'\ Universidad
¥ Carlos ITT de Madrid - r C VO

Institutional Repository

This is a preprint version of the following published document:

Rodriguez de los Santos, G., Hernandez, J. A., Uruefia, M. &
Muiioz, A. (2014). A Bloom Filter-Based Monitoring Station
for a Lawful Interception Platform. In: Multimedia
Communications, Services and Security (MCSS 2014).
Communications in Computer and Information Science (CCIS),
429, pp. 214-228. Switzerland: Springer.

DOI: 10.1007/978-3-319-07569-3 18

© Springer Verlag, 2014

A Bloom Filter-based monitoring station for a
Lawful Interception Platform

Gerson Rodriguez de los Santos, Jose Alberto Hernédndez, Manuel Uruena, and
Alfonso Muiioz!

Universidad Carlos 111 de Madrid
Avda Universidad 30, 28911 Leganés, Madrid, Spain
[gsantos, jahgutie, muruenya, ammunoz]@it.uc3m.es,
WWW home page: http://www.it.uc3m.es/

Abstract. Lawful Interception (LI) is a fundamental tool in today’s Po-
lice investigations.Therefore, it is important to make it as quickly and
securely as possible as well as a reasonable cost per suspect. This makes
traffic capture in aggregation links quite attractive, although this im-
plies high wirespeeds which require the use of specific hardware-based
architectures. This paper proposes a novel Bloom Filter-based monitor-
ing station architecture for efficient packet capture in aggregation links.
With said Bloom filter, we filter out most of the packets in the link and
capture only those belonging to lawful interception wiretaps. Next, we
present an FPGA-based implementation of said architecture and obtain
the maximum capture rate achievable by injecting traffic through four
parallel Gigabit Ethernet lines. Finally, we identify the limitations of
our current design and suggest the possibility of further extending it to
higher wirespeeds.

Keywords: Lawful Interception, FPGA, Bloom filter, Packet Capture

1 Introduction

Criminality is, and is likely to be at all times, a great problem in our society. The
first task in solving a criminal case concerns the collection of evidence and the
investigation of suspects. In some occasions, the Police forces need to lawfully
intercept the communications (phone, computers, etc) of suspects, especially
in severe crimes like terrorism, child pornography, political corruption and or-
ganised crime in general. On the other hand, the secrecy of communications is
recognised as a fundamental right in most countries, therefore a wiretap warrant,
issued by a judge, is necessary to intercept communications.

A usual approach for Lawful Interception (LI) involves wiretapping directly
the suspect’s subscriber loop, typically cable (xDSL, HFC), fibre-based (FTTx)
or wireless (WiFi). However, individual wiretapping poses serious scalability
problems, especially concerning cost. Besides, wiretapping at aggregation points,
where the traffic of thousands of users is aggregated, is technologically challeng-
ing, but possibly more cost-effective. Such a large-scale monitorisation requires

fast traffic capturing (at the line rate), and high-speed filtering out of non-
suspicious traffic while ensuring that 100% of the suspects’ traffic is captured.
To accomplish these goals, specialised monitoring hardware is required, for in-
stance FPGA- or GPU-based systems.

Because high processing speeds are required in these environments, the use
of data structures that provide low latency is required as well as specialised
hardware. One possible solution which has been the subject of study in recent
years is the use of Bloom Filters [1] (BF). These data structures permit to quickly
check if a binary string belongs to a registered set of elements with a reasonable
false positive probability.

In this light, this paper proposes an FPGA-based monitoring station archi-
tecture for the high-speed collection of suspects’ traffic in multi-Gbit/s links.
Additionally, we present an implementation based on a NetFPGA with 4x 1
Gbit/s input ports where traffic is captured, filtered and forwarded to other
output port(s). Inside the monitoring station, the source and destination IP
addresses of every incoming IP packet are checked against a list of suspect’s IP
addresses which are stored in a Bloom Filter and implemented in hardware. This
implementation allows the monitoring station to operate at wirespeed, showing
its applicability in realistic investigation scenarios.

