
 

 

 

 

 

 

 

 

 

The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 
 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Univ
ers

ity
 of

 C
ap

e T
ow

n

Acceleration of Parasitic Multistatic Radar
System using GPGPU

Prepared By:
Mathew John

Supervised By:
Prof. Michael.R.Inggs

A dissertation submitted to the Department of Electrical Engineering,

University of Cape Town, in fulfilment of the requirements

for the degree of Master of Science in Engineering.

Cape Town, August 2011



Univ
ers

ity
 of

 C
ap

e T
ow

n

Declaration

I know the meaning of plagiarism and declare that all the work in this dissertation, save for that
which is properly acknowledged, is my own. This dissertation is being submitted for the degree of
Master of Science in Engineering in the University of Cape Town. It has not been submitted before
for any degree or examination in any other university.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cape Town

11 August 2011

i



Univ
ers

ity
 of

 C
ap

e T
ow

n

Abstract

Parasitic Multistatic Radar (PMR) systems are to equip the world of air traffic surveillance with
a reliable and highly cost-effective class of radar systems with counter-stealth abilities. But the
computational intensity of the signal processing chain made the process extremely time consuming
and acted as the prime hindrance in converting the research project into a practical air surveillance
system. Parallel processing using General Purpose Graphic Processing Units (GPGPUs) is used as
the solution to handle this computational intensity. The parallel structure of radar signal processing
chain with large volume of data fits ideally into the parallel architecture of GPGPUs.

This dissertation details the implementation of PMR signal processing chain in the GPGPU platform.
The primary objective of the project is to accelerate the signal processing chain without compromis-
ing the algorithm efficiency and to prove that GPGPUs are a promising platform for parasitic radar
signal processing. Two distinct clutter cancellation algorithms are implemented together with a high
performance matched filter in the GPU platform. The two clutter cancellation algorithm are com-
pared based on their computational and clutter cancellation efficiency and a conclusion about the
preferred algorithm for PMR system is made. The GPU implementation of the signal processing
chain is compared with the CPU implementation using standard performance metrics focusing on
individual stages and the overall system, illustrating the effective acceleration achieved. The dis-
sertation concludes with scope and recommendations for further improvement of the system in a
multi-CPU multi-GPU distributed system.

ii



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

To The Lord God Almighty

And

My Family

iii



Univ
ers

ity
 of

 C
ap

e T
ow

n

Acknowledgements

This research project and dissertation became a reality with the guidance and support of a number of
incredible human minds who had always believed in me. First of all, I express my heartfelt gratitude
to my supervisor Prof. Michael. R. Inggs who showed me the the light to the Radar Remote Sensing
Group and the PMR research project. I am extremely indebted to him for the immense opportunities
he had given me through the PMR project, the Netrad trials and funding for the paper presentation
at the Signal Processing Symposium-2011, all of which only form an outline in the role he played
in my student life. I am thankful to my co-supervisor Dr. Yoann Paichard who introduced me to the
world of passive radars.

I would like to extend my gratitude to all the members of RRSG with special thanks to Mr. Gunther
Lange and Mr. Craig Tong for the immense help they offered in the test deployment of the system
in Western Cape. I am also thankful to Mr. Dario Petri from the University of Pisa for his guidance
and the DVB-T data used for the system testing.

There were times in the last two years when my threshold to move ahead had fallen down, and I
am extremely thankful to my family who had always stood beside me giving me all the strength and
confidence to move ahead. I express my thanks to my friends at Rochester, Ragesh Pillai and my
flatmate Thomas who were always more than an extended family to me. I believe all the guidance
and support I received, was always an act of God, since the Almighty acts through humans itself.
I am indebted to the Lord God Almighty for all the blessings he showered upon me through these
marvellous human minds.

iv



Univ
ers

ity
 of

 C
ap

e T
ow

n

Contents

Declaration i

Abstract ii

Acknowledgements iv

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Parasitic Multistatic Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Graphics Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 PMR and GPGPUs 8

2.1 Architecture of PMR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Direct Path Interference Cancellation and Clutter Suppression . . . . . . . . 11

2.1.3 Matched filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Line Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.6 Track Association and State Estimation . . . . . . . . . . . . . . . . . . . . 12

2.2 GPGPU: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 GPGPUs-An efficient Parallel Processor . . . . . . . . . . . . . . . . . . . . 14

2.2.2 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 CUDA Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Fermi series and GTX 480FX . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

3 GPU Implementation of PMR Signal Processing 21

3.1 Model for Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 CPU Implementation of Matched Filtering . . . . . . . . . . . . . . . . . . 23

3.1.2 GPU migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 DPI Cancellation and Clutter Suppression . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Adaptive Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Modelling of NLMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 CPU implementation of NLMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 GPU implementation of NLMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Performance Optimisation of GPU Implementation . . . . . . . . . . . . . . . . . . 30

3.6.1 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.2 Optimisation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Pros and Cons of NLMS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7.1 Pros of NLMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7.2 Cons of NLMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Extensive Cancellation Algorithm 36

4.1 Theory of ECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Modelling of ECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 MATLAB Simulation of ECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Implementation of ECA in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Computational requirement of ECA . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Memory bandwidth performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1 Theoretical Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.2 Effective Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 GPU implementation of ECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1 Supporting factors for GPU implementation . . . . . . . . . . . . . . . . . . 41

4.6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.3 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 GPU based Complex Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7.1 Implementation Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7.2 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7.3 Factors affecting Speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

5 Tests and Results 48

5.1 Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 GPU ARD computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Factors affecting Performance of GPU-ARD . . . . . . . . . . . . . . . . . 50

5.2.2 Conclusions from results of GPU-ARD . . . . . . . . . . . . . . . . . . . . 51

5.3 GPU-NLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Factors affecting Performance of GPU-NLMS . . . . . . . . . . . . . . . . 52

5.3.2 Conclusions from results of GPU-NLMS . . . . . . . . . . . . . . . . . . . 53

5.4 GPU-ECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Factors affecting Performance of GPU-ECA . . . . . . . . . . . . . . . . . . 53

5.4.2 Conclusions from results of GPU-ECA . . . . . . . . . . . . . . . . . . . . 54

5.5 ECA vs NLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Algorithm Efficiency Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6.1 Clutter Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6.2 Signal to Clutter Ratio ECA vs NLMS . . . . . . . . . . . . . . . . . . . . . 58

5.7 Test deployment result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7.1 Testing using Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7.2 Real-world Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 Validation of processing with CPU processing . . . . . . . . . . . . . . . . . . . . . 64

5.9 Interpretation of Tests and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 Complete System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusions and Recommendations 69

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A CPU-Specification and Software Environment 72

B Nvidia GTX 480 FX-Specification 73

Bibliography 74

vii



Univ
ers

ity
 of

 C
ap

e T
ow

n

List of Figures

1.1 PMR System with receiver stations at University of Cape Town (UCT) and Univer-
sity of Stellenbosch (US) [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Overall Speed-Up Factor for the PMR system. . . . . . . . . . . . . . . . . . . . . . 7

2.1 System Geometry of a typical PMR in Bistatic Configuration [39] . . . . . . . . . . 8

2.2 Architecture of the PMR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 IBM Professional Graphics Controller-:The first 2D/3D Graphics accelerator [34] . . 13

2.4 Nvidia Geforce256 [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Floating-Point Operations per Second and Memory Bandwidth for the CPU and
GPU [46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 The GPU Devotes More Transistors to Data Processing [46] . . . . . . . . . . . . . 15

2.7 Scaling of blocks into different devices depending on number of cores [46] . . . . . 16

2.8 Heterogeneous Programming Model [46] . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Grid of Thread Blocks [46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 Memory Hierarchy [46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Flowchart of Matched Filtering/ARD Processing in GPU-CPU Heterogeneous Plat-
form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Structure of NLMS Filter [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Flowchart of NLMS clutter cancellation in CPU-GPU heterogeneous platform . . . . 32

3.4 Target detection (circled) at (55,-350) in CPU using DVB-T data with NLMS Algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Target detection (circled) at (55,-350) in GPU using DVB-T data with NLMS Algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Target Masked by Clutter when using NLMS algorithm . . . . . . . . . . . . . . . . 34

3.7 Target detected (circled) at (30,25) when using ECA algorithm . . . . . . . . . . . . 35

4.1 Number of floating point operations in ECA for Doppler bins=1 for various range
and size of input data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

4.2 Effective Bandwidth variation with data size . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Flowchart of ECA clutter cancellation in CPU-GPU heterogeneous platform . . . . 43

