
Powder Technology 407 (2022) 117631

Available online 17 June 2022
0032-5910/© 2022 Elsevier B.V. All rights reserved.

Bayesian calibration of GPU–based DEM meso-mechanics Part I:
Parallelization of RVEs

Retief Lubbe a, Wen-Jie Xu a,*, Qian Zhou a, Hongyang Cheng b

a State Key Laboratory of Hydroscience and Department of Hydraulic Engineering, Tsinghua University, Beijing, China 100084
b Department of Civil Engineering, Faculty of Engineering, Technology, MESA+, University of Twente, P.O Box 217, 7500 AE Enschede, the Netherlands

H I G H L I G H T S G R A P H I C A L A B S T R A C T

• A novel algorithm for the parallelization
of GPU based DEM at the level of the
RVE is presented.

• Simulation level parallelism of inde-
pendent RVEs is provided.

• A low latency and memory efficient
implementation of deformable PBC is
performed.

• Modified UG and BVH contact detection
algorithms is used to partition the
simulation index into the hashing keys.

• Drained DEM triaxial test is used to
validate the algorithm on dry graded
quartz.

A R T I C L E I N F O

Keywords:
Discrete element method (DEM)
Graphical Processor Unit (GPU)
Periodic boundary conditions (PBC)
Parameter calibration
Representative Volume Element (RVE)

A B S T R A C T

Calibration of Discrete Element Method (DEM) parameters is essential for modeling geotechnical applications.
This task can, however, be extremely tedious or sometimes even impossible to undertake. This is largely due to
two issues namely: (1) a large sample size of DEM simulations and number of sampling iterations are necessary to
accurately infer the probability distribution of a model over a large parameter space and (2) DEM is computa-
tionally intractable compared to other numerical methods. In the scope of reducing the number of sampling
iterations, automatic calibration techniques are available to extract and make use of the hidden contact meso-
structure correlations through adaptive sampling. Coincidentally, to improve computational speed, significant
advances toward Graphics Processor Unit (GPU) based DEM algorithms have been achieved over the past years
on particle parallelism. Nevertheless, the problem remains that DEM simulations are serialized during the
calibration processes. While the companion paper addresses parameter calibration, this study presents a novel
algorithm to parallelize independent simulations within a sample set. The selected system is the Representative
Volume Element (RVE) which is widely used in geotechnics for solving soil response in the static regime. The
algorithm includes the following key features: (1) simulation level parallelism of non-interacting RVEs through
highly efficient hierarchical memory groups and access patterns (2) a low latency and memory-efficient
implementation of deformable periodic boundary conditions (PBC) which uses lookup tables and bitmasks (3)

* Corresponding author.
E-mail address: wenjiexu@tsinghua.edu.cn (W.-J. Xu).

Contents lists available at ScienceDirect

Powder Technology

journal homepage: www.journals.elsevier.com/powder-technology

https://doi.org/10.1016/j.powtec.2022.117631
Received 6 February 2022; Received in revised form 6 June 2022; Accepted 12 June 2022

mailto:wenjiexu@tsinghua.edu.cn
www.sciencedirect.com/science/journal/00325910
https://www.journals.elsevier.com/powder-technology
https://doi.org/10.1016/j.powtec.2022.117631
https://doi.org/10.1016/j.powtec.2022.117631
https://doi.org/10.1016/j.powtec.2022.117631
http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2022.117631&domain=pdf

Powder Technology 407 (2022) 117631

2

modified Uniform Grid and Bounding Volume Hierarchy (BVH) contact detection algorithms which partitions the
RVE index into the hashing keys. The drained DEM triaxial compression is used to validate the algorithm on dry
graded quartz. Three performance degrading factors for the calibration processes are considered: (1) the number
of particles per RVE (2) calibration sample size and (3) sequential launch time per calibration step. This algo-
rithm shows a factor of about 9.8 times speedup when parallelizing 100 DEM RVEs in one batch.

1. Introduction

Calibration of physical parameters for numerical models is essential
for simulations to emulate real-world engineering problems. This pro-
cess involves tuning model parameters such that the numerical response
matches the experimental response. Well-established numerical models
are generalizable enough to solve various problems but cumbersome to
calibrate, especially for complex non-linear applications such as those
modeling granular materials.

The Discrete Element Method (DEM) put forward by Cundall and
Strack [1] is a fundamental numerical tool used to simulate the
macroscopic behavior of granular material through mechanical in-
teractions of discrete particles. Graphics Processing Unit (GPU) based
DEM is becoming more relevant in large scale engineering problems
[2,3,4,5] given the rise of high-performance parallel computing hard-
ware and distributed nature of particles and their interactions.

The Representative Volume Element (RVE) is the smallest volume
meso-structure used to constitute the macroscopic characteristics of soil
[6,7]. Oftentimes, rigid walls are often used with a servo-control
mechanism to impose some stress or strain conditions. However, the
packing fraction at the wall is generally lower than the rest of the
sample, and the stress response at the wall is different from that of the
center [8]. Periodic boundary conditions (PBC) are used in RVEs to
reduce the effects of rigid wall boundaries [9].

There is a growing need to simulate many calibrated independent
RVEs. Among these methods is the hierarchical Finite Element Method -
Discrete Element Method (FEM-DEM) multiscale simulations such as
those from N. Guo, et al. [10] and others [11,12,13]. The hierarchical
FEM-DEM simulations replace the constitutive model with the response
stress deformation response of an RVE. This is achieved by mapping
each RVE to a material point or Gaussian integration point in the FEM
mesh. The parallelization of RVEs is significant in improving the per-
formance of these simulations. Yade [14] can support independent RVEs
as scenes but is developed on the CPU. S. Zhao et al. [15] developed a 2D
parallel thread-block-wise GPU-based RVE code for DEM and Material
Point Method (MPM) coupling. Finally, [13] performed multi-scale hi-
erarchical FEM-DEM parallel simulations on RVEs for dry sand.

Another application to simulate many RVEs is the automatic cali-
bration of DEM parameters such as genetic algorithms implemented by
[16] and Bayesian inference algorithms developed [17,18]. These al-
gorithms may require many RVEs for a large parameter set to be cali-
brated accurately and efficiently.

There are many challenges to achieving parallelism at an RVE level:
(1) GPU algorithms are implemented in a thread-structured pattern
which limits how memory is accessed between particles; (2) A particle
may have up to 7 boundary particles that interact differently with other
real and boundary particles during the contact detection and force
calculation stages. For instance, if a real particle interacts with an
another particle’s boundary particle, force symmetry should ensure that
the real particles register contact with each other while the contact is
only made among the boundary and real particles; (3) Deformation of
RVEs modifies the local coordinates and the velocities of the particles;
(4) Parallel non-interacting RVEs may have a unique simulation state
and initial configuration; (5) Contact detection algorithms are only able
to partition one simulation domain at a time and do not consider the
special rules of boundary particles; (6) Special techniques such as atomic
functions or parallel reductions are necessary for threads to communi-
cate to each other and perform volume averaging of state variables such

as the stress.
This study addresses these issues by introducing a novel algorithm

for GPU-based DEM to simulate many independent RVEs for the drained
triaxial test. The code is developed into the existing CoSim-DEM [13]
framework and used for generating a large statistical sample size and the
fast calibration in the companion paper.

The rest of the paper is structured as follows: Section 2 provides an
overview of the basic DEM contact model; Section 3 introduces the
Moment Rotation Law (MRL) which is used to introduce grain roughness
for triaxial simulations; Section 4 gives an overview of the DEM inte-
gration scheme; Section 5 discusses the RVE and presents the stress and
strain invariants for the triaxial test; Section 6 introduces the parallel
piped unit cell and transformation between local and global coordinate
systems; Section 7 presents the implementation of the GPU algorithm;
Section 8 shows the homogenization procedure; Section 9 presents a
validation of the DEM simulation to the drained triaxial sand of dry sand
quartz; Section 10 shows a potential application to the algorithm by
studying the softening and hardening behavior of a designed material;
Section 11 gives a performance comparison implement algorithm for
isotropic strain-based compression. Section 12 concludes the paper and
future recommendations are made.