The rest of the paper is organised as follows: Section 2 reviews previous
work related with high-speed packet processing, GPUs, multicore processors and
FPGA based systems. Section 3 overviews the fundamentals of Bloom Filters.
The whole Lawful Interception scenario and the inner hardware architecture are
described in Section 4. Finally, Section 5 shows introduces the FPGA platform
used in the implementation of our prototype, as well as a number of experi-
ments demonstrating the feasibility and performance of our prototype. Section 6
concludes this paper with a summary of its main contributions.

2 Related work

While guaranteeing real-time processing and null network information loss is
a tall order, there are several technologies appointed for this demanding task,
namely GPUs, Multicore processors and FPGAs.

2.1 GPUs

GPUs provide a massive amount of small computational elements, which are
very suitable for tasks that can be parellelised at a reduced cost.

GPUs have been used to provide parallelisation to a wide variety of net-
working tasks. In [2], a GPU-based routing implementation with Deep Packet
Inspection (DPI) capabilities is presented. Such a DPI is both implemented using
a Finite State Automata (FSA) and a Bloom Filter paradigm, and are subse-
quently compared showing that Bloom Filters provide the best performance.

GPUs in the routing context were first presented in [2] and further extended
in [3]. In this work, the authors show a direct table lookup (with up to 224

entries) for routing which highly minimises memory access in comparison with
other data structures such as Tries.

In [4], an architecture for packet signature matching is examined and im-
plemented in a GPU. A comparison between Deterministic Finite Automata
(DFA) and eXtended Finite Automata (XFA) based architectures is provided.
Both of them are analysed and implemented for comparison showing a better
performance and less memory usage coming from XFA implementations.

In [5], another GPU-based packet regular expresion matching engine is intro-
duced. With three optimisation techniques aimed at improving memory access,
the implementation is able to reach 128.6Gbps rate.

GPUs have also been a subject of research in the design of Intrusion Detection
Systems (IDS). In [6], a GPU parallelised architecture based on the Wu-Manber
algorithm is shown. The work in [6] was subsequently improved in [7], where
a hierarchical parallel machine architecture on GPU was used to address some
of the shortcomings revealed in [6], mainly the problem of state explosion that
appears when it is necessary to search for complex regular expressions.

2.2 Multicore processors

Another means of parallelisation comes from multipurpose, multicore processors.
In this field, extensive research efforts have been conducted in the parallelisation
of packet processing, especially pattern matching, see [8-10]. As a consequence,
DPI has been the most recurring topic in this area. In [11] a parallelisation of
the L7 filter [12], a DPI extension for Linux Netfilter is presented. Finally, [13]
proposes a pre-filtering algorithm to ignore unwanted matches for L7 filter. This
allows the L7 filter to get a better efficiency for the L7 rule matching algorithm.

2.3 FPGAs/ASICs

FPGAs and ASICs allow full task customisation and implementation in hard-
ware.

FPGAs have been used to overcome the limitation of pure software envi-
ronments for traditional networking tasks such as IP forwarding [14]. The most
popular application of FPGAs in the networking area comprises those related
with pattern and string matching for IDS and Intrusion Protection Systems
(IPS). In [15-18] a parallel Bloom Filter based architecture is presented and
subsequently improved. Another approach for IDS implementation in FPGA is
the Finite State Machine (FSM) paradigm [19, 20], which has different pros and
cons with the Bloom Filter approach [21]. Additionally, in [22], an FPGA im-
plementation of a Deep Packet Inspection architecture with Regular Expression
Detection is shown. In [23], a parallel pattern matching architecture based on a
compact reconfigurable filter and a coprocessor for FPGA is presented.

Finally, there has also been research regarding hardware implementations of
firewalls. In [24], [25] two different firewall implementations are shown. There are
also some combined proposals like [26], which suggest a combination of Firewall,
IDS and rate limiting in the same implementation.

The main contribution of our paper consists in the design of a hardware
Bloom Filter packet monitoring station architecture for Lawful Interception.

3 Bloom Filters background

A Bloom Filter [1] (BF) is a data structure used to test whether an element
belongs to a certain set or not. A BF is characterised by a number &k of hash
functions and a binary array N of bits initially set to zero, as shown in Fig. 1.