4.4 Flowchart of GPU Complex Matrix Inversion . . . . . . . . . . . . . . . . . . . . . 45

4.5 Processing Time for complex matrix inversion: CPU vs GPU . . . . . . . . . . . . . 46

4.6 Speed up factor variation with order of the input square matrix . . . . . . . . . . . . 47

5.1 ARD Time Comparison-CPU vs GPU for 500 Doppler bins . . . . . . . . . . . . . . 50

5.2 Variation of Speed-Up Factor for GPU-ARD with data size for different range bins . 51

5.3 NLMS Time Consumption-CPU Vs GPU . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Variation of Speed-Up Factor for GPU-NLMS with data size for different range bins 53

5.5 ECA Time Consumption-CPU Vs GPU. . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Variation of Speed-up factor for GPU-ECA with data size for different range bins . . 55

5.7 GPU Processing Time : ECA vs NLMS . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 ARD 3D plot without cutter and DPI cancellation . . . . . . . . . . . . . . . . . . . 57

5.9 ARD-3D plot with NLMS clutter cancellation . . . . . . . . . . . . . . . . . . . . . 57

5.10 ARD-3D Plot with ECA Clutter Cancellation . . . . . . . . . . . . . . . . . . . . . 58

5.11 SCR Calculation for Short-Range Target detected in NLMS . . . . . . . . . . . . . . 59

5.12 SCR Calculation for Short-Range Target detected in ECA . . . . . . . . . . . . . . . 60

5.13 SCR Calculation for Long-Range Target detected in NLMS . . . . . . . . . . . . . . 60

5.14 SCR Calculation for Long-Range Target detected in ECA . . . . . . . . . . . . . . . 61

5.15 ARD Plot on FERS data on small target cross-section . . . . . . . . . . . . . . . . . 61

5.16 ARD Plot illustrating selective cancellation of ECA on DVB-T data. . . . . . . . . . 62

5.17 Photograph showing antenna position and coverage area from Trial 1 . . . . . . . . . 63

5.18 ARD from Test-deployment1-ECA . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.19 Compound ARD from Test-deployment1-ECA [55] . . . . . . . . . . . . . . . . . . 64

5.20 Long range Multiple target ARD from Test-deployment II-ECA on GPU . . . . . . 65

5.21 ARD from Test-deployment II-ECA processed on CPU . . . . . . . . . . . . . . . . 65

5.22 Complete system run-time comparison between CPU and GPU. . . . . . . . . . . . 67

5.23 Overall Speed-Up Factor for the PMR system. . . . . . . . . . . . . . . . . . . . . . 68

ix



Univ
ers

ity
 of

 C
ap

e T
ow

n

List of Tables

3.1 Comparison of CPU vs GPU time consumption for individual processes in matched
filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Comparison of CPU Vs GPU time consumption of individual processes in NLMS
filtering for Data-Size= 819.2 K Samples, Order=300 and µNLMS = 0.02. . . . . . . . 30

5.1 SCR Calculation: ECA vs NLMS for Short-Range (~22km) and Long-Range (~120km)
Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



Univ
ers

ity
 of

 C
ap

e T
ow

n

Nomenclature

ARD Amplitude Range Doppler

CFAR Constant False Alarm Rate

CUDA Compute Unified Device Architecture

DPI Direct Path Interference

DSP Digital Signal Processing

ECA Extensive Cancellation Algorithm

FFT Fast Fourier Transform

GPGPUs General Purpose Graphic Processing Units

GPUs Graphic Processing Units

NLMS Normalised Least Mean Square

OPENCL OPEN Computing Language

PGC Professional Graphics Controller

PMR Parasitic Multistatic Radar

SCR Signal to Clutter Ratio

SIMD Single Instruction Multiple Data

Speed- Up Factor The ratio of CPU processing time to GPU Processing time.

1



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 1

Introduction

The doubling of the number of transistors every 18 months (known as Moore’s law [40] ) and the de-
mand for sophisticated computer game consoles have come together in the form of Graphic Process-
ing Units (GPUs) and a repackaged version for research computing, known as the General Purpose
GPU (GPGPU). GPGPU computing can be a promising technology to many innovative and cost
effective engineering solutions. Parasitic Multistatic Radar (PMR) [22] project can be classified as
an engineering solution to the need for a new class of reliable, cost-effective radar systems, immune
to stealth [28] and will be a solution to the bandwidth congestion all over the world.

This dissertation illustrates the implementation of PMR signal processing on GPUs by exploiting
the parallel architecture of GPUs. The aim of this project is to implement a GPU based parallel
processing algorithm for PMR system enabling real-time air surveillance. This introductory Chapter
begins with a brief insight of PMR, GPUs and the scope and need for parallel processing. At this
point, the main objectives of the research project is stated ending up with a short outline of the rest
of the dissertation.

1.1 Background

1.1.1 Parasitic Multistatic Radar

The history of radar reveals a technology that was hidden from the electronics world, and that is mul-
tistatic radar technology. Multistatic radar [22] refers to a radar system using multiple transmitters
and receivers for target detection. Multistatic systems can be both active multistatic radar system
using dedicated transmitters, or a Parasitic multistatic system using non-cooperative sources of illu-
mination as transmitters. Figure 1.1 shows the visualisation of a PMR [22] system under implemen-
tation for deployment in the Western Cape. The Yellow and Orange arrows represent transmitted
waveform from separate transmitters, reflected by target and received by the receivers at University
of Cape Town (UCT) and University of Stellenbosch (US) respectively. The distance between the
receiver stations is approximately 50 km. The red arrows represent Direct Path Interference (DPI)

2



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

[57]. Presently, the PMR system under analysis is a bistatic radar system [57] which means it uses
a single set of transmitter and receiver. At this point, a brief history of multistatic radar systems and
in particular bistatic radar [22] systems is mentioned.

The first radar experiments in the United Kingdom in 1935 by Robert Watson-Watt demonstrated
the principle of radar by detecting a Handley Page Heyford bomber at a distance of 12 km using the
British Broadcasting Corporation (BBC) shortwave transmitter at Daventry. Therefore the first radar
experiment, and the early 1930s radar experiments were largely bistatic [27]. The British deployed
the CHAIN HOME system [42], the French used a bistatic Continuous Wave (CW) radar in a "fence"
(or "barrier") system, the Soviet Union deployed a bistatic CW system called the RUS-1 [5], and the
Japanese developed a bistatic CW radar simply called "Type A" [56]. The subsequent development
of duplexer [54] made the radar world largely monostatic.

In the 1980s, IBM developed a prototype system that could track aircraft in non-real time by
analysing the echoes of the vision carrier of an analogue television signal [27]. Lockheed Mar-
tin later acquired this division of IBM and developed a commercial PMR system known as Silent
Sentry [31]. In 1986, Griffiths and Long [23] published the first open literature work on the utili-
sation of analogue television signals for radar purposes, but like their predecessors, found that the
poor ambiguity function and dynamic range problems prevented them from demonstrating any target
detections.

Figure 1.1: PMR System with receiver stations at University of Cape Town (UCT) and University
of Stellenbosch (US) [39]

PMR came back into mainstream in mid 1990s. The technology got renewed interest with the arrival
of aircraft with stealth capabilities [28]. This renewed interest was probably due to the potential
counter-stealth abilities that PMR offered because of its bistatic, low-frequency operation. It was,
however, not until the 21st century that PMR started receiving the attention it deserved. The reason
for this change in research trend is advancement of Digital Signal Processing (DSP) [10] power and

3



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

fast analogue to digital (A/D) conversion. These advances are enabling university research groups to
initiate and fulfil PMR projects within reasonable budget and time lines. This also led to a positive
impact in the related online literature in open domain.

1.1.2 Graphics Processing Unit

The GPUs are specialised microprocessors for handling 2D/3D graphics. From its first release as
IBM Professional Graphics Controller (PGC) [34] in 1984, GPUs were revolutionising the computer
graphics industry with their exceptional capability to handle floating point operations. By 2004, a
novel concept to harness the massive floating point processing power of GPU came into the world
of high performance computing and this is termed as GPGPU.

The Single Instruction Multiple Data (SIMD) architecture [46] of the GPU made it an excellent pro-
cessor for parallel processing and a new trend of using multi-core GPUs instead of multi-core CPUs
is on its way. The GPU market leaders Nvidia and ATI came up with two different programming en-
vironment named Compute Unified Device Architecture (CUDA) [46] and OPEN Computing Lan-
guage (OPENCL)1 respectively. Due to efficient adaptation from native C language, CUDA and
Nvidia GTX 480 FX Fermi graphics card are used for parallel programming in the present project.

1.2 Research Motivation

The literature on PMR systems and the preliminary results from the prototype system in MATLAB
provide an insight into the efficiency and reliability of the technology. The technology was lagging
behind, due to the high time consumption taken in the signal processing chain. This high processing
time could hinder the usage of the the technology as a robust and reliable surveillance system. The
need for accelerating the signal processing chain aroused at this stage. In the design of a polyphase
filter bank using GPU based on paper by M. Rice [21], the author has investigated the processing
power of GPU over CPU. In this scenario, the idea for a new processing code for PMR system
based on GPU comes into picture. The scope of this project is to provide evidence that GPUs are a
promising computational platform for accelerating PMR signal processing.