2. Discrete element method

DEM is a force-displacement Lagrangian approach to solving New-
ton’s equations of motion for an assembly of discrete particles. These
particles are governed by force contact law which determines their
interaction forces. The simplest law in DEM is based on a Hertzian spring
model and called the Frictional Law (FL) [1]. The FL is used as an initial
approximation in this study and modified to include the effects of the
particle shape.

In FL, the resultant force vector F→
t+Δt

of particle A of a pairwise
contact with particle B is decomposed into the sum of the normal force
F→N and the tangential (or shear) force F→T:

F→
t+Δt

= F→N
t+Δt

+ F→T
t+Δt

(1a)

F→N
t+Δt

= ⟦KN⟧λP n→ (1b)

Δ F→T
t+Δ

= − ⟦KT ⟧Δ λ
→

T (1c)

where λP is the penetration depth, Δ λ
→

T is the incremental tangential
displacement vector and n→ is the normal direction of contact. The
viscous dashpot term as in [19] is neglected since this study is restricted
to systems in the quasi-static regime for dry sand quartz with very small
relative velocities.

The normal stiffness ⟦KN⟧ and tangential stiffness ⟦KT⟧ are calculated
using the radius of the two particles rA and rB:

⟦KN⟧ = E
2rArB

rA + rB
(2a)

⟦KT ⟧ = νE
2rArB

rA + rB
(2b)

The tangential force FT
t+Δt is found by summing the history of the

tangential increments Δ F→T
t+Δ

at the previous time steps of the same
contact pair. A frictional Mohr-Coulomb criterion is applied which

R. Lubbe et al.

Powder Technology 407 (2022) 117631

3

enables the particles to slip. That is if the tangential force exceeds the
normal force times the friction angle |FT

t+Δt| > |FN
t+Δt| tan φ, then the

expression is:

F→T
t+Δt

= tanφ
⃒
⃒Ft+Δt

N

⃒
⃒

⃒
⃒Ft+Δt

T

⃒
⃒

F→T
t+Δt

(3)

The FL introduces four material parameters: Young’s moduli E which
scales the magnitude of the normal and shear force; Poisson’s ratio ν
which scales the magnitude of the shear force; Intergranular frictional
angle μ = tanφ determines the strength limit of the tangential force. The
torques of the particles are calculated by:

T→
t+Δt

= λT(− n→)× F→
t+Δt

(4)

where λT= (rA − λP) is the mathematical complement of the radii
overlap.

3. Moment Rotation Law

Particles may be represented by different geometries [20] which can
influence the bulk properties such as shear strength and angle of repose
[21]. However, resolving contact for particles with detailed geometry
requires complex and computationally demanding algorithms [22,23].
This study uses spherical particles and artificially introduces a grain
roughness by using the Moment Rotation Law (MRL).

MRL modifies the FL by introducing rolling M→roll and twisting M→twist
moments. Artificially adding these moments was shown to produce
desirable results under quasi-static triaxial compression
[24,18,25,26,13].

M→
t+Δt

= T→
t+Δt

+M→twist
t+Δt

+M→roll
t+Δt

(5)

The rolling and twisting moments are solved similarly to each other
(denoted by the subscript). The incremental moments are found by:

ΔM̅̅→I
t+Δt

= − ⟦KI⟧Δ λ
→

I (6)

where Δ λ
→

I is the incremental moment rotation vector. The total

moment M→I
t+Δt

is obtained by the summation of the moment increments

from the particle history from ΔM̅̅→I
i+1

. Then a stiffness is found by:

⟦KI⟧ = ηImin(rA, rB)
2⟦KT ⟧ (7)

where ηI is the stiffness coefficients.

After the moment is incremented, a threshold is applied if
⃒
⃒
⃒
⃒M
→

I
t+Δt

⃒
⃒
⃒
⃒

〉

Meta
I holds. The modified moment is given by:

M→I
t+Δt

= Meta
I

λ
→

I⃒
⃒
⃒ λ
→

I

⃒
⃒
⃒

(8a)

where

Meta
I = αI

⃒
⃒
⃒F→N

t+Δt⃒⃒
⃒ (8b)

and αI is a strength parameter. Eqs. (6) to (8) should be repeated for both
the bending and twisting moments. MRL introduces 4 additional pa-
rameters: twisting and rolling stiffness coefficient ηtwist and ηroll, and the
twisting and rolling strength αtwist and αroll.

4. Integration scheme

The translational acceleration a⇀
t+Δt

2 and angular acceleration ω⇀
t+Δt

2 of a
particle is found using the particle mass mA and Newton’s second law
with the resultant force and moment. Then, a first-order Euler integra-

tion scheme is used to find the velocity u⇀
t+Δt

and position s⇀
t+Δt

:

a⇀
t+Δt

2
=

F→
t+Δt

mA
(9a)

Fig. 1. RVE of 2000 particles with uniformly distributed radii between 5 × 10− 5m and 1.25 × 10− 4m. The cell lengths are shown as Lx, Ly and Lz, and the mean cell
length Lmean is about 33 times larger than the mean particle radius rmean.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

4

adamp = a⇀
t+Δt

2
(

u⇀
t
+

Δt
2

a⇀
t+Δt

2
)

(9b)

u⇀
t+Δt

= u⇀
t
+ a⇀

t+Δt
2
[
1 − Cdampsign

(
a⇀

t+Δt
2
)]

Δt (9c)

s⇀
t+Δt

= s⇀
t
+ u⇀

t+Δt
(9d)

where Cdamp is the normal damping coefficient. A similar integration
scheme is performed for the moment for the particle. The time step Δt is
set as half the critical time step [27]:

Δtcr = rmin

̅̅̅̅̅̅̅̅
E

ρmin

√

(10)

where rmin and ρmin are the minimum radius and density of the particles,
respectively.

5. Upscaling and RVE

A large system of fine powders or soils often requires enormous
amounts of computational resources to simulate to the exact scale.
Instead, the material response can be found by studying a subscale of the
system which is characterized by an RVE. The RVE solves the constitu-
tive laws of the microscopic (particle) interactions to statistically find
the macroscopic variables employing volume averaging [6]. The size of
the RVE must be much smaller than the macroscopic system LRVE ≪
LMAC, but large enough to be homogenized and eliminate the fluctua-
tions (of the averaged field variables) LSUB ≪ LRVE which is due to
microscopic effects [28]. An example of a homogenized RVE is shown in
Fig. 1.

For a homogenized RVE, the effective stress is found by using the
Cauchy stress [29]:

σi,j =
1

VRVE

∑

Nc

d
⇀c

⊗ f
⇀c

(11)

where VRVE is the volume of the RVE. The tensor product ⊗ is calculated

for the contact force f
⇀c

and the branch vectors d
⇀c

over all contact pairs
Nc.

Using the effective stress, the mean principal stress p and deviatoric
stress q for a 3D system is given by:

p =
1
3
(
σ1,1 + σ2,2 + σ3,3

)
(12a)

q =
1̅
̅̅
2

√

̅̅̅
(
σ1,1 − σ2,2

)2
+
(
σ1,1 − σ3,3

)2
+
(
σ2,2 − σ3,3

)2
√

(12b)

The strain tensor εi, j is the relative change in position of the RVE
under deformation. The volumetric strain εV and deviatoric strain εq are
given by:

εV = ε1,1 + ε2,2 + ε3,3 (13a)

εq =
1̅
̅̅
2

√

̅̅̅
(
ε1,1 − ε2,2

)2
+
(
ε1,1 − ε3,3

)2
+
(
ε2,2 − ε3,3

)2
√

(13b)

The initial configuration of the RVE should approximately match the
particle size distribution, porosity, and density of contacts of the
experiment [28]. It is, however, not necessary to match the bulk density
since the time step and the maximum deformation rate (defined in
Section 6) are scaled relatively. Particle mass density may also be arti-
ficially increased to decrease the magnitude of the time step and lessen
computational time [30,31]. However, this study chooses to match the
porosity of the system but assumes a similar bulk density to the exper-
iment. The effects of gravity within the packing are also ignored for
mesoscale simulations. The simulation parameters used are defined in

Appendix A.