IP address 1

O\

Hash1(IP,)=3 ‘ Hash2(IP,)=5 ‘

II\I_IIJKIII

0 11

Fig. 1. Bloom Filter example.

Now, consider we wish to store n elements in the array, say for instance the list
of IP addresses from suspects to be monitored. In this light, the k hash functions
are applied to each element in the IP list producing a number of positions in the
binary array, which are then set to one. In the example, & = 2 hash functions are
applied to the first IP address, setting the third and fifth position of the binary
array to unity (note that the binary array has 12 positions, starting from 0 until
11). After the n IP addresses are stored, the binary array contains a number of
ones which characterises the list of n IP addresses to be monitored. This is often
referred to as the training phase of the Bloom Filter.

The average number of ones in the binary array is:

E(W)=N l1— (1—%)%] mN(1—e—*‘n‘P) 1)

where E(W) is often referred to as the weight of the BF.

This structure allows to fast check whether an IP address belongs to the
set of suspicious IPs stored in the array, just by computing the k hashes and
checking the associated positions.

However, the BF may produce false positives, that is, a certain IP address
may not have been programmed in the binary array, but still the hash functions
applied to it may point at positions set to one. This occurs with the following

probability [1]:

Py, = (@)k ~(1- e—%)k @)

The false-positive probability reduces for large values of N. Nevertheless,
filtering is required to remove the false positives from the actual positives. Given
the fact that a Lawful Interception platform must not store traffic that does not
belong to the wiretapped suspects, this issue has been addressed in our design
and is further explained in section 4.1.

4 System design and architeture

4.1 Lawful Interception Platform architecture

Consider the lawful interception scenario of Fig. 2, further explained in in [27],
where the Internet connections of multiple (typically thousands) subscribers are
aggregated at the Metropolitan Area Network (MAN). We assume that some
(very few) of these subscribers are criminal Suspects under investigation. To
investigate these suspects, a Digital Wiretap Warrant (DWW) [28] issued by a
judge is mandatory.

1GoE /[10GhE

0-0—f-ise}

High-Performance Traffic Decoding Server &
Manitoring Station Pre-Qassification Plugrins

Fig. 2. Lawful Interception scenario

In this scenario, our monitoring station collects the traffic of thousands of
users traversing its ports. A DWW is required for any capturing process. This
means that the monitoring station will not capture any traffic from that suspect
unless a valid DWW is provided in order to prevent misuse by the Police, the
ISP or any other unauthorised third party. The monitoring station has a list
of IP addresses (of the suspects under a wiretap warrant) loaded in its internal
Bloom Filter to decide which packets are to be captured and stored for further

investigation by the Police forces. Because Bloom Filters have false positives,
packets are filtered at software level at the monitoring station. This ensures that
any packet which does not belong to a suspect is never stored. Additionally,
zero-loss packet capturing is mandatory for the suspects’ traffic.

The captured traffic is then sent to the Traffic Decoding Server [27], which
takes the capture files produced by the Monitoring Station to reconstruct the
files and contents that the suspect has transmitted or received.

4.2 Traffic inspector module architecture

Fig. 3 shows the architecture of the Bloom Filter traffic inspection module, which
comprises:

Two FIFO queues to regulate input/output to the module, called Input and
Output FIFO respectively.

A Packet Buffer in which some packet words are copied for inspection.

An Inspector module which checks both source and destination IP addresses
to be inspected.

User-Space Bloom Filter Interaction module (USBI), which communicates
the User Space software and the Bloom Filter. This module allows to add/remove /update
IP addresses in the Bloom Filter dynamically.

— A Bloom Filter, which is queried by the inspector module twice per packet.
The Bloom Filter is implemented using the FPGA’s BRAM (Block Random
Access Memory). The read and write access to the Bloom Filter is managed
by a priority-encoded controller, which gives priority to the Inspector over
the User Space Bloom Filter Interaction module.