The approach used is a step by step migration from CPU to GPU depending on maximum speed-up
or acceleration that can be achieved at individual processes. The data used is obtained from direct
measurement based on flight data from Cape Town International Airport, University of Pisa and
other targets of opportunity.

1.3 Research Objectives

The objectives of this dissertation are as follows:
1Accessed 18thDecember 2010<http://www.khronos.org/opencl/>

4



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

• Implement two distinct clutter cancellation algorithms in GPU Platform.

• Develop a GPU based high speed matched filter which can be interfaced with Constant False
Alarm Rate (CFAR) [54, 43] detection and tracking .

• Compare and benchmark the cancellation algorithms based on time consumption and Signal
to Clutter ratio (SCR) [54].

• Compare the GPU and CPU implementations and illustrate the acceleration achieved.

• Draw conclusions about GPU acceleration for radar systems and provide leads for further
research and improvement.

1.4 Dissertation Outline

The dissertation in total is composed of 6 chapters. An outline of each chapter is described here:

Chapter 2 concentrates on the core concept of PMR and provide an extensive literature on the
topic. The present systems available and a system level description of a complete PMR system
is studied. The Chapter is heavily dedicated to signal processing, together with a brief overview of
signal acquisition stages. The Chapter also highlights the major processing stages and its importance
in the signal processing chain. The Chapter then proceeds to an overview of the GPUs and its
adaptation to general purpose programming. The development environment and the toolkit used is
mentioned briefly. The scope of using GPUs for PMR system is explained, and concludes with the
details of the GPU model used and the Fermi architecture [1].

Chapter 3 concentrates on the PMR system signal processing chain. Based on Chapter 2, the various
stages of PMR system is identified in detail. Matched filtering /Amplitude-Range-Doppler (ARD)
Processing [57] is identified as an important process, that needs acceleration. The Chapter explains
the algorithm model for matched filter and briefly explain the features of the CPU implementation.
The Chapter then proceeds to the migration from CPU to GPU. The designing stages and code im-
plementation is explained with reference to flowcharts and the program flow is studied in detail. An
initial study on the acceleration achieved, and the processing time for individual processes in the
algorithm model, is done at this stage. Clutter cancellation is identified as the next major process in
the processing chain. Normalised Least Mean Square (NLMS) [53, 25] algorithm is modelled with
respect to the filtering model by Haykin [25]. Salient features of the CPU implementation is studied
and then proceeds to the GPU implementation. GPU implementation features and program flow is
explained with reference to figures and flowcharts. The Chapter then proceeds to the implementa-
tion of performance optimisation measures, recommended by Nvidia [46] for further improvement.
Towards the end, the Chapter also gives an insight about the pros and cons of the NLMS algorithm
[25] based on results from real world scenario. The GPU implementation was able to achieve an

5



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

acceleration of 18.67X for the ARD [57] processing and 8.85X for the NLMS [25] cancellation, re-
sulting in a total speed-up of 16.39X for the PMR signal processing chain in a single GPU. Detailed
study on the acceleration achieved will be discussed in Chapter 5. The Chapter concludes with the
need for an alternate cancellation algorithm that overcomes the limitations of the NLMS [25].

Chapter 4 is focused on the Extensive Cancellation Algorithm (ECA) [15, 25] which is implemented
as an alternative to the NLMS [25] algorithm discussed in Chapter 3. The theoretical aspects of the
algorithm is studied with focus on the algorithm complexity and computational requirement prior
to code design and implementation. The algorithm model and CPU implementation is mentioned
briefly and the individual processes are selected for GPU implementation based on time consump-
tion. The Chapter then proceeds to the detailed implementation of the algorithm in GPU. The imple-
mentation of individual processes within the ECA [25] is explained with reference to the flowcharts
and hence reveals the heterogeneous nature of the computing platform mentioned in Chapter 2. The
ECA implementation on GPU was able to achieve an acceleration of 27.45X, leading to a total ac-
celeration of 29.43X for the PMR signal processing chain in a single GPU. The Chapter concludes
with the implementation and performance details of GPU based high performance complex matrix
inversion developed for the ECA [25], which can be customised for other DSP applications.

Chapter 5 is dedicated to tests and results. The testing is divided into computational characteristics
and clutter cancellation [54] efficiency tests. The computational characteristics and performance
measures of GPU implementation of Matched filtering, NLMS [25] algorithm, ECA [15] are studied
in detail with respect to the speed-up factor [46] and run-time variation graphs, plotted for different
performance parameters. Testing of the clutter cancellation ability of the two algorithms is done with
respect to SCR [54] calculation from real world data. ARD plots from different sources of illumina-
tion and from simulated data are studied to test the robustness of the algorithms. The Chapter then
proceeds to results from test deployment of the system. Multiple target detections are observed at
different range and Doppler [57]. The calculated flight path and the actual flight paths are compared.
The algorithm efficiency tests in versatile scenarios, studies the properties of both the algorithms in
detail. Based on the detailed tests and results, categorised into tests on computational performance
and on clutter cancellation efficiency, a conclusion about the preferred algorithm for PMR system
is drawn. Though the NLMS [25] algorithm is computationally 10X faster than the ECA [25] , the
clutter cancellation efficiency of ECA is superior than the NLMS with reference to the SCR [54]
analysis. The speed-up of 27.45X achieved for the ECA [25] in single GPU platform, and the inher-
ent batch process nature [25] of ECA, provides evidence for the effective acceleration the process
can achieve in a multi-GPU platform. The Chapter concludes with the selection of ECA as the
preferred algorithm for PMR system and validation of the final results by comparing with the CPU
results, together with performance details of the complete system.

Chapter 6 as the final Chapter depicts the conclusions drawn from the GPU implementation of
PMR signal processing with reference to the level of acceleration achieved and the test results from
Chapter 5.

6



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 1.2: Overall Speed-Up Factor for the PMR system. (The processing is done using ECA
with cancellation for 300 Range bins, Doppler bins=3 and ARD plot for 300 Range bins and 1201
Doppler bins centred at 0 Hz.)

The acceleration achieved for the signal processing chain in a single GPU platform, providing ev-
idence for real time processing in a multi-GPU platform is mentioned. The recommendation for
multi-GPU implementation, including use of multi-threaded CPU for highly optimised heteroge-
neous platform is discussed. The Chapter also mentions the future work on this project focused on
interfacing the code to streamline plotter [55] and CFAR detector [54]. The Chapter concludes with
scope and leads for further research and recommendations for improvement of the system.

7



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 2

PMR and GPGPUs

The ever increasing air traffic congestion all over the World requires multiple surveillance and con-
trol systems forming a sophisticated network of radars. The cost of design, implementation and
maintenance of such a surveillance network using conventional active radars, is not in the reach of
the developing economies in Asia and Africa. The requirement for such a network is inevitable in
South Africa, Middle East and Far East Asia, which acts as new hubs for international air travel with
changing trade and economic patterns. Another supporting factor for an alternative from conven-
tional radars is the exponentially increasing frequency spectrum congestion. The spectrum conges-
tion demands the exploitation of the same frequency band for multiple use. The role of PMR [22]
together with its anti-stealth [28] abilities, is thus gaining importance in this scenario.

PMR can be classified under Bistatic Radar [9] technology which utilises separate transmitter and
receiver instead of duplexer. PMR technology deviates from traditional bistatic radars in the case of
transmitters. Instead of using a dedicated transmitter for the source signal, PMR uses emissions from
sources of illumination which are already present in the environment. The source of illumination can
be any existing transmitter like FM Radio [50], Global System for Mobile communications (GSM)
signals [17], Digital Video Broadcast-Terrestrial (DVB-T) [18] and Digital Audio Broadcasts (DAB)
[18].

Figure 2.1: System Geometry of a typical PMR in Bistatic Configuration [39]

8



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Since PMR uses illuminators of opportunity, transmitter parameters and characteristics of the trans-
mitted waveform are not under the control of the the radar design engineer. The exploitation of a
non-dedicated waveform necessitates the need for a complex processing algorithm. A preliminary
PMR signal processing algorithm [26] was designed at Radar Remote Sensing Group (RRSG) at
the University of Cape Town. Processing of massive amount of data in this computationally inten-
sive algorithm made the process extremely time consuming. This large computation time limits the
technology from using as a reliable air surveillance system. The need for a new processing algo-
rithm which is computationally efficient comes at this stage. The parallel nature of the processing
algorithm suits for processing using GPGPUs.

