845 research outputs found

    Acceleration of parasitic multistatic radar system using GPGPU

    Get PDF
    This dissertation details the implementation of PMR [Parasitic Multistatic Radar] signal processing chain in the GPGPU [General Purpose Graphic Processing Units] platform. The primary objective of the project is to accelerate the signal processing chain without compromising the algorithm efficiency and to prove that GPGPUs are a promising platform for parasitic radar signal processing

    A scalable real-time processing chain for radar exploiting illuminators of opportunity

    Get PDF
    Includes bibliographical references.This thesis details the design of a processing chain and system software for a commensal radar system, that is, a radar that makes use of illuminators of opportunity to provide the transmitted waveform. The stages of data acquisition from receiver back-end, direct path interference and clutter suppression, range/Doppler processing and target detection are described and targeted to general purpose commercial off-the-shelf computing hardware. A detailed low level design of such a processing chain for commensal radar which includes both processing stages and processing stage interactions has, to date, not been presented in the Literature. Furthermore, a novel deployment configuration for a networked multi-site FM broadcast band commensal radar system is presented in which the reference and surveillance channels are record at separate locations

    Design of a Hybrid Modular Switch

    Full text link
    Network Function Virtualization (NFV) shed new light for the design, deployment, and management of cloud networks. Many network functions such as firewalls, load balancers, and intrusion detection systems can be virtualized by servers. However, network operators often have to sacrifice programmability in order to achieve high throughput, especially at networks' edge where complex network functions are required. Here, we design, implement, and evaluate Hybrid Modular Switch (HyMoS). The hybrid hardware/software switch is designed to meet requirements for modern-day NFV applications in providing high-throughput, with a high degree of programmability. HyMoS utilizes P4-compatible Network Interface Cards (NICs), PCI Express interface and CPU to act as line cards, switch fabric, and fabric controller respectively. In our implementation of HyMos, PCI Express interface is turned into a non-blocking switch fabric with a throughput of hundreds of Gigabits per second. Compared to existing NFV infrastructure, HyMoS offers modularity in hardware and software as well as a higher degree of programmability by supporting a superset of P4 language

    Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras

    Get PDF
    Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumer-grade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, ...). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements

    A Bloom Filter-Based Monitoring Station for a Lawful Interception Platform

    Get PDF
    Lawful Interception (LI) is a fundamental tool in today's Police investigations.Therefore, it is important to make it as quickly and securely as possible as well as a reasonable cost per suspect. This makes traffic capture in aggregation links quite attractive, although this implies high wirespeeds which require the use of specific hardware-based architectures. This paper proposes a novel Bloom Filter-based monitoring station architecture for efficient packet capture in aggregation links. With said Bloom filter, we filter out most of the packets in the link and capture only those belonging to lawful interception wiretaps. Next, we present an FPGA-based implementation of said architecture and obtain the maximum capture rate achievable by injecting traffic through four parallel Gigabit Ethernet lines. Finally, we identify the limitations of our current design and suggest the possibility of further extending it to higher wirespeeds.- Best Paper AwardThe work presented in this paper has been funded by the INDECT project grant number FP7-ICT-218086, and the Spanish CramNet project (grant no. TEC2012-38362-C03-01).European Community's Seventh Framework Progra
    corecore