To illustrate how our hardware architecture operates, consider the arrival of
a packet at the Input FIFO (step 1 in Fig. 3). The first bytes of the packet are
stored in a Packet Buffer (step 2), and simultaneously they are copied to the
Output FIFO. Next, the inspector obtains the bytes that contain the source and
destination TP addresses of the packet (step 3), and checks whether or not there
is a positive matching in the Bloom Filter (step 4). If there is a positive match,
then the packet is captured by the monitoring station by changing certain bits
in the control header of the packet (step 5). Otherwise, the packet is simply not
stored.

Once the first word of the packet is allowed to exit the module, then its next
words are automatically forwarded without further checks. After the first word
of this packet exit the Inspector module, the next packet in the queue can be
analysed.

The priority encoding of the Bloom Filter guarantees that any operation
from user space which involves the Bloom Filter (reading or writing) will be
delayed if the inspector needs to check the Bloom filter to classify a packet.
A simple request-response protocol is implemented between the USBI and the
Bloom Filter and also between the USBI and the user space to indicate when
low-priority operations have been attended by the Bloom Filter. Software tools

I 5)
o |j>F> N | —

2 |1 (3)

acker <:> Inspector
Buffer P

ﬁ (4)

USBI <:> Bloom
filter

N
[

Fig. 3. Block architecture of the traffic inspection module

are used at user space to ensure that the Bloom Filter is properly recalculated
each time a new IP address is added or deleted from the list.

Two different interception modes are available in this prototype, namely
Forward and Tap and Tap and Drop. In Forward and Tap mode, if a packet
matches the search criteria, the packet is forwarded through an output port
and a copy of it is also sent to user space for capture. If not, the traffic is
simply forwarded transparently to the output port. The Forward and Tap mode
is intended for a case in which we need to capture in serial mode. This means
that the traffic inspector is placed in the middle of the network wire.

In the Tap and Drop mode, if a packet matches the search criteria, it is
forwarded to user space. If not, it is simply discarded. The Tap and Drop mode
is the mode that should be used if we want to have a parallel communication
interception. In this mode, a copy of the traffic which is being forwarded through
the network is sent to the monitoring station. This mode allows to tap more
lines than the forward and tap mode because not as many ports are needed to
forward the traffic, so the packet inspector has simply to decide if the traffic is
to be processed or discarded.

4.3 Design of the Inspector Bloom Filter

This section evaluates the performance of the current implementation of the
Inspector Bloom Filter in the NetFPGA. Taking information from a Spanish
ISP, we assume that an aggregation metro node concentrates the traffic of about
40000 DSL subscribers producing an average bit rate of 120 Kbit/s each. With
these numbers, the average bitrate traversing the NetFPGA:

40000 x 120 Kbit/s = 4.8 Gbit/s

which is close to the maximum input bitrate that the 1G NetFPGA may handle.
It should be noted that, although the NetFPGA used for our implementation

does not fully support such an input bitrate, our implementation is intended for
the validation of our design.

On the other hand, the Bloom Filter implementation comprises k£ = 2 Fi-
bonacci hash functions [29] and a bit array of N = 65536 bits. The first hash
function h; operates directly on the IP address (either source or destination)
whereas the second one hy performs the hash of a fixed permutation of the bits
comprising the IP address. These two hash functions determine which bits have
to be set in the Bloom Filter.

Fig. 4 gives the false-positive probability for a number n of IP addresses to
be loaded on the Bloom Filter. As shown, for n = 1000 suspect 1P addresses,
the false positive probability equals 9.03 - 10~%. This value reduces to 9.28-1076
for n = 100 addresses, and to 9.31 - 108 for n = 10 IP addresses.

Probability of false positive

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number of registered IP addresses

Fig. 4. Probability of false positive in the designed Bloom Filter for k=2, n=65536 bits

These numbers are somehow reasonable since we do not expect more than
1000 suspects in a population of 40000 users. Actually, it is more reasonable to
expect 10 to 100 suspects in such a population than 1000 suspects.

