2,178 research outputs found

    An Octree-based proxy for collision detection in large-scale particle systems

    Get PDF
    International audienceParticle systems are important building block for simulating vivid and detail-rich effects in virtual world. One of the most difficult aspects of particle systems has been detecting collisions between particlesand mesh surface. Due to the huge computation, a variety of proxy-based approaches have been proposed recently to perform visually correct simulation. However, all either limit the complexity of the scene, fail toguarantee non-penetration, or are too slow for real-time use with many particles. In this paper, we propose anew octree-based proxy for colliding particles with meshes on the GPU. Our approach works by subdividingthe scene mesh with an octree in which each leaf node associates with a representative normal correspondingto the normals of the triangles that intersect the node. We present a view-visible method, which is suitable forboth closed and non-closed models, to label the empty leaf nodes adjacent to nonempty ones with appropriateback/front property, allowing particles to collide with both sides of the scene mesh. We show how collisionscan be performed robustly on this proxy structure in place of the original mesh, and describe an extension thatallows for fast traversal of the octree structure on the GPU. The experiments show that the proposed methodis fast enough for real-time performance with millions of particles interacting with complex scenes

    Real-time fluid simulations under smoothed particle hydrodynamics for coupled kinematic modelling in robotic applications

    Get PDF
    Although solids and fluids can be conceived as continuum media, applications of solid and fluid dynamics differ greatly from each other in their theoretical models and their physical behavior. That is why the computer simulators of each turn to be very disparate and case-oriented. The aim of this research work, captured in this thesis book, is to find a fluid dynamics model that can be implemented in near real-time with GPU processing and that can be adapted to typically large scales found in robotic devices in action with fluid media. More specifically, the objective is to develop these fast fluid simulations, comprising different solid body dynamics, to find a viable time kinematic solution for robotics. The tested cases are: i) the case of a fluid in a closed channel flowing across a cylinder, ii) the case of a fluid flowing across a controlled profile, and iii), the case of a free surface fluid control during pouring. The implementation of the former cases settles the formulations and constraints to the latter applications. The results will allow the reader not only to sustain the implemented models but also to break down the software implementation concepts for better comprehension. A fast GPU-based fluid dynamics simulation is detailed in the main implementation. The results show that it can be used in real-time to allow robotics to perform a blind pouring task with a conventional controller and no special sensing systems nor knowledge-driven prediction models would be necessary.Aunque los sólidos y los fluidos pueden concebirse como medios continuos, las aplicaciones de la dinámica de sólidos y fluidos difieren mucho entre sí en sus modelos teóricos y su comportamiento físico. Es por eso que los simuladores por computadora de cada uno son muy dispares y están orientados al caso de su aplicación. El objetivo de este trabajo de investigación, capturado en este libro de tesis, es encontrar un modelo de dinámica de fluidos que se pueda implementar cercano al tiempo real con procesamiento GPU y que se pueda adaptar a escalas típicamente grandes que se encuentran en dispositivos robóticos en acción con medios fluidos. Específicamente, el propósito es desarrollar estas simulaciones de fluidos rápidos, que comprenden diferentes dinámicas de cuerpos sólidos, para encontrar una solución cinemática viable para robótica. Los casos probados son: i) el caso de un fluido en canal cerrado que fluye a través de un cilindro, ii) el caso de un fluido que fluye a través de un alabe controlado, y iii), el caso del control de un fluido de superficie libre durante el vertido. La implementación de estos primeros casos establece las formulaciones y limitaciones de aplicaciones futuras. Los resultados permitirán al lector no solo sostener los modelos implementados sino también desglosar los conceptos de la implementación en software para una mejor comprensión. En la implementación principal se consigue una simulación rápida de dinámica de fluidos basada en GPU. Los resultados muestran que esta implementación se puede utilizar en tiempo real para permitir que la robótica realice una tarea de vertido ciego con un controlador convencional sin que sea necesario algún sistema de sensado especial ni algún modelo predictivo basados en el conocimiento.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Carmen Martínez Arévalo.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Benjamín Hernández Arreguí

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201

    SOFA: A Multi-Model Framework for Interactive Physical Simulation

    Get PDF
    International audienceSOFA (Simulation Open Framework Architecture) is an open-source C++ library primarily targeted at interactive computational medical simulation. SOFA facilitates collaborations between specialists from various domains, by decomposing complex simulators into components designed independently and organized in a scenegraph data structure. Each component encapsulates one of the aspects of a simulation, such as the degrees of freedom, the forces and constraints, the differential equations, the main loop algorithms, the linear solvers, the collision detection algorithms or the interaction devices. The simulated objects can be represented using several models, each of them optimized for a different task such as the computation of internal forces, collision detection, haptics or visual display. These models are synchronized during the simulation using a mapping mechanism. CPU and GPU implementations can be transparently combined to exploit the computational power of modern hardware architectures. Thanks to this flexible yet efficient architecture, \sofa{} can be used as a test-bed to compare models and algorithms, or as a basis for the development of complex, high-performance simulators

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character
    corecore