6. Deformable boundaries and periodicity

The parallel piped unit cell is used to incorporate different servo-
controlled deformations and periodicity into an RVE. Fig. 2 shows a
2D illustration of this unit cell as part of an infinite system of images. As
the centroid of a particle traverses an edge and leaves the unit cell, the
position of the particle is translated across the opposite edge, conserving
its direction of motion and energy. Particles in between the unit cell and
its images lead to boundary particles. The number of boundary particles
depends on how many edges are overlapped. The term real particle is
used to distinguish between a particle in the main unit cell and its
boundary particles in other images.

The periodic images contain identical particles which are incre-
mented by the cell length.

For the parallel piped unit cell, two coordinate systems are used,
namely, the global (cartesian) coordinate system and the local (cell)
coordinate system. These coordinate systems are interpreted as matrices
with the column entries as the basis of the system. The global coordinate
system is denoted as xi and the local coordinate system is denoted as Xj.
The coordinate transformation between these systems are:

xi = HijXj (14a)

Xj = H− 1
jk xk (14b)

where Hij is the transformation with its columns as basis vectors of the
cell, and Hjk

− 1 is the inverse transformation.
The images of the particles in the local coordinates can be obtained

by periodically shifting their positions si → s′ i by units of local cell length
Li

′ , as shown in Fig. 2.

s′i = si ±Li
′ (15)

The motion due to the homogeneous deformation of the boundaries
is considered by differentiating Eq. (16) and decomposing it to the affine

mean-field velocity u⇀mf

′

and fluctuating velocity u⇀fl

′

.

ẋi = ḢijXj +HijẊj = u⇀mf

′

+ u⇀fl

′

(16a)

u⇀mf

′

= u⇀mf ± ḢijLi
′ (16b)

Fig. 2. 2D illustration of a parallel piped unit cell (green) in the global and
local coordinates. The periodic images contain identical particles which are
incremented by the cell length. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

R. Lubbe et al.

Powder Technology 407 (2022) 117631

5

u⇀fl

′

= u⇀fl (16c)

The affine mean-field velocity is attributed to the macroscopic ho-
mogeneous deformation of the RVE cell, and the fluctuating velocity or
velocity is driven by a particle force and is not affine.

The velocity due to the homogeneous deformation of the RVE is
found in the global coordinate system by:

uhi = Uijxj (17a)

Uij = ḢikH− 1
kj (17b)

where Uij the velocity gradient (tensor) which is used to represent the
gradient of homogeneous deformation. The induced acceleration is
found by differentiating Eqs. (17)

u̇hi = U̇ikxk +Uikẋk (18)

The boundary-induced velocity and acceleration are considered in
the motion integration scheme. The velocity gradient or strain rate al-
lows for scaling and rotation and is applied incrementally by the servo-
controller to deform the cell.

Ct+Δt
ij = Ht

ijC
t
ij (19a)

Ht
ij = δi,j +Ut

ijΔt (19b)

C0
ij =

⎡

⎣
L1 0 0
0 L2 0
0 0 L3

⎤

⎦ (19c)

where δi, j is the identity matrix, Ci, j is the cell matrix with wall lengths
L1, L2 and L3.

The shear rate γ̇ is defined as the second invariant of the velocity
gradient (strain rate tensor) in Eq. (19). From this, the following a
rheological relation is given [32]:

γ̇ =
I ′

2rmean

̅̅̅̅̅̅̅̅
σc

ρmean

√ (20)

where ρmean and rmean are the mean radii and densities of the particles,
respectively. σc is the confining pressure. The dimensionless inertia
number I′ corresponds to the flow regime which is set to 10− 3 for the
quasi-static regime in this study.

This study applies two constraints to correctly simulate a quasi-static
response in DEM. The first constraint is that the time step should be
below the critical time step in Eq. (10) to have numerical stability. The
second constraint is that the maximum incremental strain for the servo-
controller should be sufficiently small.

dεmax = Δt • γ̇ (21)

As γ̇ and Δt becomes smaller, more simulation iterations are neces-
sary to reach a final simulation time or servo-controlled goal (strain or
stress). Therefore, to ensure reasonable computational time, γ̇ and Δt are
automatically calculated for the RVE to the mean radii, mean particle
density, and Young’s modulus. In the case of multi-RVE simulations with
different Young’s moduli or particle densities, the time steps may vary.
The servo-controller also checks if the potential energy (calculated from
particles’ stiffness) is greater than their kinetic energy (calculated from
the particles’ mass and velocity) before a strain increment is applied to
the boundaries. The DEM solver uses the global coordinate system but
temporarily deforms the RVE to its local coordinate system to find the
respective boundary particles.

7. GPU algorithm

7.1. GPU architecture

The implementation is done in C++ and the NVIDIA CUDA toolkit
[33] for General-Purpose Graphics Processing Unit (GPGPU) program-
ming. Depending on the GPU device used, the implementation in the
code may differ, but the procedure and principles would remain the
same.

The CUDA programming model is separated into host-side and
device-side (GPU) processes which execute on different memory and
processing spaces. To efficiently utilize the GPU the following principles
should be followed [34,35,36]: (1) global memory access (read and
write) should be reduced and performed in a coalesced (grouped)
manner; (2) the total amount memory requirements should be reduced;

Fig. 3. Flow chart of the GPU DEM simulation loop. The modified GPU DEM processes are shown in grey and the extended PBC sub-class processes are shown in blue.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

R. Lubbe et al.

Powder Technology 407 (2022) 117631

6

(3) thread occupancy should be increased by using enough threads to
keep the processor busy; (4) bank conflicts (overlapping memory
address) should be minimized; (6) branch divergence or forking logical
statements must be reduced.

The present GPU algorithm for solving multiple non-interacting
RVEs concurrently attempts to adhere to these optimization principles.
Some procedures utilize existing optimized algorithms such as sorting,
inclusive scans, and reductions made available by libraries CUB (D.
[37]) and thrust [38].

7.2. Concurrent RVE simulation scheme

The developed framework follows a modified simulation loop
compared to traditional DEM codes [39,2,36]. The modified simulation
loop includes (1) servo-controlled deformable boundaries and periodic
boundary conditions for the RVE; (2) particle and boundary particle
interaction at the RVE walls; (3) many non-interactable RVEs are solved

concurrently. The rest of this section presents the overarching simula-
tion loop while the next sections explain the detailed implementation.

The simulation loop of the framework is shown in Fig. 3. The steps
shown in grey are adapted from the general DEM simulation loop, such
as the modified collision detection and integration. While the steps
shown in blue are newly introduced features implemented into a module
called PBC. The PBC module introduces some additional steps: the servo-
controller applies a deformation to each RVE (Step 1); boundary parti-
cles are assigned (Step 2); volume averaging for each RVE is performed
(Step 5); periodicity is applied to the particles crossing the boundary
(Step 7); RVEs are flagged as finished after they reach user-specified
stress or strain goal, and the total number of thread is reduced to
improve overall efficiency (Step 8).

7.3. Coalescence of memory and threads

The memory structure and data access patterns are aligned with the

Fig. 4. Schematic diagrams of the (a) hierarchical memory groups and (b) collective thread groups. The numbers indicate the indices for NBatch number of batches, NP
number of particles, NB number of boundary particles and NRVE number of RVEs. The dashed line in (a) indicates the class membership.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

7

GPU optimization principles mentioned in Section 7.1. This is achieved
through hierarchical (top-down) memory groups and collective thread
groups.