GPUs which are specialised microprocessors to accelerate graphics rendering [48] is the backbone
of high end gaming and visualisation industry. The highly parallel nature of GPUs, is dedicated for
graphics rendering [48] thereby reducing the load on Central processing unit (CPU). The capability
of GPU to perform millions of floating point operation per second can be used for general purpose
programming by addition of programmable stages and high precision arithmetic, to the rendering
pipelines [33]. Thus a relatively new concept of computing using GPGPU or GP2U comes into
existence. The evolution of GPUs to GPGPUs is explained in detail in [33].

This Chapter begins with explanation of the core concepts of PMR, giving more importance to the
signal processing chain. The architecture of the PMR system is studied with brief explanation of
individual stages. The stages selected for GPU computation are explained in detail. At a later
stage, the Chapter deals with the internal architecture of GPGPUs and CUDA as the processing
environment. The Chapter concludes with an overview of the Nvidia GTX 480 FX series [47],
which is the GPU used for the algorithm implementation.

2.1 Architecture of PMR System

The architecture of the PMR system in bistatic configuration, is shown in Figure 2.2. Figure 2.2
illustrates the different stages of processing and highlights the computation platform used for each
stage.

2.1.1 Data Acquisition

RF Front-end

The data acquisition begins with the RF Front end consisting of a Yagi-Uda antenna [12] as the
reference antenna which is directed towards the the transmitter and a Log Periodic Dipole Antenna
(LPDA ) [12] as the surveillance antenna directed towards the coverage area. The antennas have
main-lobe gain of 10 and 14 for the reference and surveillance channels, respectively.

9



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 2.2: Architecture of the PMR System

Analogue/Digital (A/D) Converter and Front end noise removal

A/D conversion and front end noise removal can be done in two discrete ways. The earlier work
in this field used the Universal Software Radio Peripheral (USRP) [19, 26]. USRP [19] board in
conjunction with GNU Radio1 software, was used to convert the analogue signal from reference and
surveillance/echo channel into a single stream of data at 32 MB/s after decimation. The USRP [19]
output is connected to signal Processing PC via USB 2.0. USRP [19] can be used as a cost-effective
digitisation solution. However, the PMR system under implementation exploits FM channels with
a Bandwidth of 200 kHz. Digitisation at this data rate results in USB buffer overrun. This problem
is solved by using a dedicated multichannel Low noise receiver for data acquisition. The receiver
used is capable of digitising sharply filtered band in a range of 20-3600 MHz. The receiver features
minimum dynamic range of 75 dBm and image rejection of 85 dB. The use of this receiver as a
reliable and robust RF front end, and digitisation solution is thus preferred for the PMR project at
this stage.

1Accessed 12 November 2010, <http://gnuradio.org>

10



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

2.1.2 Direct Path Interference Cancellation and Clutter Suppression

Figure 2.1 illustrates the presence of DPI [57] in the surveillance channel at the RF Front end. This
direct path interference is handled to an extend by physical and spatial techniques. But for reliable
operation, DPI cancellation is done as a major process in signal processing.

Clutter suppression, as in any radar system, is the the removal of time-delayed reflections from
unwanted targets, ground and atmosphere. Two different algorithms were developed for direct signal
cancellation and clutter suppression-

• NLMS Algorithm [25].

• ECA [25, 15].

Due to computational complexity, CPU version of both algorithms has very high processing times.
The need for the speed accelerated GPU version aroused at this stage and the work of the author
focuses on accelerating the signal processing chain using GPU. Chapter 3 and Chapter 4 concentrates
more on the modelling and implementation of both algorithms. A comparative study of both the
algorithms based on tests and results obtained, is illustrated in Chapter 5.

2.1.3 Matched filtering

Matched filtering is the stage of PMR signal processing where target detection is obtained in the
ARD [57] plot. This stage can be considered as the search for the time-delayed and Doppler-shifted
versions of the reference signal. This is achieved by correlating the surveillance signal with Doppler-
shifted versions of the reference signal to form a bank of filters matched to every possible Doppler
frequency of interest.

This is equivalent to calculating the ambiguity function [57] and can be written as follows:

∣∣∣Ψ(RR, fd)
2
∣∣∣=
∣∣∣∣∣∣

∞∫
−∞

e(t)d∗(t +RR)e j2π fdtdt

∣∣∣∣∣∣
2

(2.1)

where
∣∣∣Ψ(RR, fd)

2
∣∣∣denotes the ARD surface being calculated, e(t) represents the surveillance signal,

d(t) represents the reference signal, RR represents the range of interest and fd represents the Doppler
shift of interest.

The CPU algorithm for matched filtering was based on calculating high resolution Fast Fourier
Transform(FFT) using the FFTW2 library. Development of GPU version is illustrated in Chapter 3.
Timing and performance comparison of CPU and GPU matched filtering algorithms is illustrated in
Chapter 5.

2Accessed 15 December 2010 , http://www.fftw.org/#documentation

11



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

A decimated version of the ARD algorithm using Cascaded Integrator Comb (CIC) [51] filters was
also developed in C language and the GPU version for the same was developed. But the GPU version
of the non-decimated version gave better results in terms of both speed-up and overall- runtime than
the decimated version. Since decimation using the CIC filter is a sequential process, and when
the data size increases with increase in time of observation, the processing time for filtering also
increases. This results in the non-decimated version of ARD algorithm to perform better in the GPU
platform with higher effective speed-up and lower processing time than the decimated version.

2.1.4 Target Detection

Targets are detected on the calculated ARD surface [57] by applying an adaptive threshold [43].
Range and Doppler [54] cells that exceeds the detection threshold are identified as targets. The
detection threshold is varied as an estimate of the noise variance. A standard cell averaging constant
false alarm rate (CFAR) algorithm [43, 54] is used.

2.1.5 Line Tracking

The output of the CFAR algorithm [54] produces all the cells on the ARD surface that contain target
detections. It is now necessary to associate this range and Doppler data with individual targets. A
standard Kalman filter [24] can be used to effectively track targets in the Range-Doppler space [9].
Most false alarms are rejected during this stage of the processing.

2.1.6 Track Association and State Estimation

When multiple transmitters are used, a target can be potentially detected by every transmitter. The
return from this target will appear at a different bistatic range [57] and Doppler shift [57] with each
transmitter. Hence it is necessary to determine which target-returns from one transmitter, correspond
with those on the other transmitters. Having associated these returns, the point at which the bistatic
range ellipses from each transmitter intersect is the location of the target. The optimum approach is
to combine the measurements from each transmitter using a non-linear filter, such as Kalman filter
[24]. The Kalman filter [24] can be also utilised to estimate the state of the target including location,
heading and speed from the full measurement set of bistatic range, bearing and Doppler.

2.2 GPGPU: An Introduction

Computer Graphics is a technology based industry which has witnessed a revolutionary increase
from a few pixel based 2D games to the world of high performance 3D gaming and visualisations
back boned by billions of pixels. The reason for this dramatic increase is the evolution from on-board
graphic rendering microprocessor to dedicated Ultra Large Scale Integration (ULSI) based GPUs.

12



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 2.3: IBM Professional Graphics Controller-:The first 2D/3D Graphics accelerator [34]

Figure 2.3 shows the first 2D/3D Graphics accelerator, the IBM Professional Graphics Controller
(PGC) [34] released in 1984. It was very advanced for the 1980s, but continuous research in graphics
processing and the need by computer visualisation industry helped Nvidia to release the World’s first
GPU, the Geforce 256 (also known as NV10) shown in Figure 2.4.

The ability of GPUs to handle high intense arithmetic operations and its parallel architecture led
to the introduction of the novel concept of using them for General Purpose computing. Thus GPU
revolutionised itself to become GPGPU or GP2U . Subsection 2.2.1 on the following page introduces
the features of GPGPU, as efficient parallel processors.

Figure 2.4: Nvidia Geforce256 [16]

13



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

2.2.1 GPGPUs-An efficient Parallel Processor

Figure 2.5: Floating-Point Operations per Second and Memory Bandwidth for the CPU and GPU
[46]

GPUs are efficient than CPUs for compute-intensive, highly parallel computation since they are
fundamentally designed for graphic rendering where large sets of pixels and vertices [33] are mapped
for parallel processing. The architectural fact for this performance supremacy is due to the reason
that more transistors are devoted to data processing, rather than data caching and flow control. Figure
2.5 illustrates a comparison between floating point operation per Second and memory bandwidth for
the CPU and the GPU.

GPUs are specialised for applications that fall in the following criteria:

14



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

• Data parallel Computation

Applications in which the same program is executed on many data elements in parallel and the
amount of data handled is huge. Figure 2.6 illustrates that GPU devotes more transistors for
data processing than data caching and flow control.