Finally, the total incoming traffic arrival at the PCI-X concerns both the
actual suspicious traffic plus that traffic due to false positives, i.e.:

120 Kbit/s x (n 440000 - Pyr,(n))

This gives a total data rate of:

n = 1000 Bitrate = 124 Mbit/s
n = 100 Bitrate = 12 Mbit/s
n = 10 Bitrate = 1.2 Mbit/s

In general, we observe that:
120 Kbit/s x (n 440000 - Pr,(n)) ~ 120nKbit/s

since the portion of traffic due to the BF’s false positives is very small compared
with true positives.

Nevertheless, as we show in the next section the 1G NetFPGA implementa-
tion can handle these values without any problem.

5 Prototype implementation, benchmarking and results

This section introduces the FPGA platform used for the development of our
prototype and shows the results of a number of benchmarking tests performed
to our monitoring station prototype.

5.1 The NetFPGA platform

Due to its simplicity, versatility, low cost and openness, the NetFPGA [30] frame-
work has been chosen for the implementation of our traffic capture prototype.

The NetFPGA has been developed at Stanford University and provides a
basic reference architecture for network hardware implementation, particularly
useful in educational and academic environments. There are currently two NetF-
PGA models operating at different port speeds: 1 Gbit/s and 10 Gbit/s. Both
platforms have a stable release. Nevertheless, we have used the 1G NetFPGA
for our prototype implementation due to its maturity.

The 1G NetFPGA comes with a Xilinx Virtex IT Pro 50 and 4 Gigabit Ether-
net copper interfaces. The reference pipeline has a 64-bit word size with a clock
speed operating at 125MHz, providing a total raw throughput of 8 Gbit/s. Traf-
fic can be forwarded through the NetFPGA itself and also to/from the server
hosting the NetFPGA through a PCI-X bus, allowing the software processing of
packets. PCI-X was conceived as an upgrade to prevent certain shortcomings of
PCI in servers, as well as improving clock speeds. Nevertheless, in more recent
systems, PCI Express (PCle), with even faster transfer rates, has been the true
successor of PCI.

The reference pipeline architecture of the 1G NetFPGA is shown in Fig. 5.
This comprises eight reception queues, one Input Arbiter, one Output Port
Lookup Module, eight Output Queues and eight Transmission Queues. Con-
cerning the eight transmission and reception queues, four of them belong to the
physical ports of the NetFPGA while the other four belong to the virtual ports
of the server hosting the FPGA.

MAC CPU MAC CPU MAC CPU MAC CPU
RxQ RxQ RxQ RxQ RxQ Rx RxQ RxQ

N\\\/L

Input Arbiter

¥
QOutput port lookup

v

Output queues

I

MAC [=21] MAC [=21] MAC cPu MAC cPU
TxQ Tx0 T*Q T™*<Q ™ ™ ™0 ™

Fig. 5. Reference pipeline architecture of the 1G NetFPGA [30]

Essentially, incoming packets are buffered at the reception queues until the
Input Arbiter selects one packet to enter the main pipeline of the NetFPGA.
This packet then traverses one or several intermediate modules until it arrives
at the Output Queues (see Fig. 5). Finally, this packet can go through zero,
one or more OQuput Queues at the same time, depending on certain bits of a
special control word used internally by the NetFPGA, thus allowing for traffic
replication and multicast.

When developing for the NetFPGA, the usual procedure is to take the ref-
erence pipeline as a starting point and either add new modules or substitute
old ones on top of it. In this light, our design replaces the Output Port Lookup
module of the reference pipeline (shadowed box) by a Bloom-Filter-based packet
classification module that selects the suspect’s traffic. This is depected in 2.

5.2 Benchmarking scenario

The benchmark scenario can be seen in Fig. 6. The scenario consists of five hosts,
four PCs injecting traffic and the server that hosts the NetFPGA. The computer
that hosts the FPGA has an Intel Xeon E535 Quad Core CPU running at 2 GHz,
with a bus speed of 1333 MHz and 4 GB of DDR2 RAM running at 667 MHz.
The other four computers are PCs and servers of heterogeneous features.