The memory groups illustrated in Fig. 4 (a) may be either located on
the host-side (CPU) or device-side (GPU). The class memberships are
indicated through a dashed line. For instance, a batch has a collection of
member RVEs, an RVE has a collection of member particles, and so on.
The batch memory group is processed serially using asynchronous host
to device and device to host copies using CUDA streams. Batch pro-
cessing is used when the memory limit on the GPU card is reached. RVEs

are solved concurrently in the same simulation loop. This is achieved by
defining an RVE index (Section 7.4). Particles that belong to the same
RVE have the same RVE index and may not interact with particles that
have different RVE indices. Each member in a group has their state
variables. For instance, particles contain information on their positions,
velocities, angular velocities, forces, moments, radii, etc.

Fig. 4 (b). shows the layout of the thread groups which are dis-
patched to read and write to the respective memory indices. In general
GPU DEM codes [2,3,4,5], the memory layout usually follows a set of
bytes per particle, and a thread per particle is assigned as the global
thread group. Similarly, this algorithm allows highly efficient memory
and data access patterns. Boundary particles can retrieve information
about their parents (real particles) such as radii or contact history.

Volume averaging is achieved by first summing all forces and con-
tacts of the particle in the force calculation kernel. Then, a segmented
reduce function using CUB (D. N.-L. [40]) is utilized (based on the RVE
index) to calculate the RVE state variables. The hierarchical memory
layout and collective thread groups remove the restriction of using
shared memory to compute the RVE state variables such as [15].

7.4. Handling boundary particles

If a real particle intersects two or more walls within a parallel piped
unit cell then boundary particles are created at the adjacent walls as
shown in Fig. 5. There are four possible configurations: particle (P0) has
no boundary particles; particle (P1) intercepts one wall and has one
boundary particle (B1) at the adjacent cell wall; particle (P2) intercepts
two walls and has three boundary particles (B2) at the three adjacent
walls; particle (P3) intercepts three walls and has seven boundary par-
ticles (B3) at the adjacent walls.

A bitmask is used to store the possible combinations of boundary
particles. An example of a bitmask in Fig. 5 is (P0) 000000 (no boundary
particles), (P1) 000100, (P2) 010100, and (P3) 010101. The first three

Fig. 5. Four possibilities of particle-wall intersections of a periodic cell, and the
respective boundary particles.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

8

digits are set for intersecting a wall near the origin of the cell. The second
three digits are set when overlapping adjacent cells. The bitmask of each
particle has a permutation that describes the boundary particle bitmask.
For instance, (P2) permutes into the three boundary particles 000000;
010001; 000100. Therefore, after finding the real particle bitmask, the
boundary particle bitmask can be calculated.

Algorithm 1 is used to find the boundary particles of a real particle
that intersect the RVE walls. The algorithm contains two main proced-
ures. The first procedure is a device-side kernel that is launched for a
thread per real particle, and the second is a host-side function used to
dynamically allocate memory. The SetBoundaryParticles procedure is
called twice (lines 25 and 28). The first call performs a dry run that
calculates the real particle bitmasks and counts the number of boundary
particles to be created. Particles are temporarily transformed to the
deformed coordinates of their respective RVE (lines 2–5) and tested for
the intersection of the RVE walls (lines 7–15). The TheMallocBoundar-
yParticles procedure is responsible for dynamically allocating a refer-
ence array for the boundary particles using a prefix sum (line 26). After
the number of boundary particles per real particle is found nB, a
boundary particle reference array (Bref of size NB) is dynamically allo-
cated which points a boundary particle to its real particle (line 27). After
the boundary particle reference array has been allocated, each boundary
particle is permutated using a lookup table and then assigned a pointer
to its real particle (lines 18–20).

Algorithm 1. Bitmask Boundary Particles.

Algorithm 3 is a procedure called to obtain the boundary particle
positions and velocities. As shown in line 4, the values to a respective
boundary particle are obtained by referring to its set pointer Bref (line 4).

The vector for the wall of the boundary particle w⇀
′

i is found using a
lookup table and the calculated mask of the particles (line 6). It is
memory-efficient to store only the bitmask of the shifted particle images.
However, this comes at a performance trade-off since matrix multipli-
cation is necessary to move the particles’ coordinates from local to
global coordinates. This study instead stores the boundary particle po-
sitions and velocities while referring to the real particle for other vari-
ables such as the particle radii.

The force calculation of particles must also consider contact between
real and boundary particles. It is common for the contact between par-
ticles to be performed in a thread per particle kernel [39,2]. In this case,
the contact between particles is performed also performed similarly but
a real particle also sequentially loops over its boundary particles. The
force that is computed for a boundary particle should be mapped back to
the real particle following Newton’s third law. The allowed binary
contacts are real-real and real-boundary. The boundary-boundary con-
tacts are avoided by excluding contacts during the collision detection.

Algorithm 2. Get boundary particles.

7.5. Modified collision detection

As discussed in Section 7.2, the time evolution of all RVEs is solved
within the same simulation loop to improve efficiency. To solve many
non-interacting systems (simulations), an RVE index is used which can
be interpreted to add a non-spatial dimension. Particles that have the
same RVE index are allowed to interact, while particles of different RVE
indices do not interact. This is achieved by modifying existing collision
detection algorithms and by ensuring all particles are within the same
reference frame (global coordinates). This study modifies the GPU-based
Uniform Grid [41,2] and BVH [42,23] collision detection algorithms.
The Uniform Grid is more efficient for monodisperse simulations and
compact simulation domains while the BVH is more efficient for highly
polydisperse simulations and sparse domains [23].

The conventional Uniform Grid partitions the spatial domain into a
3D grid of M = MxMyMz number of grid cells. The particles are binned
into the grid cells through a spatial hashing scheme. The neighboring
cells of the selected particles are inspected for their nearest neighbors.
The Uniform Grid resolution is determined by the cell size and a cell can
contain more than one particle. However, computational performance
will be degraded if there are too many particles within a cell.

The modified Uniform Grid (Fig. 6) partitions the particles and their
boundary particles into the grid. Then a modified hash scheme is used to
partition the particles based on their spatial coordinates and RVE index:

Hash = w+ binxNRVE + binyNRVEMx + binzNRVEMxMy (22)

Fig. 6. Two RVEs (red and blue particles) share the same global coordinates
and Uniform Grid. Particle contacts of the same RVE index are allowed and
those of different indices are ignored. The domain and grid cell sizes are
enlarged for visual purposes. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

R. Lubbe et al.

Powder Technology 407 (2022) 117631

9

where w is the RVE index; NRVE is the number of RVEs; Mx, My, Mz are the
number of grid cells; binx, biny, binz is the number of bins in the ith
dimension. The entire domain is generally defined to ensure all possible
deformations of the RVE are contained within the grid. A possible
downside to this method is that the number of grid cells can become
quite large as NRVE increases which may lead to increased memory
usage.

The conventional BVH partitions the spatial domain into a 3D Mor-
ton key. The particles are assigned indices which are then sorted with
the Morton keys such that their localities are preserved. The tree is
constructed using a binary search on the keys and the leading bits of the
Morton key are used to construct the hierarchy. The internal nodes
(numbered one less than the number of particles) are assigned two
children nodes which can either be another internal node or a leaf node.
In this case, the particles are assigned as the leaf nodes. An upwards
agglomeration is performed, from the particles to the root node to assign
the tree axis-aligned bounding boxes (AABB). Broad phase collision
detection is performed by traversing the tree top down.

The modification to the BVH is made by adding a bit value at the start
of the Morton hashing scheme, as shown in Fig. 7. The first level of in-
ternal nodes is partitioned by the RVE index and then by the spatial hash
of the particles. The traversal is initiated at the top-most internal node of
the RVE index instead of the root node.

8. RVE homogenization

The RVE must have enough contacting particles at about even ori-
entations to transition from a mesoscopic constitutive model to a
macroscopic one. Multiple factors may influence homogenization such
as particle size distribution, porosity, particle geometry, and the simu-
lation dimensions (1D, 2D, or 3D). As some of these parameters are
varied, the number of particles must be increased and therefore require
more computational resources. For instance, the number of possible
contact orientations in 1D simulations is significantly less than in 2D
simulations. Therefore, 2D simulations require more particles to ho-
mogenize an RVE than 1D simulations.

