectiveness using four real-world datasets. Results show that Rain achieves the highest recall@k among all the baselines while still returns results interactively.Comment: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Dat

    Querying and mining heterogeneous spatial, social, and temporal data

    Get PDF

    Materialisierte views in verteilten key-value stores

    Get PDF
    Distributed key-value stores have become the solution of choice for warehousing large volumes of data. However, their architecture is not suitable for real-time analytics. To achieve the required velocity, materialized views can be used to provide summarized data for fast access. The main challenge then, is the incremental, consistent maintenance of views at large scale. Thus, we introduce our View Maintenance System (VMS) to maintain SQL queries in a data-intensive real-time scenario.Verteilte key-value stores sind ein Typ moderner Datenbanken um große Mengen an Daten zu verarbeiten. Trotzdem erlaubt ihre Architektur keine analytischen Abfragen in Echtzeit. Materialisierte Views können diesen Nachteil ausgleichen, indem sie schnellen Zuriff auf Ergebnisse ermöglichen. Die Herausforderung ist dann, das inkrementelle und konsistente Aktualisieren der Views. Daher prĂ€sentieren wir unser View Maintenance System (VMS), das datenintensive SQL Abfragen in Echtzeit berechnet
    corecore