To push the monitoring station to its limits, the four PCs connected to our
monitoring station inject up to 4 Gbps of traffic. In this configuration, the Tap
and Drop mode has been selected with all four ports on the NetFPGA to receive
traffic. Four destination IP addresses are trained to a Bloom Filter of size 65536
bits (see section 4.3), one for each connected host. Those packets whose IP
address match with any of those trained in the Bloom Filter are copied to the

10

NetFPGA Host

=]
g ﬁ PCIX
Al BUS
g\ NetFPGA
= \ Inspector :I;

module

g‘/ Monitoring station

Fig. 6. Benchmarking scenario to evaluate our monitoring station prototype

host computer through the PCI-X bus. To run our experiments, several of the
connected hosts inject matching traffic at different rates to achieve a total rate
inside the NetFPGA pipeline.

Since a certain number of clock cycles is needed to store the packet and check
the Bloom Filter, the pipeline efficiency is reduced as the packet size decreases.
Consequently, three packet sizes have been used in our tests, namely 256, 512 and
1500 bytes, and two capturing modes to promptly identify the bottlenecks in the
PC hosting the NetFPGA. In the first mode, packets are written to a file in the
hard disk and in the other the packets are also captured but not written to disk.
It is worth noting that, due to limitations in the communication between the
host and the FPGA, less traffic than is offered to the device is actually captured
by the host. But, according to our measurements, the 4 Gbps injectable to it
can be processed by the pipeline, which is plausible, as it is possible to attain a
raw 8 Gbps bit rate.

In Fig. 7(a), the captured bit rate vs the offered bitrate for the NetFPGA
can be seen. For a packet size of 256 bytes, it can be observed that the main
bottleneck is given by the PCI-X bus, conclusion which is reinforced by Fig. 7(b),
since the maximum number of packets transferable to the host is achieved either
if the packets are sent to disk or not. On the other hand, for a packet size
of 1500 bytes, it can be seen that, if packets are not sent to disk, the main
bottleneck is given by the PCI-X bus bandwidth (but not the transfer rate,
since the number of packets per second is lower than the practical limit achieved
as can be observed in Fig. 7(b)). If 1500 bytes packets are written to disk, the
bottleneck is clearly given by the hard disk, conclusion which is confirmed by
the curve of the bitrate captured to disk for a packet size of 512 bytes, which is
quite similar in maximum bandwidth. For a 512 bytes packet size, both curves
are not very different, because there are neither rate nor transfer rate limitations
in the PCI-X bus. The only limit which makes a significant difference is the hard
disk bitrate, hence the distance between both the storing and not storing to disk

11

curves. From Figs. 7(a) and 7(b) we see that we have a practical transfer rate
limit of 9-10* captured packets, a limit of 250 Mbps given by the hard disk and
a limit of 400 Mbps in the PCI-X bus bit rate.

The CPU is not a bottleneck in any of the cases, since other captures with
different Gigabit Ethernet cards have been performed that reached significantly
higher rates due to using a different version of the PCI bus.

450
400 oo e R B d *
/
/
350 ! 4
/
/
/
300 ; B
@
a
5
B
o 250
s
3
T 2001
5
a
T
o
150 -
100 — % — Captured bitrate (pkt sz=1500 Byte, null) ||
—— Captured bitrate (pkt sz=1500 Byte, disk)
— & — Captured bitrate (pkt sz=512 Byte, null)
50 —H&— Captured bitrate (pkt sz=512 Byte, disk) []
— & - Captured bitrate (pkt sz=256 Byte, null)
—24— Captured bitrate (pkt sz=256 Byte, disk)
0 I T T T

I I
0 500 1000 1500 2000 2500 3000
Offered bitrate (Mbps)

(a) Captured bit rate vs offered bit rate to the moni-
toring station

10°

S
T
N\
i

Captured packets per second

— & - Captured packets (pkt sz=256 Byte, null)
—&— Captured packets (pkt sz=256 Byte, disk)
— B — Captured packets (pkt sz=512 Byte, null)
107+ —+&— Captured packets (pkt sz=512 Byte, disk)
. . . — % — Captured packets (pkt sz=1500 Byte, null)
—*— Captured packets (pkt sz=1500 Byte, disk)
T T

I I
10

10° 10° 10°
Transmitted packets per second

(b) Captured packets per second vs offered packets
per second to the monitoring station

Fig. 7. Benchmarking results by bitrate (a) and packets per second (b).