To determine the number of particles necessary to homogenize the
RVE, this study follows a similar approach to others [18,10,7,28,15]
along with an additional statistical step presented bellow.

RVEs with different numbers of particles are generated. They are
then slightly pre-consolidated to 50 Pa with a high Youngs modulus and
low friction angle to ensure a jammed low-stress packing. Samples are
consolidated to 100 kPa after pre-consolidation. The parameters used
are shown in (Appendix A, Table 1).

An example of three RVEs with an increasing number of particles
(400, 2000, 2800) is shown in Fig. 8(a). The rose diagrams show that the
contact orientations of the RVE with 400 particles are non-uniform. On
the contrary, the rose diagrams for 2000 and 2800 are more uniform.

Fig. 7. The BVH for two non-interacting RVEs with two particles each. In (a), the constructed binary tree on the RVE index (red and blue) and the root node (green).
The corresponding scene is shown in (b) in the same reference frame. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

R. Lubbe et al.

Powder Technology 407 (2022) 117631

10

Fig. 8. The number of particles necessary for an RVE to be homogenized. Three example RVEs are shown as I, II, and II. In (a) the spatial configuration, contact
orientations, and histogram of contacts are shown. The χ2 similarity test (b) is shown for the contact orientations, along with a cut-off range (dashed line) were 1/
χ2 plateau

R. Lubbe et al.

Powder Technology 407 (2022) 117631

11

The histogram and average for the number of contacts per RVE with 400
particles are much different than those of 2000 and 2800.

The additional statistical step involves using the Chi-squared (χ2) test
(Appendix B) on the contact orientations as shown in Fig. 8(b). The
contact orientations are binned into a frequency table and have an
equally likely chance to occur in any direction. The χ2 the test indicates
how likely the observed frequencies are to be equal to the expected
frequencies which, in this case, is a uniform distribution. Thus, if values
of 1/χ2 plateaus then the RVE is more likely to be homogenized.

The RVE must also be small enough to avoid localization and to
reduce computational costs. There is a large decrease in 1/χ2 at 400,800
to 1600 number of particles. At 1600 the 1/χ2 plateaus at 1600 to 2000
number of particles. Therefore, a number of particles of 2000 are suf-
ficient to be homogenized and computationally feasible.

9. Triaxial test of dry quartz sand

Dry sand is often used to understand the behavior of geomaterials
under various loading conditions. It is common for the triaxial test to be
used to simulate the drained triaxial response of dry sand
[24,43,44,25,26]. This section shows that our algorithm can reproduce
experimental results if the meso parameters are calibrated. The detailed
procedure of the experiment and calibration process can be found in the
companion paper.

The experiment involves a drained triaxial experiment on graded dry
quartz sand. The particle size distribution of the sample is graded to be
about uniformly distributed between 0.01 mm and 0.025 mm. The
experiment is performed for a confining pressure of 200 kPa. Other
confining pressures are presented in the companion paper. The
following DEM configurations were used: a uniformly distributed par-
ticle diameters of 0.01 mm to 0.025 mm; the DEM initial void ratio
matches that of the experiment at about e0 = 0.65; the time step is about
1.72 × 10− 8s and the particle density of about 2600kg/m− 3 is used and
the bulk density is assumed to match. The material parameters used are
shown in (Appendix A, Table 2).

Fig. 9 shows the stress over axial strain (a) and volumetric strain over
axial strain (b) of the simulated and experimental drained triaxial test
under a confining pressure of 200 kPa. The simulated response matches
closely the experimental response.

10. Softening and hardening behavior

In industry, it may be useful to know the shear strength of sand for
different meso parameters or meso structures. This section shows a po-
tential application to the presented GPU-based algorithm by modeling
the softening and hardening response of the same material. The algo-
rithm may simulate many different material parameter sets or particle
configurations to efficiently perform a parametric sweep.

For this study, samples are generated using a sphere packing algo-
rithm [45] which is modified in the companion paper. The samples have
the same material parameters and particle size distributions as that in
Section 9 (Appendix A, Table 2). The initial void is varied to control the
dilatancy of the sample.

The drained triaxial response of 5 RVEs is performed for 100 kPa, and
the material response is shown in Fig. 10. The stress over axial strain is
shown in (a) and volumetric strain and axial strain is shown in (b). The
dense sample shows a stress peak and a softening response afterward.
The invariants q-p in Eq. (12) is shown in (c). Since there is no back-
pressure the total and effective stress paths are linear with a slope of M
= 3, as expected. The specific volume and logarithm of the mean
effective stress invariant are shown in (d). The hardening response is
shown by a downward trend of the specific volume and a softening is
shown by the upward trend of the specific volume. The simulations are
performed for 5 triaxial tests but can easily be performed for 400 or
more triaxial tests in parallel which are not included for visual purposes.
Using many triaxial tests, useful statistics may be extracted from the
numerical simulations.

11. Performance comparison

This section shows the significant benefit of the present GPU algo-
rithm to simulate many non-interacting RVEs (in parallel). First, the size
of the sequential batches is increased. One batch solves many RVEs in
parallel, and each batch is solved sequentially (see Section 7.2). Next,
the number of RVEs is increased to study the influence of the sample size
on the performance. Lastly, the number of particles is increased to study
how the algorithm scales with the number of particles.

The simulations are performed under a constant isotropic strain-
based compression for a 3D RVE. The particles are monodisperse with
a diameter of 0.015 mm. The time step is about 1.51 × 10− 8 s, the strain
rate is about 2.86 × 7 m.s− 1 and the RVEs are compressed isotropically

Fig. 9. The simulated and experimental drained triaxial response for graded dry quartz under 200 kPa: (a)The stress (as a fraction over confining pressure); (b) the
volumetric strain.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

12

to a volume fraction of about 12%. The contact law and parameters are
the same as those from Section 9 (Appendix A, Table 1). The simulations
are performed on a Tesla V100 NVIDIA GPU graphics card.

11.1. Parallel versus sequential simulations

The number of concurrent RVE simulations is increased by changing
the number of batches NBatch and keeping the number of particles and
RVEs constant (NP = 2000 and NRVE = 100). The runtime and memory is
plotted in Fig. 11. The fully sequential case is shown at (NRVE/NBatches =

1) and the fully parallel case is shown at NRVE/NBatches = 100.
A significant improvement is shown for solving even 10 RVEs at

once, with a factor of about 5.4 runtime speedup. The fully parallel case
shows a speedup with a factor of about 9.8 at the trade-off of about 100
times the memory requirement. Interestingly, the fraction of memory
over the number of RVEs per batch increases linearly, while the fraction
of runtime decreases in an exponential manner.

11.2. Scaling the number of particles

The number of particles NP per RVE is increased and the number of

RVEs is kept constant for a fully parallel simulation (NRVE = 1 and
Nbatches = 1). The runtime and memory for the Uniform Grid and BVH are
plotted in Fig. 12. Two details are shown, namely, how the performance
and memory scale with the number of particles per RVE, and how the
collision detection algorithms scale with the number of particles per
RVE.

The overall runtime and memory increase linearly with the number
of particles. The runtime for the Uniform Grid is better than that of the
BVH since the simulation uses monodisperse particles. The memory for
the BVH scales similarly to that of the Uniform Grid.

The percentage execution time of a kernel function within the
simulation loop (in Section 7.2), with an increase in the number of
particles, is shown in Fig. 13. The implemented algorithm (B) Bitmasked
Boundary Particles shows an overall decrease in percentage perfor-
mance. For RVEs with many particles, the presented GPU-based algo-
rithm works quite well. Additionally, the percentage runtime of the
following processes also decreases with an increase in the number of
particles: (A) servo-controller, (C) Uniform Grid, and (E) Volume aver-
aging. (F) integration and periodicity and (G) Memory copy. The (D)
Force calculation algorithm increases significantly with an increase in
percentage runtime. The increase in the number of particles leads to

Fig. 10. Simulated drained triaxial response for the same material with different initial void ratios and under different confining pressures. Shown are the (a) stress
and axial strain curve, (b) volumetric strain and axial strain curve, (c) deviatoric and mean effective stress with a slope of M = 3 (d) specific volume and log mean
effective stress, showing softening.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

13

additional boundary particles which require additional computational
work. Furthermore, the collision detection may have false-positive (non-
overlapping) contacts due to matching a single precision sphere inter-
section test, while the force calculation matches a double precision
intersection test.

