
GPU-BASED KERNELIZED LOCALITY-SENSITIVE HASHING
FOR SATELLITE IMAGE RETRIEVAL

Niko Lukač, Borut Žalik

Faculty of Electrical Engineering and
Computer Science (FERI)

University of Maribor (UM)
Smetanova ulica 17, SI-2000, Maribor

Shiyong Cui, Mihai Datcu

German Aerospace Center (DLR)
Remote Sensing Technology Institute (IMF)

Münchener Straße 20, 82234, Wessling

Abstract

As the data acquisition capabilities of Earth observation (EO)
satellites have been improved substantially in the past few
years, large amount of high-resolution satellite images are
downlinked continuously to ground stations. Such amount of
data increases rapidly beyond the users’ capability to access
the images’ content in reasonable time. Hence, automatic and
fast interpretation of a large data volume is a computation-
ally intensive task. Recently, approximate nearest neigbhour
search has been used for content-based image retrieval in sub-
linear time. Kernelized locality sensitive hashing (KLSH) is a
well-known approximate method, which has recently shown
promising results for fast remote sensing image retrieval. This
paper proposes a novel parallelization of KLSH using Graph-
ical Processing Units (GPU), in order to perform fast parallel
image retrieval. The proposed method was tested on high-
dimensional feature vectors from two satellite-based image
datasets, where an average speedup of 20 times was achieved.

1. INTRODUCTION

Given a large database of satellite images for real appli-
cations, developing methods and systems for exploring
large-scale databases is of significant importance [1]. Thus,
content-based image retrieval (CBIR) has been developed
since years to solve this problem. In the past few years, CBIR
systems that allow discovering hidden patterns and indexing
of high-dimensional space, have been continuously devel-
oped, such as the Knowledge-driven Information Mining
(KIM) system [2] and the Geospatial Information Retrieval
and Indexing (GeoIRIS) system [3]. KIM is an interactive
system based on human centered concepts, which allows
the user to guide the interactive learning process. The sys-
tem continuously provides the relevance feedback about the
performed training actions and searches the archive for rel-
evant images. On the contrary, GeoIRIS is a content-based
multimodal geospatial information retrieval and indexing
system, which allows automatic feature extraction, visual

content mining from large-scale image databases, and high-
dimensional database indexing for fast retrieval.

In theory, image retrieval is a trivial problem solved by
the nearest neighbor search (NNS). Given a database and a
query, the naive solution to finding similar images is to probe
all images in the database and compute the similarity of the
query to each image. Then all similar images (i.e. their fea-
ture vectors) can be found by sorting the similarity values of
all images to the query. Approximate similarity search has re-
ceived a lot of attention for solving this problem in sufficient
time, where one prominent solution is the locality sensitivity
hashing (LSH) [4]. The basic idea of LSH is that if two fea-
ture vectors are similar in the high-dimensional feature space,
there is a high probability that they are also close in the low-
dimensional hashing (e.g. Hamming) space. It consists of two
steps. The first step is to build the data structure (hash tables),
while in the second step is to find the candidate (i.e. approxi-
mately close) feature vectors that are saved in the same bucket
as the query image. Following the same idea as LSH, kernel-
ized LSH (KLSH) [5] performs indexing in a kernelized fea-
ture space, where the underlying data embedding is implicitly
known, thus all the requirement is a kernel function.

Although hashing generally guarantees sublinear NNS
query time, in practice it can be even further speedup when
considering multiple queries over a large image database.
Therefore, in the past few years many paralelizations of LSH
have been proposed [6, 7]. Although domain specific methods
[2, 3] have been developed for fast content retrieval over re-
mote sensing images, until recently LSH was not considered
for this purpose. Furthermore, supervised KLSH has recently
shown promising results on the remote sensing image re-
trieval [8]. Therefore, in this paper a novel parallelizaton of
KLSH is proposed using general-purpose computing on GPU
(GPGPU), which can perform multiple queries at once over
large-scale remote sensing image datasets.