12

6 Future work and conclusions

In this article we have presented a Bloom Filter-based packet monitoring station
for Lawful Interception which we have implemented as a prototype on a 1 Gbps
NetFPGA.

It has been shown how Bloom Filters allow high speed filtering with low false
positive probability for a reasonable number of users. Furthermore, such claims
have been supported with aggregation data from a Spanish ISP to show that our
design is scalable to be used in network aggregation points, which would allow
Lawful Interception at wirespeed in said aggregation points with reasonable cost
per suspect. More importantly, it has been demonstrated that, although traffic
capturing in aggregation links could be seen as a tall order, it is not only feasible,
but also secure and cheaply realisable if realistic numbers are taken into account
to face the problem.

Several traffic capture experiments have been conducted to test the limits
of our design. Our design is able to run at wirespeed by injecting traffic at full
speed in all ports of the NetFPGA (4x 1Gbps). We have achieved the practical
limits of 400 Mbps due to the PCI-X bus of the server, approximately 250 Mbps
due to the hard disk, and 9-10* captured packets per second due to the transfer
limit of the PCI-X bus. Finally, it should be understood that these limitations
come from the PC hardware used for the prototype itself (PCI-X bus, Hard disk,
etc), but not the NetFPGA itself. It should also be taken into account that our
intention, as a future work, is to port this design to a 10G NetFPGA, which
might be more suitable for current ISP link capacities.

Acknowledgements

The work presented in this paper has been funded by the INDECT project
grant number FP7-ICT-218086, and the Spanish CramNet project (grant no.
TEC2012-38362-C03-01).

References

1. A. Broder and M. Mitzenmacher, “Network applications of Bloom filters: A sur-
vey,” Internet Mathematics, vol. 1, no. 4, pp. 485-509, 2004.

2. Shuai Mu, Xinya Zhang, Nairen Zhang, Jiaxin Lu, Y.S. Deng, and Shu Zhang,
“IP routing processing with graphic processors,” in Design, Automation Test in
Europe Conference Ezhibition (DATE), 2010, 2010, pp. 93-98.

3. Jin Zhao, Xinya Zhang, Xin Wang, Yangdong Deng, and Xiaoming Fu, “Exploit-
ing graphics processors for high-performance IP lookup in software routers,” in
INFOCOM, 2011 Proceedings IEEE, 2011, pp. 301-305.

4. R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan, “Evaluating
GPUs for network packet signature matching,” in Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on, 2009, pp.
175-184.

13

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

Lei Wang, Shuhui Chen, Yong Tang, and Jinshu Su, “Gregex: GPU based high
speed regular expression matching engine,” in Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2011 Fifth International Conference
on, 2011, pp. 366-370.

Nen-Fu Huang, Hsien-Wei Hung, Sheng-Hung Lai, Yen-Ming Chu, and Wen-Yen
Tsai, “A GPU-based multiple-pattern matching algorithm for network intrusion
detection systems,” in Advanced Information Networking and Applications - Work-
shops, 2008. AINAW 2008. 22nd International Conference on, 2008, pp. 62-67.
Cheng-Hung Lin, Chen-Hsiung Liu, and Shih-Chieh Chang, “Accelerating regu-
lar expression matching using hierarchical parallel machines on GPU,” in Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, 2011, pp. 1-5.
Qiang Wu and T. Wolf, “Runtime task allocation in multicore packet processing
systems,” Parallel and Distributed Systems, IEEE Transactions on, vol. 23, no. 10,
pp. 1934-1943, 2012.

Yunchun Li, Liangiang Shan, and Xinxin Qiao, “A parallel packet processing
runtime system on multi-core network processors,” in Distributed Computing and
Applications to Business, Engineering Science (DCABES), 2012 11th International
Symposium on, 2012, pp. 67-71.