11.3. Scaling the number of RVEs

The number of RVEs NRVE is increased and the number of particles is
kept constant for a fully parallel simulation (NP = 2000 and Nbatches = 1).
The runtime and memory for the Uniform Grid and BVH are plotted in
Fig. 14. Two details are shown, namely, how the performance and
memory scale with the number of RVEs, and how the collision detection
algorithms scale with the number of RVEs.

The overall runtime and memory increase linearly with the number
of RVEs. The runtime for the Uniform Grid is again better than that of the
BVH since the simulation uses monodisperse particles. The memory for
the BVH scales similarly to that of the Uniform Grid.

The percentage execution time of a kernel function within the
simulation loop (in Section 7.2), with an increase in the number of RVEs,
is shown in Fig. 15. The percentage runtime of the (A) servo-controller
decreases with the number of RVEs compared to the other computa-
tionally demanding processes. The implemented algorithm (B) Bit-
masked Boundary Particles shows a decrease in percentage performance
which again shows the presented GPU-based algorithm works quite well
for many RVEs. Additionally, the percentage runtime of the (E) Volume
averaging, and (F) integration and periodicity also decreases with an
increase in the number of RVEs.The collective increase in the number of
particles, boundary particles, and RVE indices leads to an increase in the
(C) Uniform Grid and the (D) Force calculation algorithm. Interestingly,
the percentage kernel execution times of the cases with 100, 200, 300,
and 400 RVEs are similar with slight variances.

11.4. Discussion on performance

An RVE must be homogenized to transition from a meso to a macro
constitutive response. Homogenization occurs if there are enough sta-
tistics on the meso scale such that few fluctuations are present when
performing volume averaging of the state variables [28]. The distribu-
tion of contacts and the contact orientations must be consistent when
increasing the number of particles. Some factors that influence this is the
particle size polydispersity, void ratio, and simulation dimensions (1D,
2D, or 3D). For 2D simulations, a fewer number of contacts are needed to
account for a uniformly distributed orientation. Therefore, a 2D RVE
may require fewer particles to be homogenized than a 3D RVE. A GPU-
based RVE parallelization algorithm exists for the 2D case [10]. How-
ever, such an algorithm utilizes the shared memory (typically of size
64kB or 96kB) between thread blocks (up to 1024 threads) to perform
volume averaging. The algorithm is therefore restricted to 1024 paral-
lelized particles per RVE. The benefit of the present GPU algorithm in
this paper is that it parallelizes all particles and performs volume aver-
aging by using a segmented reduce (D. [37]). This approach may be
more beneficial for RVEs with a large number of particles.

The speed improvement of parallelizing 100 RVEs under isotropic
strain-based compression is about 9.8 times faster than the sequential
case. The present GPU algorithm exploits thread occupancy (concur-
rency of many tasks) and keeps the hardware busy to hide latencies [33].
However, the speedup comes at the cost of about 100 times the GPU
memory. Depending on the memory limitation of the GPU card, one
must consider a balance between the number of particles, the number of
RVEs, and the number of batches (serial simulations).

The performance and memory are found to increase linearly with
both the number of particles and the number of RVEs. There is a sharper
increase in memory for an increase in the number of particles than for an
increase in the number of RVEs. This shows the importance of mini-
mizing the number of particles in an RVE. That is, it is advantageous to
homogenize an RVEs as in Section 8 to optimize the performance.

It is shown that BVH scales overall worse in terms of performance
compared to the Uniform grid. The performance simulations are how-
ever limited to monodisperse particles and not highly polydisperse
particles which the BVH may perform better. A details study of the BVH
performance with particle size polydispersity and geometry is presented

Fig. 11. Performance of the isotropic strain-based compression for 100 RVEs.
The number of batches is increased while the number of particles and RVEs are
kept constant. A fully serial simulation is shown on the left (NRVE/NBatches = 1)
and fully parallel simulation is shown on the right (NRVE/NBatches = 100).

Fig. 12. Performance of the isotropic strain-based compression for one RVE.
The number of particles is increased while the number of RVEs and batches is
kept constant.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

14

in [23].

12. Conclusion

In this paper, a novel algorithm for the parallelization of RVEs in
GPU-based DEM is implemented. GPU-based parallelization of the RVEs
may be used to generate statistics of material responses by simulating
many non-interacting RVEs efficiently. The algorithm features the
following key components: (1) GPU parallelism of non-interacting RVEs
within the same simulation loop; (2) A member hierarchy of RVE, par-
ticle, and boundary memory groups that are aligned with the GPU
optimization principles (3) handling of boundary particle and

periodicity of deformable walls efficiently by assigning particle bitmasks
and a referencing lookup tables (4) modification to the contact detection
algorithms to partition non-interacting RVEs. The DEM simulations
share a simulation domain on the global cartesian basis which removes
the complexities from the contact detection process. Volume averaging
of the RVEs is performed by utilizing a segmented summation (D. [37])
of the hierarchical memory groups.

The algorithm in this paper is validated using the drained triaxial
experiment of dry quartz sand. Then, a potential application for the al-
gorithm is presented to study the softening and hardening behavior of a
material under drained triaxial compression (or incremental loading).
Drained triaxial tests are simulated for the same material parameters but
with different initial void ratios. The algorithm showed to reproduce
expected results for a typical drained triaxial test of dens and loose sand.
A large sample set of statistics may be generated by increasing the
sample size from 5 drained triaxial tests to 400 or even 1200 drained
triaxial tests.

The RVE homogenization as a performance impacting factor is dis-
cussed. For instance, the number of particles needed for a system to be
homogenized in 3D may be far greater than that of 2D. The number of
particles necessary for an RVE to be homogenized is selected if the in-
verse Chi-squared 1/χ2 plateaus.

A series of performance tests were done under isotropic strain-based
compression. The speed improvement of parallelizing 100 RVEs is about
9.8 times faster than the sequential case. This comes at the cost of 100
times the GPU memory usage. It is also shown that handling boundary
particles have a fast runtime compared to other processes in the same
simulation loop. The total GPU memory for both the BVH and Uniform
Grid scales linearly with an increase in the number of particles and
RVEs. The Uniform Grid method shows the overall best performance. To
improve memory usage, methods can be explored to partition the grid
over the deformed RVEs instead of over an extended domain.

The disadvantages of the present GPU algorithm are as follows: (1)
The algorithm has a high memory usage, especially for the collision
detection algorithm. The high memory usage may also influence the
overall performance; (2) Non-interacting RVEs are restricted to have the
same number of particles; (3) The force calculation algorithm dominates
the percentage performance and should be optimized. The current
implementation performs the contact for a thread per real particle and
sequentially loops over their respective boundary particles. One

Fig. 13. Percentage runtime of the GPU functions for the isotropic strain-based compression for one RVE. The number of particles is increased while the number of
RVEs and batches is kept constant.

Fig. 14. Performance of the isotropic strain-based compression for many RVEs.
The number of RVEs is increased while the particles and batches are
kept constant.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

15

approach would be to launch the kernel for a thread per real and
boundary particle; (4) Currently, only spherical particles can be paral-
lelized, but the algorithm can be extended to simulate polyhedral or
spherical clumps.

In the future, concurrent simulations of a sparse domain with large
deformation would be advantageous. The DEM parameters of a landslide
simulation may be easily calibrated, and sufficient statistics can be
extracted [46]. This may be especially useful in disaster control soft-
ware, where fast numerical models are critical. Furthermore, simulation
level parallelism may be implemented to generate a large statistical
sample size or solve a multi-optima calibration problem (i.e., triaxial
compression and angle of repose). In these cases, the use of global co-
ordinates and volume averaging by segmented reduction may be well
suited since the simulations may have different configurations (number

of particles, sparsity of domain size, etc.).