• Applications with high arithmetic intensity

Arithmetic intensity refers to the ratio of arithmetic to memory operations. Frequent memory
operations require efficient flow control in which heterogeneous programming mentioned in
subsection 2.2.2 becomes necessary.

Figure 2.6: The GPU Devotes More Transistors to Data Processing [46]

Applications with the above characteristics has lower requirement for sophisticated flow control.
Because the same program is executed on many data elements and due to high arithmetic intensity,
the memory access latency can be hidden with calculation instead of big data caches.

2.2.2 CUDA

Nvidia introduced CUDA [46] in late November 2006 as a general purpose parallel computing ar-
chitecture. CUDA is developed as an extension of ANSI C [11] helping developers for a smooth
migration to GPU programming.

Scalable programming model

The parallel programming model characterised by multi-core CPUs and GPUs and the applications
developed based on it should scale with Moore’s law [40]. The application should scale themselves
with increasing number of cores in future systems. and CUDA handles this crucial design require-
ment by maintaining a simple but efficient architectural hierarchy. The programme is partitioned at
core level into threads and a group of threads form a block. Thus a multi-threaded CUDA program
can be illustrated as a set of blocks. Depending upon the number of cores present in the GPUs, the
blocks can be scaled. Thus the programme functionalities which are taken care at thread level are
independent with the number of cores in the GPU used. This unique design, scales CUDA programs

15



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

to future machines with higher compute capability. The block level architecture and the automatic
scaling of blocks depending upon the number of cores in the device is shown in Figure 2.7. From
Figure 2.7, it is evident that a GPU with more cores will execute the program in less time than a
GPU with fewer cores.

Figure 2.7: Scaling of blocks into different devices depending on number of cores [46]

Heterogeneous programming Environment

Heterogeneous programming previously mentioned can be best exercised since CUDA can be con-
sidered as a subset of ANSI C. Commercial and scientific projects require both sequential and par-
allel processing, since I/O operations and inherently sequential functionalities are inevitable in most
high end applications. At designing stage the developer can switch between standard C and CUDA
for serial and parallel execution demanding upon required functionalities. In CUDA programming
environment, the CPU is termed as host and the GPU is termed as device. The relationship between
the host and the device has many similarities to a master slave relationship in computer networks.
The compute intensive application that fall in the criteria mentioned in subsection 2.2.1 will be sent
from host (CPU) to the device (GPU). After the processing in the device, the data is sent back to the
the host for continuing serial execution and other I/O operations.

16



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 2.8: Heterogeneous Programming Model [46]

17

C Program 
Sequential 
Ex:ecution 

Serial. code 

Pa.rallel kernel 

Kern el.O«<»> () 

Serial. code 

Paral lel kernel 

Kern el.l «<»> () 

Host 

Device 

Grid 0 

Block (0, 0) Block (1, 0) Block (2, 0) 

---Block (0,1) Block (1, 1) Block (2, 1) 

---
Host 

Device 

Grid 1 

Serial cooe executes on the host wMe para llel code executes on the device. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 2.8 illustrates the concept of heterogeneous programming and the data flow between host
and device. The data flow between the host and the device is via PCI express bus [30]. The situ-
ation leverages memory bandwidth as a crucial factor in GPU based heterogeneous programming
environment.

2.2.3 CUDA Programming Model

Terminologies and Parameters

• Kernels: Functions defined to run on the device are called kernels. A kernel is defined using
the _global_ declaration specifier and the number of CUDA threads that execute for a given
kernel call is specified using <<<...>>> execution configuration syntax .

• Thread: The smallest level of program execution on each parallel path can be considered as
a thread. Each thread has a unique thread ID that is accessible within the kernel using the
built-in threadIdx variable.

• Thread Block/Block: threadIdx is a 3-component vector, so each thread can be identified when
it constitutes a 1 dimensional to 3 dimensional thread blocks. There is a limit to the number of
threads per block depending on the device. Currently, a thread block may contain up to 1024
threads.

• Grids: Blocks are organised into grids which can be one dimensional or two dimensional
depending on application. The number of thread blocks in a grid is governed by the size of
data that have to be handled by the application and the number of processors in the system.

The number of threads per block and the number of blocks per grid is specified using execution
configuration syntax, during a kernel call. Figure 2.9 illustrates the arrangement of threads, blocks
and grids.

18



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 2.9: Grid of Thread Blocks [46]

Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as illustrated by
Figure 2.10. Each thread has private local memory. Each thread block has shared memory visible to
all threads of the block and with the same lifetime as the block. All threads have access to the same
global memory. There are also two additional read-only memory spaces accessible by all threads:
the constant and texture memory spaces.

Figure 2.10: Memory Hierarchy [46]

19



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

The global, constant, and texture memory spaces are optimised for different memory usages. Texture
memory also offers different addressing modes, as well as data filtering, for some specific data
formats. The global, constant, and texture memory spaces are persistent across kernel launches by
the same application.

2.2.4 Fermi series and GTX 480FX

The device used for the implementation is GTX 480 FX, which is categorised in the Nvidia Fermi
series [1]. Fermi architecture is considered as a major breakthrough in GPU computation. The
architecture is more suited for double precision arithmetic operations with 32 CUDA processors,
with each processor having 15 streaming processors resulting in a total of 480 high performance
CUDA cores. Detailed device level specification is added in the Appendix B. According to Nvidia,
the Fermi series Nvidia Tesla 20-series GPGPU processors deliver equivalent performance to a quad-
core CPU at 1/10th the cost and 1/20th the power consumption [2]. Thus in addition to processing
speed-up, the use of Fermi series [1] GPU platform, will help to reduce the computational cost of the
PMR project, without compromising in computational performance and algorithm efficiency which
will be revealed by the following Chapters.

2.3 Conclusion

This Chapter provided an insight into PMR system and highlighted the major stages in the PMR
signal processing. The architecture and signal processing stages of PMR in bistatic configuration
were discussed. The Chapter also introduced GPGPU as an efficient platform for parallel computa-
tion. The architecture of GPUs and CUDA programming model were discussed. The Chapter also
introduced basic features of Fermi series Nvidia GTX 480 FX as the GPU used for parallel comput-
ing. The need for accelerating the signal processing chain using GPU was identified. In short this
Chapter basically introduced two technologies- PMR and GPGPU, which are integrated together in
Chapter 3.

20



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 3

GPU Implementation of PMR Signal
Processing

The introduction to the PMR system and GPUs, as a general purpose parallel computing platform,
was discussed in Chapter 2. This Chapter explains the design and implementation of a CUDA
based parallel processing algorithm for PMR signal processing. The architecture of PMR, in Section
2.1 illustrated the major phases in the signal processing chain. Since the primary aim of GPU
implementation is to speed up the processing chain, individual processes were identified based on
their computational intensity and nature of the algorithm. The following processes were selected for
GPU implementation based on the fact that both of them satisfy the conditions for efficient parallel
processing mentioned in Section 2.2.1:

• DPI and Clutter Cancellation.

• Matched filtering.

Matched filtering was identified with more importance since the CPU based sequential algorithm
was extremely time consuming and the proposed GPU implementation can be used to generate
ARDs [57] for other bistatic radar systems [57] also. The Chapter begins with a brief theoretical
background of matched filtering and proceeds to algorithm modelling. The Chapter then gives an
insight about the present CPU implementation and extends to the GPU implementation.

The second half of the Chapter deals with DPI and Clutter Cancellation. NLMS [25] algorithm
mentioned in subsection 2.1.2 is modelled here and proceeds to the step by step migration from
CPU to GPU. The Chapter concludes with the pros and cons of NLMS [25] algorithm, necessitating
the need for an alternate DPI and clutter cancellation algorithm.

3.1 Model for Matched Filtering

The concept of Matched filtering was introduced in subsection 2.1.3. Equation 2.1 on page 11 can
be written in discrete time domain [10] as follows:

21



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

∣∣Ψ(τ,ν)2∣∣= ∣∣∣∣∣N−1

∑
n=0

e(n)d∗(n− τ)e j2πνn/N

∣∣∣∣∣ (3.1)

[26, 57]

where
∣∣Ψ(τ,ν)2

∣∣denotes the ARD surface,Ψ denotes the time-delay of interest and ν denotes the
Doppler-shift of interest [50].

Algorithm Modelling

The basic steps that have to be performed for ARD [57] calculation, based on equation (3.1), are as
follows:

1. Take N samples of the direct signal d(n), delay it by rotation depending upon total number of
delays and conjugate it to obtain d∗(n− τ).

2. Calculate the dot-product of d∗(n− τ) and the echo/surveillance channel signal e(n) by an
iteration statement limiting to the size of the data-set .