Y. Yamashita and M. Tsuru, “Rule pattern parallelization of packet filters on
muti-core environments,” in High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on, 2011, pp. 116-125.
Danhua Guo, L.N. Bhuyan, and Bin Liu, “An efficient parallelized L7-filter design
for multicore servers,” Networking, IEEE/ACM Transactions on, vol. 20, no. 5,
pp- 1426-1439, 2012.

“Application Layer Packet Classifier for Linux,” 2013.

Nen-Fu Huang, Hsien-Wei Hung, and Wen-Yen Tsai, “A unique-pattern based
pre-filtering method for rule matching of network security,” in Communications
(APCC), 2012 18th Asia-Pacific Conference on, 2012, pp. 744-748.

Haoyu Song, Fang Hao, M. Kodialam, and T. V. Lakshman, “IPv6 lookups using
distributed and load balanced bloom filters for 100Gbps core router line cards,” in
INFOCOM 2009, IEEEFE, 2009, pp. 2518-2526.

Sarang Dharmapurikar, Praveen Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel Bloom filters,” in High Performance Inter-
connects, 2003. Proceedings. 11th Symposium on, 2003, pp. 44-51.

Sarang Dharmapurikar, Praveen Krishnamurthy, T.S. Sproull, and J.W. Lockwood,
“Deep packet inspection using parallel Bloom filters,” Micro, IEEE, vol. 24, no. 1,
pp. 52-61, 2004.

M. Attig, Sarang Dharmapurikar, and J. Lockwood, “Implementation results of
Bloom filters for string matching,” in Field-Programmable Custom Computing
Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, 2004, pp. 322—
323.

M. Attig and J. Lockwood, “SIFT: snort intrusion filter for TCP,” in High Perfor-
mance Interconnects, 2005. Proceedings. 13th Symposium on, 2005, pp. 121-127.
J. Van Lunteren, “High-performance pattern-matching for intrusion detection,” in
INFOCOM 2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings, 2006, pp. 1-13.

N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-
efficient string matching algorithms for intrusion detection,” in INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies, 2004, vol. 4, pp. 2628-2639 vol.4.

14

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

J. Ho and G.G.F. Lemieux, “PERG: A scalable FPGA-based pattern-matching
engine with consolidated bloomier filters,” in ICECE Technology, 2008. FPT 2008.
International Conference on, 2008, pp. 73-80.

M. Bando, N.S. Artan, Rihua Wei, Xiangyi Guo, and H.J. Chao, “Range hash for
regular expression pre-filtering,” in Architectures for Networking and Communi-
cations Systems (ANCS), 2010 ACM/IEEE Symposium on, 2010, pp. 1-12.

Y.H. Cho and W.H. Mangione-Smith, “Fast reconfiguring deep packet filter for
1+ gigabit network,” in Field-Programmable Custom Computing Machines, 2005.
FCCM 2005. 13th Annual IEEE Symposium on, 2005, pp. 215-224.

R. Ajami and Anh Dinh, “Design a hardware network firewall on FPGA,” in
Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference
on, 2011, pp. 000674-000678.

A. Kayssi, L. Harik, R. Ferzli, and M. Fawaz, “FPGA-based internet protocol
firewall chip,” in Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th
IEEE International Conference on, 2000, vol. 1, pp. 316-319 vol.1.

Sang-Kil Park, Jin-Tae Oh, and Jong-Soo Jang, “High-speed attack mitigation en-
gine by packet filtering and rate-limiting using fpga,” in Advanced Communication
Technology, 2006. ICACT 2006. The 8th International Conference, 2006, vol. 1,
pp- 6 pp.—685.

R. Aparicio, M. Uruenia, A. Munoz, G. Rodriguez, and S. Morcuende, “INDECT
Lawful Interception platform: Overview of ILIP decoding and analysis station (ac-
cepted for publication),” in Jornadas de Ingeniera Telemtica (JITEL) 2013, 2013.
M. Uruena, A. Munioz, R. Aparicio, and G. Rodriguez, “Digital Wiretap Warrant:
Protecting civil liberties in ETSI Lawful Interception (review ongoing),” Computer
And Security, Elsevier.

D. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, 2 edition,
1998.

“NetFPGA home page,” 2013.

15