Declaration of Competing Interest

The authors declared that they have no conflicts of interest to this
work.

Acknowledgment

The authors would like to acknowledge the project of “Natural Sci-
ence Foundation of China (52079067, 51879142)”, “Research Fund
Program of the State Key Laboratory of Hydroscience and Engineering
(2020-KY-04)” and “South African Department of Higher Education and
Training (DHET)” for contributing funds and supporting this research.

Appendix A. Simulation parameters

Table 1
The DEM parameters used in this study for the RVE homogenization and performance study. See companion paper for details on the Moment Rotation
Law parameters.

E [GPa] ν μs [◦] ηtwist ηroll αtwist αroll

8.00 0.50 25.00 2.00 2.00 0.20 0.20

Table 2
The calibrated DEM parameters for the drained triaxial compression of dry quartz sand under 200 kPa. See the companion paper for details on the
calibration processes and Moment Rotation Law parameters.

E [GPa] ν μs [◦] ηtwist ηroll αtwist αroll

4.3 0.50 33.4 1.70 1.80 1.30 1.9

Appendix B. Chi-squared test

The Chi-squared test [47] compares the observed frequencies with the expected frequencies for a table with frequencies of categorical data
(contingency table). This method can be used to quantify the similarity between two distributions by binning the observation distribution and
simulated distribution on a histogram. The Chi-squared similarity test is defined by

Fig. 15. Percentage runtime of the GPU functions for the isotropic strain-based compression for one RVE. The number of RVEs is increased while the number of
particles and batches is kept constant.

R. Lubbe et al.

Powder Technology 407 (2022) 117631

16

χ2 =
∑

(
Oij − Eij

)2

Eij
(23)

where Oij is the observational frequencies and Eij is the expected frequencies. The Chi-squared test has a requirement that there should be at least 5
entries in a bin and 13 samples. This study found this condition to be met even for 400 particles and 36 bins of x-y and x-z orientations. The calculated
p-values of all RVEs are also well below 0.05 which indices that we can reject the null hypothesis.

Credit author statement

Retief Lubbe, develops the algorithms and write the paper.
Wen-Jie Xu, gives the ideas. structure, and improvement on the contents of the study.
Qian Zhou, together with the first author for the development of the algorithms.
Hongyang Cheng, gives suggestion on the algorithm of Bayesian calibration.

References

[1] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies,
Geotechnique 29 (1979) 47–65, https://doi.org/10.1680/geot.1979.29.1.47.

[2] N. Govender, D.N. Wilke, S. Kok, Blaze-DEMGPU: modular high performance DEM
framework for the GPU architecture, SoftwareX 5 (2015) 62–66, https://doi.org/
10.1016/j.softx.2016.04.004.

[3] J.-P. Longmore, P. Marais, M.M. Kuttel, Towards realistic and interactive sand
simulation: a GPU-based framework, Powder Technol. 235 (2013) 983–1000.

[4] C.A. Radeke, B.J. Glasser, J.G. Khinast, Large-scale powder mixer simulations using
massively parallel GPUarchitectures, Chem. Eng. Sci. 65 (2010) 6435–6442.

[5] L. Zhang, S. Quigley, A. Chan, A fast scalable implementation of the two-
dimensional triangular Discrete Element Method on a GPU platform, Adv. Eng.
Softw. 60 (2013) 70–80.

[6] M.G.D. Geers, V. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational
homogenization: trends and challenges, J. Comput. Appl. Math. 234 (2010)
2175–2182, https://doi.org/10.1016/j.cam.2009.08.077.

[7] H.A. Meier, P. Steinmann, E. Kuhl, Towards multiscale computation of confined
granular media–contact forces, stresses and tangent operators, Tech. Mech. 28
(2008) 32–42.

[8] C. Thornton, L. Zhang, A DEM comparison of different shear testing devices, in:
Powders and Grains 2001, CRC Press, 2020, pp. 183–190.

[9] A. Thabet, A.G. Straatman, The development and numerical modelling of a
representative elemental volume for packed sand, Chem. Eng. Sci. 187 (2018)
117–126.

[10] N. Guo, J. Zhao, A coupled FEM/DEM approach for hierarchical multiscale
modelling of granular media, Int. J. Numer. Methods Eng. 99 (2014) 789–818,
https://doi.org/10.1002/nme.4702.

[11] Q.X. Meng, H.L. Wang, W.Y. Xu, M. Cai, J. Xu, Q. Zhang, Multiscale strength
reduction method for heterogeneous slope using hierarchical FEM/DEM modeling,
Comput. Geotech. 115 (2019), 103164, https://doi.org/10.1016/j.
compgeo.2019.103164.

[12] K. Wang, W. Sun, An updated Lagrangian LBM–DEM–FEM coupling model for
dual-permeability fissured porous media with embedded discontinuities, Comput.
Methods Appl. Mech. Eng. 344 (2019) 276–305, https://doi.org/10.1016/j.
cma.2018.09.034.

[13] Q. Zhou, W.-J. Xu, R. Lubbe, Multi-scale mechanics of sand based on FEM-DEM
coupling method, Powder Technol. (2020), https://doi.org/10.1016/j.
powtec.2020.11.006.

[14] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky,
J. Kozicki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni, Yade
reference documentation, in: The Yade Project, 2010.

[15] S. Zhao, J. Zhao, W. Lianga, A thread-block-wise computational framework for
large-scale hierarchical continuum-discrete modeling of granular media, Int. J.
Numer. Methods Eng. 122 (2021) 579–608.

[16] H. Do, A.M. Aragón, D.L. Schott, Automated Discrete Element Method Calibration
Using Genetic and Optimization Algorithms, 2017.

[17] H. Cheng, T. Shuku, K. Thoeni, P. Tempone, S. Luding, V. Magnanimo, An iterative
Bayesian filtering framework for fast and automated calibration of DEM models,
Comput. Methods Appl. Mech. Eng. 350 (2019) 268–294, https://doi.org/
10.1016/j.cma.2019.01.027.

[18] H. Cheng, T. Shuku, K. Thoeni, H. Yamamoto, Probabilistic calibration of discrete
element simulations using the sequential quasi-Monte Carlo filter, Granul. Matter
(2018), https://doi.org/10.1007/s10035-017-0781-y.

[19] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional
fluidized bed, Powder Technol. 77 (1993) 79–87, https://doi.org/10.1016/0032-
5910(93)85010-7.

[20] W.R. Ketterhagen, M.T. am Ende, B.C. Hancock, Process modeling in the
pharmaceutical industry using the discrete element method, J. Pharm. Sci. 98
(2009) 442–470, https://doi.org/10.1002/jps.21466.

[21] L. Rothenburg, R.J. Bathurst, Effects of particle shape on micromechanical
behavior of granular materials, in: Studies in Applied Mechanics, 1992, https://
doi.org/10.1016/B978-0-444-89213-3.50041-9.

[22] N. Govender, D.N. Wilke, S. Kok, R. Els, Development of a convex polyhedral
discrete element simulation framework for NVIDIA Kepler based GPUs, J. Comput.
Appl. Math. 270 (2014) 386–400, https://doi.org/10.1016/j.cam.2013.12.032.

[23] R. Lubbe, W. Xu, D. Wilke, P. Pizette, N. Govender, Analysis of parallel spatial
partitioning algorithms for GPU based DEM, Comput. Geotech. 125 (2020),
https://doi.org/10.1016/j.compgeo.2020.103708.

[24] N. Belheine, J.-P. Plassiard, F.V. Donze, F. Darve, A. Séridi, Numerical simulation
of drained triaxial test using 3D discrete element modeling, Comput. Geotech. 36
(2009) 320–331.

[25] J. Kozicki, J. Tejchman, Numerical simulations of sand behavior using DEM with
two different descriptions of grain roughness, Particle-Based Methods II -
Fundament. Appl. (2011) 62–71.

[26] J. Kozicki, J. Tejchman, et al., Numerical simulations of triaxial test with sand
using DEM, Arch. Hydro-Eng. Environ. Mech. 56 (2009) 149–172.

[27] C. O’Sullivan, J.D. Bray, Selecting a suitable time step for discrete element
simulations that use the central difference time integration scheme, in: Engineering
Computations (Swansea, Wales), 2004, https://doi.org/10.1108/
02644400410519794.

[28] J. Rojek, G.F. Karlis, L.J. Malinowski, G. Beer, Setting up virgin stress conditions in
discrete element models, Comput. Geotech. 48 (2013) 228–248, https://doi.org/
10.1016/j.compgeo.2012.07.009.

[29] J. Christoffersen, M. Mehrabadi, S. Nemat-Nasser, A micromechanical description
of granular material behavior, J. Appl. Mech. Trans. Asme - J APPL MECH 48
(1981), https://doi.org/10.1115/1.3157619.

[30] Y. Sheng, C.J. Lawrence, B.J. Briscoe, C. Thornton, Numerical studies of uniaxial
powder compaction process by 3D DEM, in: Engineering Computations (Swansea,
Wales), 2004, https://doi.org/10.1108/02644400410519802.

[31] S.C. Thakur, J.Y. Ooi, H. Ahmadian, Scaling of discrete element model parameters
for cohesionless and cohesive solid, Powder Technol. (2016), https://doi.org/
10.1016/j.powtec.2015.05.051.

[32] P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows,
Nature 441 (2006), https://doi.org/10.1038/nature04801.

[33] NVIDIA, Cuda C Programming Guide, Programm. Guides (2015) 1–261.
[34] P. Goorts, S. Rogmans, S. vanden Eynde, P. Bekaert, Practical examples of GPU

computing optimization principles, in: 2010 International Conference on Signal
Processing and Multimedia Applications (SIGMAP), 2010, pp. 46–49.

[35] J. Siegel, J. Ributzka, X. Li, CUDA memory optimizations for large data-structures
in the gravit simulator, J. Algorith. Comput. Technol. 5 (2011) 341–362.

[36] V. Skorych, M. Dosta, Parallel CPU–GPU computing technique for discrete element
method, Concurrency Comput. Practice Experience 34 (2022), e6839, https://doi.
org/10.1002/cpe.6839.

[37] D. Merrill, Cub. NVIDIA Research, 2015.
[38] N. Bell, J. Hoberock, Thrust: a productivity-oriented library for CUDA, in: GPU

Computing Gems Jade Edition, Elsevier, 2012, pp. 359–371.
[39] J.Q. Gan, Z.Y. Zhou, A.B. Yu, A GPU-based DEM approach for modelling of

particulate systems, Powder Technol. 301 (2016), https://doi.org/10.1016/j.
powtec.2016.07.072.

[40] D.N.-L. Merrill, CUDA UnBound (CUB) Library [WWW Document], 2015.
[41] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics

simulations fully implemented on graphics processing units, J. Comput. Phys. 227
(2008) 5342–5359, https://doi.org/10.1016/j.jcp.2008.01.047.

[42] T. Karras, Maximizing parallelism in the construction of bvhs, octrees, and k-
d trees, in: High-Performance Graphics 2012, HPG 2012 - ACM SIGGRAPH /
Eurographics Symposium Proceedings, 2012, pp. 33–37, https://doi.org/10.2312/
EGGH/HPG12/033-037.

[43] J.P. de Bono, G.R. McDowell, DEM of triaxial tests on crushable sand, Granul.
Matter 16 (2014) 551–562.

[44] R.A. Hosn, L. Sibille, N. Benahmed, B. Chareyre, Discrete numerical modeling of
loose soil with spherical particles and interparticle rolling friction, Granul. Matter
19 (2017) 1–12.

[45] V. Baranau, U. Tallarek, Random-close packing limits for monodisperse and
polydisperse hard spheres, Soft Matter 10 (2014) 3826–3841, https://doi.org/
10.1039/c3sm52959b.

[46] W.-J. Xu, Q. Xu, G.-Y. Liu, H.-Y. Xu, A novel parameter inversion method for an
improved DEM simulation of a river damming process by a large-scale landslide,
Eng. Geol. 293 (2021), 106282, https://doi.org/10.1016/j.enggeo.2021.106282.

[47] R.L. Plackett, Karl Pearson and the chi-squared test, Int. Stat. Rev./Revue
Internationale de Statistique (1983) 59–72.

R. Lubbe et al.

https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1016/j.softx.2016.04.004
https://doi.org/10.1016/j.softx.2016.04.004
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0120
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0120
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0175
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0175
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0245
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0245
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0245
https://doi.org/10.1016/j.cam.2009.08.077
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0130
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0130
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0130
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0220
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0220
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0210
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0210
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0210
https://doi.org/10.1002/nme.4702
https://doi.org/10.1016/j.compgeo.2019.103164
https://doi.org/10.1016/j.compgeo.2019.103164
https://doi.org/10.1016/j.cma.2018.09.034
https://doi.org/10.1016/j.cma.2018.09.034
https://doi.org/10.1016/j.powtec.2020.11.006
https://doi.org/10.1016/j.powtec.2020.11.006
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0205
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0205
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0205
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0250
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0250
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0250
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0055
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0055
https://doi.org/10.1016/j.cma.2019.01.027
https://doi.org/10.1016/j.cma.2019.01.027
https://doi.org/10.1007/s10035-017-0781-y
https://doi.org/10.1016/0032-5910(93)85010-7
https://doi.org/10.1016/0032-5910(93)85010-7
https://doi.org/10.1002/jps.21466
https://doi.org/10.1016/B978-0-444-89213-3.50041-9
https://doi.org/10.1016/B978-0-444-89213-3.50041-9
https://doi.org/10.1016/j.cam.2013.12.032
https://doi.org/10.1016/j.compgeo.2020.103708
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0015
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0015
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0015
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0110
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0110
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0110
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0115
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0115
https://doi.org/10.1108/02644400410519794
https://doi.org/10.1108/02644400410519794
https://doi.org/10.1016/j.compgeo.2012.07.009
https://doi.org/10.1016/j.compgeo.2012.07.009
https://doi.org/10.1115/1.3157619
https://doi.org/10.1108/02644400410519802
https://doi.org/10.1016/j.powtec.2015.05.051
https://doi.org/10.1016/j.powtec.2015.05.051
https://doi.org/10.1038/nature04801
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0155
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0070
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0070
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0070
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0195
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0195
https://doi.org/10.1002/cpe.6839
https://doi.org/10.1002/cpe.6839
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0140
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0020
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0020
https://doi.org/10.1016/j.powtec.2016.07.072
https://doi.org/10.1016/j.powtec.2016.07.072
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0145
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.2312/EGGH/HPG12/033-037
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0050
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0050
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0090
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0090
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0090
https://doi.org/10.1039/c3sm52959b
https://doi.org/10.1039/c3sm52959b
https://doi.org/10.1016/j.enggeo.2021.106282
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0170
http://refhub.elsevier.com/S0032-5910(22)00525-3/rf0170

	Bayesian calibration of GPU–based DEM meso-mechanics Part I: Parallelization of RVEs
	1 Introduction
	2 Discrete element method
	3 Moment Rotation Law
	4 Integration scheme
	5 Upscaling and RVE
	6 Deformable boundaries and periodicity
	7 GPU algorithm
	7.1 GPU architecture
	7.2 Concurrent RVE simulation scheme
	7.3 Coalescence of memory and threads
	7.4 Handling boundary particles
	7.5 Modified collision detection

	8 RVE homogenization
	9 Triaxial test of dry quartz sand
	10 Softening and hardening behavior
	11 Performance comparison
	11.1 Parallel versus sequential simulations
	11.2 Scaling the number of particles
	11.3 Scaling the number of RVEs
	11.4 Discussion on performance

	12 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Simulation parameters
	Appendix B Chi-squared test
	Credit author statement

	References