The paper is structured into 4 sections, where the pro-
posed method is described in detail within the next section.
The results are presented in the third section, while the last
section concludes the paper.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31017413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

q1

(a)

(b)

(c)

(d) xi

q2 q3 q4 q5

q1 q2 q3 q4 q5

q5q3q1q4q2 xi xi

Fig. 1. (a) Example query images (subset of Q); (b) Transformation to feature space; (c) Hashing into different buckets
(denoted with background color); (d) Sorting the buckets with already hashed X data.

2. KERNELIZED LOCALITY SENSITIVE HASHING

LSH is an efficient method for performing approximate NNS
for a given data input (i.e. high-dimensional point). The idea
is to project D-dimensional data x1, ...,xn ∈ X into low-
dimensional space U by using hashing function h : RD → U,
which satisfies the locality sensitive property:

Prh[h(xi) = h(xj)] = sim(xi, xj) (1)

where sim(xi, xj) ∈ [0, 1] is the considered similarity func-
tion. One of the more interesting approaches is the use of
an inner product with a random vector r ∈ N (0, 1). It is
important that r is created from the zero-mean multivariate
Gaussian distribution, in order to establish locality sensitive
property. The probability of having an equal sign when cal-
culating the inner product between r and two different points
is inversely proportional to cosine similarity between the two
given points [4, 5]:

Prh[sign(x
T
i r) = sign(xTj r)] =

= 1− 1

π
cos−1

(
xTi xj

||xi||2||xj ||2

)
.

(2)

Hence, the hashing function is defined as [5]:

h(xi) = sign(xTi r). (3)

The next step is to construct a hash-table by hashingX , where
the bucket index is calculated by concatenating the output of
m hash functions H(xi) = {h0(xi)h1(xi)...hm(xi)}, where
each has its own vector r. The most basic NNS query on xi
is to calculate exact distances to candidates located within the
same bucket H(xi), while more sophisticated methodology
was developed by using multi-probe LSH (MLSH) [9], where
also the neighbouring buckets within the hash-tables are con-
sidered (i.e. probed). This is based on the probability that xi
could have neighbours within a δ-neighbouring bucket from
current bucket, i.e. H(xi) + δ ∈ {−2,−1,+1,+2} [9]:

Pr[H(xi) = H(xi) + δ] ≈ e−Cf(xi,δ)
2

, (4)

based on the probability density function of Gaussian random
variable (i.e. e−x

2/2σ2

). f(xi, δ) is the distance to the δ-
neighbouring bucket, and C is a tuning constant. The main

advantage of MLSH is the considerably reduced memory re-
quirements due to lower m.

KLSH on the other hand considers kernel-based similarity
function [5]:

sim(xi, xj) = κ(xi, xj) = θ(xi)
T θ(xj), (5)

where θ(xi) maps a given point into a low-dimensional fea-
ture space. KLSH proposes an efficient way to calculate r ∈
N (0, 1), where rT θ(xi) can be computed with a kernel func-
tion. They have shown that this can be achieved by defining r
as [5]:

r =

|P |∑
j=1

wiθ(xj);xj ∈ P, (6)

wherew is a weighting vector and P ∈ X is a relatively small
subset that is used to form the zero-centered kernel matrix
K. Hence, in order to satisfy the locality sensitive property,
the hashing functions are created from the same kernelized
feature space by considering random data samples. This in
itself enables the application of LSH to linearly inseparable
data. The weighting vector w is calculated as:

w = K(−1/2)eP = V V T eP , (7)

where V is the eigendecomposition of K, and eP is |P |-
dimensional random binary vector, which corresponds to in-
dices of P . t << |eP | random values in eP are set to 1.
Finally, the hashing function is then defined as:

h(θ(xi)) = sign

 |P |∑
j=1

wj(θ(xi)
T θ(xj))

 , (8)

where xi ∈ X and xj ∈ P . New hashing functions can be
formed by zeroing eP , and then choosing new t values to 1,
in order to calculate new w. For each query the existing LSH
methodology is used with the given hash function, in order to
find its approximate nearest neighbours.