3. Use the Fast Fourier transform (FFT) [10]on the dot product for conversion to frequency do-
main.

4. Discard the FFT bins that are not of interest specified by an iteration statement limited to the
maximum number of Doppler [57].

5. Repeat the above steps to the maximum bistatic delay or range [57] specified.

6. Find the absolute value of the complex ARD and return it together with the complex ARD
value,

∣∣Ψ(τ,ν)2
∣∣ mentioned in equation (3.1), and return the value to the main program .

Algorithm Requirements

1. The data size of the input depends on sampling frequency and the time of observation. The
test data has a sampling frequency of 409.6K Samples/second. Typical time of observation
extends up to 5 seconds making the input data size reach the figure of 2M Samples/data set.
The memory allocation should be able to handle this input size. Priority must be given to
memory deallocation after use.

2. The Algorithm should be written as a calling function from the main program, but should be
easily customisable as a standalone programme in order to use in zero clutter simulations, like
the Flexible Extensible Radar Simulator (FERS) [36].

3. The number of Doppler bins and bistatic delay [57] should be variable using command line,
so that the ARD surface can be obtained for the preferred region of observation.

22



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

4. The algorithm should have two return values-

(a) The ARD value as a complex variable for CFAR [43] interface.

(b) The absolute value of ARD for the streamline plotter [55].

3.1.1 CPU Implementation of Matched Filtering

Matched Filtering was first developed for simulation purpose in MATLAB as a part of previous work
[26] done in this field. The CPU implementation is adapted from this and serves as the benchmark
for comparison with GPU version. The CPU version is written in C language [11]. The salient
features of the CPU code are:

• The user specifies the size of the data set, and the number of Doppler and bistatic delay in the
main program which is then passed as variables for ARD calculation function.

• The delayed version of the direct signal is obtained, and stored in dynamically memory allo-
cated temporary variables, and rotated to get the conjugated version.

• The dot product of the conjugated direct signal and echo signal is calculated and stored in the
input variable for FFT [10] calculation in complex float type.

• The FFTW [38] library is used to perform the Fast Fourier transform [10]. One dimensional
complex-to-complex forward FFT “plan” was created using FFTW [38], which is called when
the operation needed to be run on the data. Plans are used in FFTW [38] to define an opti-
mised algorithm for a particular transform given the FFT size, input and output arrays, and the
direction of the FFT (forward or inverse) are mentioned. When the plan is created, the pro-
gram searches through a set of possible FFT parameters for the values that provide maximum
performance, and is of most use when calling the same FFT multiple times. The time spent
searching through the problem space for an optimal plan can be controlled using the flags,
FFTW_ESTIMATE [38] for a quick search or FFTW_MEASURE [38] for a longer, more
comprehensive one. FFTW_ESTIMATE [38] was used for this implementation.

• The FFTW [38] library was configured to use single-precision floating-point numbers, by
using the –enable-float flag when compiling it. Then all variables were declared using the
fftw_complex type. The FFTW [38] used an outplace transform since separate variables were
used for input and output.

• Selection of desired Doppler and range is performed on the FFT output so that only interested
area of coverage is constituted in the ARD surface.

• As mentioned in the algorithm requirement, the absolute value of the ARD is calculated which
acts as the input to the streamline plotter and the complex value is used for CFAR [43] detec-
tion.

23



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

3.1.2 GPU migration

The implementation of algorithm in GPU can be better termed as ’migration’ rather than implemen-
tation since the GPU algorithm is a step by step transformation of the CPU algorithm. To serve the
primary purpose of computational speed up, check points to calculate processing time for individual
process in CPU was done. The CPU and GPU timing for individual processes is illustrated in Table
3.1. Table 3.1 reveals that FFT calculation as the major process for GPU conversion followed by
absolute value and dot product calculation. Flowchart illustrating the computation, with data and
control movement in the CPU-GPU heterogeneous platform is shown in Figure 3.1. The salient
features of the GPU implementation are as follows:

1. Basic Steps

(a) Initialise the preferred GPU device and get the device properties.

(b) The data received from the main program is in the CPU as host variables [46]. cud-
amemcopy [48] from host to device is used to transfer the data from CPU to GPU for
calculation.

(c) The output after parallel processing in the device is copied back to host using cudamem-
copy from device to host.

2. Dot product using custom kernel

(a) The conjugated version of the direct signal and echo signal is copied from host to device
variables.

(b) The number of threads per block and blocks per gird are set depending upon GPU ini-
tialised using execution syntax [46].

(c) The GPU kernel set as a _global_ function [48] is called, and the vector multiplication is
executed in parallel threads in the GPU.

(d) The dot product is retained in the GPU for FFT processing.

3. FFT using CUFFT

(a) CUFFT [44] is a CUDA library and is used to calculate the FFT. CUFFT [44] is devel-
oped based on FFTW library and has got a similar plan structure as FFTW [38].

(b) The FFT input and output are declared in cufftcomplex data type [44].

(c) The parameters in the CUFFT plan [44] are FFT size depending upon FFT resolution
[10] required, complex to complex, 1-Dimensional FFT [44].

(d) When the function is called, the plan is executed and the output is obtained in the device
variable.

24



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

4. ARD absolute value using custom kernel

(a) The process is similar to dot product calculation already mentioned with change in the
kernel functionality.

Process CPU Timing (sec) GPU Timing (sec) Speed-up Factor
Dot Product Calculation 2.24 0.31 7.22X

FFT Calculation 14.30 0.85 16.82X
Absolute Value Calculation 3.16 0.38 8.31X

Total Processing Time 19.70 1.54 12.79X

Table 3.1: Comparison of CPU vs GPU time consumption for individual processes in matched
filtering for Data-size=819.2 K Samples, Range bins=100 and Doppler bins =500

3.2 DPI Cancellation and Clutter Suppression

DPI and Clutter Cancellation was introduced in subsection 2.1.2 with reference to Figure 2.1. Cor-
relation of these unwanted reflections (clutter) from stationary sources [25] with the reference signal
leads to:

• Strong clutter echoes masking targets with high Doppler frequencies.

• A fraction of the direct signal received via the side/backlobe of the surveillance antenna masks
target echo signals.

• Strong target echoes masking lower power echoes coming from other targets, even in the
presence of large range-Doppler separations.

A reliable and robust radar system needs a dedicated signal processing on the captured data, to
effectively control the effects of clutter listed above. Adaptive filtering [25] on the target channel is
included as a signal processing stage, before applying matched filtering for this purpose.

3.2.1 Adaptive Filtering

The signal model at the receiver can be analysed for adaptive filtering by Haykin [25] as:

sR (n) = A(n)sT (n)+
NT

∑
k=0

aksT (n− τk)e j2π fdknTc +
Nc

∑
i=1

cisT (n− τi)+ vR (n) (3.2)

where

• sT (n)is a sample of the complex envelope of the reference waveform

25



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 3.1: Flowchart of Matched Filtering/ARD Processing in GPU-CPU Heterogeneous Platform
(The inset illustrates data flow directions)

26

MAIN PROGRAM 

Read Data from Capture File 

DPI Cancellation and Clutter 
Suppression 

Matched Filte ring 

Write ARD surface for CFAR 
detection 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CPU 

Initialization of input data in cufftComplex 
data type. 

Delay d(n) to obtain d(n-r) for the th range 
bin and take the conjugate. 

Dot product of d(n-r) and ern) 

Fast Fourier Transform of dot product to 
convert the signal to frequency domain. 

FFT resolution=l Hz. 

ARD absolute value calculation 

Select FFT bins in the desired Doppler 

I 

GPU 

II 

+ 
Kernel 2 

Complex to Complex 10 FFT using 
CUFFT library. 

'!! . t I I ~ I t I I "--- ,. It· 

Kernel 3 

Complex Vector multiplication and 
addition and conversion to Ino~lrit~.mir 

L _______________ _ 
-----------------~------------------------------------

n<Maximum 
Range bins 

ARD Surface for desired Range and 
Doppler 

DATA FLOW Representation 

___ -+~ cudamemcopy- Host to Device 

====== + cudamemcopy-Deviceto Device 

--""""' ... ~. cudamemcopy- Device to Host 



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

• A(n)is the complex amplitude of direct signal received on surveillance channel

• c and τi are the complex amplitude and the delay (with respect to the direct signal) of i-th
stationary scatter (i=1,...,Nc)

• ak and τk are the complex amplitude and the delay of k-th target with fdk Doppler frequency

• vR(n)is the thermal noise contribution at the receiver antenna

The zero Doppler components in the signal sR (n) have to be removed for clutter and direct path
interference removal.

sMP (t) =
Nc

∑
i=1

cisT (t − τi)+A(t)sT (t) =
Nc

∑
i=0

cisT (t − τi) (3.3)

[25]

The signal sMP(t) is a linear combination of delayed replicas of sT (t) and complex coefficients ci.

The operation of a linear adaptive filtering algorithm involves two basic processes :

1. A filtering process designed to produce a desired output in response to a noisy input.

2. An adaptive process that provides a mechanism for adaptive control of parameters, used in the
filtering process.

Various adaptive filters were tested by the prior research [26] in this field, and NLMS filter was
selected as the most optimum adaptive filter for the purpose.

3.3 Modelling of NLMS Algorithm

The NLMS algorithm is modelled from LMS filter [25], by normalising the coefficient update equa-
tion with respect to the squared-norm of the input data. The structure of NLMS defined by Haykin
[25] in Figure 3.2 is used for algorithm modelling.

From Figure 3.2, the algorithm can be modelled as follows:

1. The user specifies the number of consecutive range bins, which refers to the maximum distance
from the receiver up to which DPI and clutter cancellation have to be performed. The user also
specifies the filter coefficient value µNLMS in Figure 3.2 for the adaptive control mechanism.

2. The algorithm begins with calculation of the zero Doppler/multiparty component in sR (n)

mentioned in equation 3.2. The multipath component is named as d̂ (n) with reference to
figure.

27



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 3.2: Structure of NLMS Filter [25]

3. d̂ (n) calculated in step 3 is used to calculate the estimation error e(n) = sR (n)− d̂ (n) which
acts as the input to the matched filter. At this stage the filtering process is complete and the
algorithm proceeds to the adaptive control mechanism.

4. The adaptive mechanism is designed with reference to the tap-weight updation equation given
by

ŵ(n+1) = ŵ(n)+δ ŵ(n+1) (3.4)

[25] where the correction factor δ ŵ(n) is given by:

ŵ(n+1) =
µNLMS

γ +
∥∥Sre f (n)

∥∥2 Sre f (n)e(n) (3.5)

[25]

Inspection of the algorithm above reveals that the process consists of vector multiplication of delayed
inputs, iterative summation etc. The NLMS algorithm was first designed in MATLAB for simulation
purpose and was then converted to ANSI C [11].

3.4 CPU implementation of NLMS Algorithm

The CPU implementation is based on the algorithm model mentioned in Section 3.3. The variables
and parameters are with reference to Figure 3.2.

28



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

1. Basic Steps

(a) The number of filter taps/ number of range bins for multipath cancellation, and the
µNLMSis initialised with user-specified values in the command line.

(b) The reference channel signal Sre f (n) and the surveillance/echo channel signal sR (n)

(equation 3.2 )is initialised in float data type with separate variables for real and complex
components.

2. Filter Output

(a) The reference signal is delayed with respect to the number of filter taps mentioned in
basic steps. In other words, the delay elements in Figure 3.2 are realised by simple array
index manipulation.

(b) Multipath component d̂ (n) is calculated as the summation of delayed version of refer-
ence signal multiplied by the filter taps. This is achieved by multiplication and summa-
tion of separate I and Q components in iterative structure.

(c) d̂ (n) is subtracted from sR (n) to calculate estimation error e(n) .

3. Adaptive Control mechanism

(a) Equation 3.5 mentioned in NLMS algorithm modelling, is realised in a single iterative
loop consisting of calculation of correction factor δ ŵ(n), by separate vector multiplica-
tion and division, for I and Q and the tap-weight update equation 3.4.

(b) The updated tap-weight ŵ(n+1) is calculated by cumulative addition within an iterative
structure.

3.5 GPU implementation of NLMS Algorithm

CPU implementation of NLMS algorithm reveals that the process consists of nested iterative struc-
tures. Before proceeding to GPU migration, timers for individual processes are set and the time-
consumption is according to Table 3.2. GPU migration started aiming maximum speed-up for indi-
vidual processes by identifying process according to criteria mentioned in Section 2.2.1. Unlooping
of nested loop to batch process starts from the outermost loop, and proceeds to the innermost loop,
implementing parallelism within parallelism [46]. The salient features of GPU implementation are
as follows.

1. Basic Steps

(a) The initialisation of filter-taps and µNLMS is done in the CPU and copied to the device
memory.

29



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

(b) The reference channel signal Sre f (n) and the surveillance/echo channel signal sR (n)

(equation 3.2 )is initialised as cuFloatComplex [48] data type instead of separate of sep-
arated I and Q data and is copied into device memory.

(c) The delaying of reference signal is done in the CPU due to the sequential nature of the
process.

2. Filter Output

(a) Multipath component d̂ (n) is calculated with a custom kernel written using cuBlas and
algebraic operation for cuComplex [48] data type. The thread index [46] setting for this
operation has to be set with reference to the number of delayed input samples from step
1 (c).

(b) Estimation error is calculated in a separate kernel, and the variables are transferred by
a device to device transfer. The reason for separate kernel is the cumulative addition in
Step 2(a), resulting in assigning of different thread Index.

3. Adaptive Control mechanism

(a) All the variables for adaptive mechanism are already present in the GPU and rest of the
variables for calculating equation are initialised as device variables.

(b) δ ŵ(n) is calculated using custom kernel. cuBlas is used for multiplication, division and
absolute value calculation. Nested cuBlas functions are implemented for this purpose.
The nested parallelism at this stage is handled by the device itself and this acts as the
supporting reason for the exclusive use of cuBlas for δ ŵ(n) calculation.

(c) The updated tap-weight is calculated from δ ŵ(n) within the same kernel mentioned in
step 3(a) since the same thread index can be used.

Process CPU Timing GPU Timing Speed-up
(sec) (sec) Factor

Filter Output: Multipath Component 4.27 0.23 18.56X
Filter Output: Estimation Error 0.12 0.05 2.4X
Adaptive Control Mechanism 7.73 1.07 7.22X

Total Time 12.12 1.35 8.98X

Table 3.2: Comparison of CPU Vs GPU time consumption of individual processes in NLMS filtering
for Data-Size= 819.2 K Samples, Order=300 and µNLMS = 0.02.

3.6 Performance Optimisation of GPU Implementation

The performance optimisation of the GPU implementation is based on three basic strategies:

30



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

• Maximise parallel execution to achieve maximum utilisation

• Optimise memory usage to achieve maximum memory throughput

• Optimise instruction usage to achieve maximum instruction throughput.

The usage of these strategies depends on the program flow and the optimisation strategy matching for
that particular portion of the program should be implemented. The overall performance optimisation
is hence achieved by applying the suitable optimisations for each stage.

3.6.1 Program Flow

The Program flow consisting of both DPI and Clutter Cancellation, and matched filtering is ex-
plained here. The Program can be divided into four phases-Reading Capture File, DPI and Clutter
Cancellation, Matched Filtering and Writing ARD values to file. The cycle repeats for each second
of observation, or in other words for each data set.

1. Reading Capture File in Main Program (Figure 3.3)

(a) The capture file written in “.rcf ” [55] format by the acquisition stage is read into separate
reference and surveillance signal in cuFloatComplex data type [48].

(b) The data size at each read is equal to the number of samples expected for each ARD
surface as specified by the user.

2. DPI and Clutter Cancellation

(a) The echo and surveillance data is passed to NLMS CPU subroutine.

(b) The control and data is passed onto GPU as illustrated in Figure 3.3.

(c) The Clutter cancelled data is returned to the main program.

3. Matched Filtering

(a) The Clutter cancelled data is passed from main program together with the desired range
and Doppler [57].

(b) The control and data is passed onto GPU as illustrated in Figure 3.1.

(c) Both the absolute value and the linear value of ARD surface is returned to main program.

4. Writing ARD to file

(a) Each ARD value calculated is written into “.ard” [55] file.

(b) The ARD value can be written either in linear or logarithmic scale as specified by the
user.

31



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 3.3: Flowchart of NLMS clutter cancellation in CPU-GPU heterogeneous platform (The inset
illustrates data flow directions)

32



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

3.6.2 Optimisation Measures

• To minimise data transfer between the host and the device, the output at intermediate stages
is retained in the device and is used by the next process. Only the control variables for that
particular process is transferred from the host. Hence device to device transfer is exploited to
the maximum.

• Sequential process like loops with comparatively less iterations are performed in the CPU.
This includes delaying reference signal in ARD processing.

• CUFFT can be used to calculate FFT for up to 8 million data samples [44] in a single instance.
But the intention of program is to track the target at each second which corresponds to nearly
409.6K Samples/ ARD surface. This data rate is used for the test deployment using FM
illumination, which will be discussed in Chapter 5. But tests using DVB-T data was at a sample
rate of 8 million samples/ARD surface, utilising the maximum throughput of the device.

• Instruction throughput is achieved by utilising the same kernel for multiple vector operations.
But most of the kernels are custom written for that particular operation.

