18 research outputs found

    Locality Preserving Multiview Graph Hashing for Large Scale Remote Sensing Image Search

    Full text link
    Hashing is very popular for remote sensing image search. This article proposes a multiview hashing with learnable parameters to retrieve the queried images for a large-scale remote sensing dataset. Existing methods always neglect that real-world remote sensing data lies on a low-dimensional manifold embedded in high-dimensional ambient space. Unlike previous methods, this article proposes to learn the consensus compact codes in a view-specific low-dimensional subspace. Furthermore, we have added a hyperparameter learnable module to avoid complex parameter tuning. In order to prove the effectiveness of our method, we carried out experiments on three widely used remote sensing data sets and compared them with seven state-of-the-art methods. Extensive experiments show that the proposed method can achieve competitive results compared to the other method.Comment: 5 pages,icassp accepte

    An Unsupervised Multicode Hashing Method for Accurate and Scalable Remote Sensing Image Retrieval

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Hashing methods have recently attracted great attention for approximate nearest neighbor search in massive remote sensing (RS) image archives due to their computational and storage effectiveness. The existing hashing methods in RS represent each image with a single-hash code that is usually obtained by applying hash functions to global image representations. Such an approach may not optimally represent the complex information content of RS images. To overcome this problem, in this letter, we present a simple yet effective unsupervised method that represents each image with primitive-cluster sensitive multi-hash codes (each of which corresponds to a primitive present in the image). To this end, the proposed method consists of two main steps: 1) characterization of images by descriptors of primitive-sensitive clusters and 2) definition of multi-hash codes from the descriptors of the primitive-sensitive clusters. After obtaining multi-hash codes for each image, retrieval of images is achieved based on a multi-hash-code-matching scheme. Any hashing method that provides single-hash code can be embedded within the proposed method to provide primitive-sensitive multi-hash codes. Compared with state-of-the-art single-code hashing methods in RS, the proposed method achieves higher retrieval accuracy under the same retrieval time, and thus it is more efficient for operational applications.EC/H2020/759764/EU/Accurate and Scalable Processing of Big Data in Earth Observation/BigEart

    Bernoulli Embeddings for Graphs

    Full text link
    Just as semantic hashing can accelerate information retrieval, binary valued embeddings can significantly reduce latency in the retrieval of graphical data. We introduce a simple but effective model for learning such binary vectors for nodes in a graph. By imagining the embeddings as independent coin flips of varying bias, continuous optimization techniques can be applied to the approximate expected loss. Embeddings optimized in this fashion consistently outperform the quantization of both spectral graph embeddings and various learned real-valued embeddings, on both ranking and pre-ranking tasks for a variety of datasets.Comment: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18

    Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey

    Full text link
    Transformer-based Large Language Models (LLMs) have been applied in diverse areas such as knowledge bases, human interfaces, and dynamic agents, and marking a stride towards achieving Artificial General Intelligence (AGI). However, current LLMs are predominantly pretrained on short text snippets, which compromises their effectiveness in processing the long-context prompts that are frequently encountered in practical scenarios. This article offers a comprehensive survey of the recent advancement in Transformer-based LLM architectures aimed at enhancing the long-context capabilities of LLMs throughout the entire model lifecycle, from pre-training through to inference. We first delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. We then provide a taxonomy and the landscape of upgrades on Transformer architecture to solve these problems. Afterwards, we provide an investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as optimization toolkits such as libraries, frameworks, and compilers to boost the efficacy of LLMs across different stages in runtime. Finally, we discuss the challenges and potential avenues for future research. A curated repository of relevant literature, continuously updated, is available at https://github.com/Strivin0311/long-llms-learning.Comment: 40 pages, 3 figures, 4 table

    Toward Global Localization of Unmanned Aircraft Systems using Overhead Image Registration with Deep Learning Convolutional Neural Networks

    Get PDF
    Global localization, in which an unmanned aircraft system (UAS) estimates its unknown current location without access to its take-off location or other locational data from its flight path, is a challenging problem. This research brings together aspects from the remote sensing, geoinformatics, and machine learning disciplines by framing the global localization problem as a geospatial image registration problem in which overhead aerial and satellite imagery serve as a proxy for UAS imagery. A literature review is conducted covering the use of deep learning convolutional neural networks (DLCNN) with global localization and other related geospatial imagery applications. Differences between geospatial imagery taken from the overhead perspective and terrestrial imagery are discussed, as well as difficulties in using geospatial overhead imagery for image registration due to a lack of suitable machine learning datasets. Geospatial analysis is conducted to identify suitable areas for future UAS imagery collection. One of these areas, Jerusalem northeast (JNE) is selected as the area of interest (AOI) for this research. Multi-modal, multi-temporal, and multi-resolution geospatial overhead imagery is aggregated from a variety of publicly available sources and processed to create a controlled image dataset called Jerusalem northeast rural controlled imagery (JNE RCI). JNE RCI is tested with handcrafted feature-based methods SURF and SIFT and a non-handcrafted feature-based pre-trained fine-tuned VGG-16 DLCNN on coarse-grained image registration. Both handcrafted and non-handcrafted feature based methods had difficulty with the coarse-grained registration process. The format of JNE RCI is determined to be unsuitable for the coarse-grained registration process with DLCNNs and the process to create a new supervised machine learning dataset, Jerusalem northeast machine learning (JNE ML) is covered in detail. A multi-resolution grid based approach is used, where each grid cell ID is treated as the supervised training label for that respective resolution. Pre-trained fine-tuned VGG-16 DLCNNs, two custom architecture two-channel DLCNNs, and a custom chain DLCNN are trained on JNE ML for each spatial resolution of subimages in the dataset. All DLCNNs used could more accurately coarsely register the JNE ML subimages compared to the pre-trained fine-tuned VGG-16 DLCNN on JNE RCI. This shows the process for creating JNE ML is valid and is suitable for using machine learning with the coarse-grained registration problem. All custom architecture two-channel DLCNNs and the custom chain DLCNN were able to more accurately coarsely register the JNE ML subimages compared to the fine-tuned pre-trained VGG-16 approach. Both the two-channel custom DLCNNs and the chain DLCNN were able to generalize well to new imagery that these networks had not previously trained on. Through the contributions of this research, a foundation is laid for future work to be conducted on the UAS global localization problem within the rural forested JNE AOI

    GPU-based Kernelized Locality-Sensitive Hashing for Satellite Image Retrieval

    Get PDF
    As the data acquisition capabilities of Earth observation (EO) satellites have been improved substantially in the past few years, large amount of high-resolution satellite images are downlinked continuously to ground stations. Such amount of data increases rapidly beyond the users' capability to access the images' content in reasonable time. Hence, automatic and fast interpretation of a large data volume is a computationally intensive task. Recently, approximate nearest neigbhour search has been used for content-based image retrieval in sublinear time. Kernelized locality sensitive hashing (KLSH) is a well-known approximate method, which has recently shown promising results for fast remote sensing image retrieval. This paper proposes a novel parallelization of KLSH using Graphical Processing Units (GPU), in order to perform fast parallel image retrieval. The proposed method was tested on high-dimensional feature vectors from two satellite-based image datasets, where an average speedup of 20 times was achieved

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore