803 research outputs found

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.Comment: submitted to "Physics in Medicine and Biology

    Iterative CT reconstruction using shearlet-based regularization

    Get PDF
    In computerized tomography, it is important to reduce the image noise without increasing the acquisition dose. Extensive research has been done into total variation minimization for image denoising and sparse-view reconstruction. However, TV minimization methods show superior denoising performance for simple images (with little texture), but result in texture information loss when applied to more complex images. Since in medical imaging, we are often confronted with textured images, it might not be beneficial to use TV. Our objective is to find a regularization term outperforming TV for sparse-view reconstruction and image denoising in general. A recent efficient solver was developed for convex problems, based on a split-Bregman approach, able to incorporate regularization terms different from TV. In this work, a proof-of-concept study demonstrates the usage of the discrete shearlet transform as a sparsifying transform within this solver for CT reconstructions. In particular, the regularization term is the 1-norm of the shearlet coefficients. We compared our newly developed shearlet approach to traditional TV on both sparse-view and on low-count simulated and measured preclinical data. Shearlet-based regularization does not outperform TV-based regularization for all datasets. Reconstructed images exhibit small aliasing artifacts in sparse-view reconstruction problems, but show no staircasing effect. This results in a slightly higher resolution than with TV-based regularization

    True 4D Image Denoising on the GPU

    Get PDF
    The use of image denoising techniques is an important part of many medical imaging applications. One common application is to improve the image quality of low-dose (noisy) computed tomography (CT) data. While 3D image denoising previously has been applied to several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm considers several volumes at the same time. The problem with 4D image denoising, compared to 2D and 3D denoising, is that the computational complexity increases exponentially. In this paper we describe a novel algorithm for true 4D image denoising, based on local adaptive filtering, and how to implement it on the graphics processing unit (GPU). The algorithm was applied to a 4D CT heart dataset of the resolution 512  × 512  × 445  × 20. The result is that the GPU can complete the denoising in about 25 minutes if spatial filtering is used and in about 8 minutes if FFT-based filtering is used. The CPU implementation requires several days of processing time for spatial filtering and about 50 minutes for FFT-based filtering. The short processing time increases the clinical value of true 4D image denoising significantly
    corecore