2.1. Parallelization using GPGPU

The proposed GPU implementation works as following. At
first, a preprocessing step is performed on the host (CPU)

side, where kernel matrix KX is formed between P ∈ X
and X − P by using radial basic function (RBF) κ(xi, xj) =

exp
(
−||θ(xi)−θ(xj)||2

2σ2

)
, where {xi, xj} ∈ P and σ is a free

parameter. Then m hash functions are computed using eigen-
decomposition of K, which represents the training dataset.
Similarly, the query kernel matrix KQ is build. The idea of
the proposed method is to perform the approximate nearest
neighbour query in parallel for multiple query points. The
proposed implementation considers NVIDIA’s Compute Uni-
fied Device Architecture (CUDA), which groups threads into
blocks and these into grids. In the proposed method the data
is stored in 1D grid. The computed vectors w1,...,w|P | are
stored in GPU constant (i.e. read-only) fast cached memory,
while KX and KQ are transferred to the GPU global mem-
ory. In the first parallel stage each thread is responsible for
a single point xi ∈ K, where the E2LSH [4] methodology is
considered. Thus, both X and Q are hashed. This works by
bucketing the hashed result [4, 7]:

h(xi) =

 |P |∑
j

wjK(xi, xj)modM

 mod c (9)

where xj ∈ P , and K is either KX or KQ. xi ∈ P , M
is a large prime number to avoid integer overflow, and c de-
notes the number of buckets. In the second parallel stage,
k approximate nearest neighbours from hashed X are com-
puted for KQ by calculating and comparing the actual dis-
tances to the points that are hashed into the same buckets as
given query points. The GPU-based MLSH approximation
proposed in [7] is considered strategy in this paper, in order to
efficiently probe approximate neighbours of qi. In this stage,
each CUDA thread is responsible for one query point. Fig.
1 shows the process of applying parallel hashing for a sin-
gle hash function h. Moreover, BQ and IQ integer arrays of
size |Q| are created in global memory. BQ denotes the target
bucket for each qi, while IQ denotes the index of qi, which is
initially set as IQ[qi] = i. After hashing is complete and BQ
is populated, it is sorted in ascending order together with IQ
by using parallel radix sort. Furthermore, two arrays of size c
are required in GPU global memory, in order to store the start-
ing position and size of each bucket within BQ. The query is
then performed with |Q| threads in parallel, where the result
of k nearest neighbours are calculated and RQ of size k×|Q|
is updated. Finally, IQ is sorted back to the original ascending
order of the query points, together with corresponding RQ.

3. RESULTS

Two different satellite remote sensing datasets were consid-
ered in the experiments. Namely, a SAR dataset consisting
of 3434 images with resolution of 160 × 160 pixels, and the

UC Merced Land Use dataset [10] 1 consisting of 2100 im-
ages with the resolution of 256 × 256 pixels. Both datasets
were already classified into urban and natural objects, the
SAR dataset into 15 classes, while the optical dataset into
21 classes. At first, the images were transformed into a
high-dimensional space based on the Bag-of-Words feature
extraction method. The used local features are the raw pixel
values and the codebook was learned by k-means clustering.
The SAR images were represented by 250-dimensional fea-
ture vectors, while the optical imagery with 500-dimensional
vectors (i.e. points). During the experiments, all the high-
dimensional feature vectors were considered as the query
dataset. The used GPU hardware was GeForce GTX Titan
Black with 2880 CUDA cores.

5 10 15 20
0

20

40

60

80

100

m

R
e

c
a

ll
ra

te
 [

%
]

SAR UCMerced LandUse

Fig. 2. Recall rate for k = 5 as the number of hash functions
(m) increases.

5 10 15 20
0

2

4

6

8

10

12

m

ti
m

e
 [

s
]

SAR UCMerced LandUse

Fig. 3. Runtime for k = 5 as the number of hash functions
(m) increases.

The purpose of the experiments within this paper was to
show fast image retrieval. The recall rate was calculated as
the percentage of images that had the nearest neighbour with
the same class. During the experiments, size of P was chosen
as
√
|X| of the total given dataset, in order to guarantee sub-

linear search times. Moreover, t = |P |/2 when generating
eP . The number of threads per CUDA block was 64, while
the number of buckets for SAR dataset was set at 300, and for
optical imagery at 200. Fig. 2 shows the recall rate and Fig. 3
the runtime as the number of used hash functions increase at
k = 5. Transfer times between the host and GPU memory are
already included within the measured runtime. Moreover, Fig

1UC Merced Land Use dataset public release: http://vision.
ucmerced.edu/datasets/landuse.html

http://vision.ucmerced.edu/datasets/landuse.html
http://vision.ucmerced.edu/datasets/landuse.html

Q R1
R2 R3 R4 R5

Fig. 4. Results for 5 query images (3 optical and 2 SAR) when k = 5 and m = 5. False positives are denoted with red border.

4. shows an example of false positives that can occur when
using m = 10 and k = 5.

4. CONCLUSION

As the preliminary results have shown the proposed method
can achieve fast image retrieval over remote sensing imagery,
where the quality-speed trade-off can be adequately tuned.
For future-work, the demanding tasks at the host side shall
be computed on the GPU.

Acknowledgment
The authors would like to thank the TerraSAR-X science ser-
vice system for the SAR data. This work was in part sup-
ported by the Slovenian Research Agency under grants 1000-
13-0552 and J2-6764.

5. REFERENCES

[1] P. Blanchart, M. Ferecatu, and M. Datcu, “Cascaded ac-
tive learning for object retrieval using multiscale coarse
to fine analysis,” in Proc. 18th IEEE Int Image Process-
ing (ICIP) Conf, 2011, pp. 2793–2796.

[2] M. Datcu and K. Seidel, “Human-centered concepts for
exploration and understanding of Earth observation im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3,
pp. 601–609, March 2005.

[3] Chi-Ren Shyu, M. Klaric, G. J. Scott, A. S. Barb, C. H.
Davis, and K. Palaniappan, “GeoIRIS: Geospatial infor-
mation retrieval and indexing system — content mining,
semantics modeling, and complex queries,” IEEE Trans.
Geosci. Remote Sens., vol. 45, no. 4, pp. 839–852, 2007.

[4] M. Slaney and M. Casey, “Locality-Sensitive Hashing
for Finding Nearest Neighbors [Lecture Notes],” Sig-
nal Processing Magazine, IEEE, vol. 25, pp. 128–131,
2008.

[5] B. Kulis and K. Grauman, “Kernelized locality-sensitive
hashing for scalable image search,” in Computer Vision,
2009 IEEE 12th International Conference on, 2009, pp.
2130–2137.

[6] J. Pan and D. Manocha, “Fast GPU-based locality sen-
sitive hashing for k-nearest neighbor computation,” in
In Proceedings of the 19th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Informa-
tion Systems, 2011, pp. 211–220.

[7] N. Lukač and B. Žalik, “Fast approximate k-nearest
neighbours search using GPGPU,” in GPU Comput-
ing and Applications, pp. 221–234. Springer Singapore,
2015.

[8] B. Demir and L. Bruzzo, “Kernel-based hashing for
content-based image retrval in large remote sensing data
archive,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2014 IEEE International, 2014.

[9] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li, “Multi-probe LSH: efficient indexing for high-
dimensional similarity search,” in Proceedings of the
33rd international conference on Very large data bases,
2007, pp. 950–961.

[10] Y. Yang and S. Newsam, “Bag-Of-Visual-Words and
Spatial Extensions for Land-Use Classification,” in
Proc. 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS ’10,
New York, NY, 2010, pp. 270–279.

	 Introduction
	 Kernelized locality sensitive hashing
	 Parallelization using GPGPU

	 Results
	 Conclusion
	 References