3.7 Pros and Cons of NLMS algorithm

The Pros and cons of NLMS algorithm is discussed with respect to two criteria- The Computation
efficiency and the Clutter Cancellation efficiency. Detailed algorithm comparison will be done in
Chapter 5, though this Section provides an overview of NLMS algorithm results.

Figure 3.4: Target detection (circled) at (55,-350) in CPU using DVB-T data with NLMS Algorithm

3.7.1 Pros of NLMS Algorithm

• NLMS Algorithm gave very good result with DVB-T as the source of illumination. The data
was obtained from Pisa, Italy and has a sampling frequency of 8.5 MHz. Identical ARDs with

33



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

respect to target location in range and Doppler was obtained in both CPU and GPU. Figure
3.4 and Figure 3.5 shows ARD obtained for DVB-T data in CPU and GPU respectively.

Figure 3.5: Target detection (circled) at (55,-350) in GPU using DVB-T data with NLMS Algorithm

• Table 3.2 reveals that NLMS is a fast processing algorithm with respect to GPU computation.
Detailed study on the processing time will be discussed in Chapter 5.

3.7.2 Cons of NLMS Algorithm

Though NLMS algorithm is a fast processing algorithm with good results, the algorithm is not suited
for PMR due to the following reasons:

• NLMS Algorithm is depended on Source of illumination

– µNLMS have to be set for each source of illumination. Optimum value of µNLMS is cal-
culated by trial and error method, which is not practical in a networked system with
multiple transmitters, and will affect the reliability and robustness of the whole system.

• Inefficient in Strong Clutter Environment

Figure 3.6: Target Masked by Clutter when using NLMS algorithm

34



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 3.7: Target detected (circled) at (30,25) when using ECA algorithm

– The algorithm was not able to detect targets in strong clutter environment. The ARDs
shown in Figure 3.6 and Figure 3.7 illustrates this point. The target was visible when us-
ing ECA. Detailed comparison of ECA and NLMS with respect to Signal to Clutter(SCR)
ratio will be discussed in Chapter 5.

3.8 Conclusion

This Chapter basically explained the GPU implementation details of Matched Filtering [57] and
NLMS algorithm [25]. The Chapter discussed the algorithm modelling of Matched filtering. The
GPU implementation of matched filtering was explained in detail, with reference to flowchart featur-
ing data flow directions, between host and the device in heterogeneous platform. The Chapter in its
second half, explained NLMS algorithm which was the first algorithm selected for DPI and clutter
cancellation [57]. The modelling of the algorithm from filtering model was discussed. The GPU
implementation of the modelled algorithm was discussed with reference to flowchart. The process-
ing time of individual processes in both the platforms were compared for both matched filtering and
NLMS algorithm. The performance optimisation measures implemented, were discussed in detail
with explanation of the program flow. Finally, the Chapter depicted pros and cons of NLMS algo-
rithm. Though NLMS algorithm is computationally efficient, the cons of the algorithm discussed,
necessities an alternate clutter cancellation algorithm which is robust and will increase the overall
reliability of the system. Chapter 4 begins with the choice of ECA as the alternative to NLMS and
proceeds to the implementation details of ECA.

35



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 4

Extensive Cancellation Algorithm

The PMR project at RRSG aims to develop a radar technology that can compete at some level of
performance with more traditional air traffic control radar [29]. The NLMS algorithm [25] modelled
and implemented in Chapter 3 is a computationally efficient algorithm, but the NLMS filter has to be
adapted to the signal used with the input variable µNLMS [25]. The ideal PMR system is expected to
deliver reliable performance in different signal environments. The need for a signal independent DPI
and clutter cancellation algorithm arises at this point. Such an algorithm is inevitable with reference
to the cons of NLMS discussed in subsection 3.7.2. The ECA [25] is modelled and implemented as
a solution to improve the reliability and robustness of the PMR system.

This Chapter begins with a very brief review of ECA and on the earlier work using this algorithm.
This includes an introduction to the algorithm modelling and the MATLAB implementation [26] of
ECA. The Chapter then proceeds to the implementation of ECA in C++ language using Armadillo
[52] library. The complexity of the algorithm is explained, with reference to the computational
requirement expressed in the total number of floating point operations and memory bandwidth re-
quired, followed by the supporting factors for ECA implementation in the GPU platform. The core
of this Chapter is the GPU implementation of ECA, with reference to flowcharts and program flow.
The Chapter concludes with the implementation details of GPU based high performance complex
matrix inversion, which can be used for other DSP-based [10] applications.

4.1 Theory of ECA

NLMS algorithm discussed in Section 3.3 is a least mean square [53] approach whereas, ECA is
a least square [53, 25] approach. The algorithm is discussed in detail in [15, 25]. The correction
factor, e(i) mentioned in Figure 3.2, can be rewritten for ECA in data matrix form [25] as:

e = sR −X
(
XHX

)−1
XHsR =

(
I −X

(
XHX

)−1
XH
)

sR = P0sR (4.1)

36



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

In equation 4.1, X refers to the clutter subspace matrix [25] and the projection operator P0 =(
I −X

(
XHX

)−1 XH
)

sR, projects the received vector sR in the subspace orthogonal to the clutter
subspace. e represents the received signal with the zero-Doppler component cancelled. The clutter
cancellation can be extended beyond zero-Doppler by extending the dimension of X by including
Doppler-shifted replicas of the reference signal. With the addition of this process, the algorithm is
called Extensive Cancellation Algorithm or ECA. The multiple matrix product

(
X
(
XHX

)−1 XH
)

in
equation 4.1 leads to the computational complexity of the algorithm, with the increase in number of
data samples and the number of range bins. ECA is a batch processing approach and hence divides
the input signal into equal blocks for clutter cancellation.

4.1.1 Modelling of ECA

1. ECA algorithm begins with the creation of reference matrix X mentioned in equation 4.1. X is
the Doppler [54] shifted replica of reference signal Sre f in the clutter subspace with dimensions
depending upon the number of range bins selected for DPI/multipath cancellation[57].

2. The next step is the realisation of
(

X
(
XHX

)−1 XHsR

)
. The multiple matrix product consists

of the following complex matrix operations:

(a) Complex matrix multiplication.

(b) Hermitian transpose.

(c) Complex matrix inversion.

3. The final step is calculating e = sR −
(

X
(
XHX

)−1 XHsR

)
, which acts as the input for ARD

processing discussed in Chapter 3.

4. The algorithm also features the translation of the cancellation zone in range and Doppler axis
in the ARD plot, which enables selective cancellation of specific Doppler and range. ARD
plots supporting selective cancellation feature of ECA will be discussed in Chapter 5.

4.2 MATLAB Simulation of ECA

The MATLAB implementation is mentioned in detail in the earlier work [26] on ECA. MATLAB
as a simulation platform performed the process straightforward. The salient features are mentioned
here:

1. Realisation of X is done using iterative structures.

2. The estimation error, e = sR −
(

X
(
XHX

)−1 XHsR

)
is implemented using standard MATLAB

codes.

37



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

3. Due to the computational complexity, the process is extremely time consuming and hence the
data was divided into batches of 250K complex samples. Matched filtering for this relatively
smaller data size reduces the integration gain [57] and is not preferred for efficient tracking
using CFAR [41] and because of this, the ARD processing could be done only once clutter
cancellation is completed for several batches of 250K complex samples .

4. The PMR system is expected to have a range coverage of 100-200 km and hence the cancel-
lation has to be performed for a minimum of 300 range bins depending upon range resolution
[57]. This tremendously increases the processing time.

5. MATLAB code can be used only for simulation purposes and cannot be used as an embedded
code in commercial systems. However, the MATLAB implementation was inevitable in the
preliminary testing of ECA.

4.3 Implementation of ECA in C++

The need for embedded processing led to the development of code in C++. But the algorithm com-
plexity and the complex matrix inversion were not favourable for the usage of standard C/C++ rou-
tines. Armadillo [52] library which is a C++ matrix algebra library was used at this stage. The library
is used together with BLAS [7] and ATLAS [6] library. The main features of C++ implementation
are:

1. Variables representing SRe f and sr are initialised in colvec matrix data type [52] with separate
real and imaginary parts.

2. Clutter subspace matrix is created using the linespace function [52] for time delaying in range.

3. Estimation error is implemented with a similar code structure as in MATLAB implementation.
The analogy of Armadillo [52] with MATLAB is evident at this stage.

4. Armadillo [52] based C++ implementation is successful for embedded processing, but the
processing time increased tremendously compared to MATLAB.

4.4 Computational requirement of ECA

It is important to analyse the computational requirement of ECA before proceeding to the imple-
mentation on the GPU. The number of floating point operations in ECA is defined by the equation
[25],

(NM2 +M2 logM)

where,

38



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 4.1: Number of floating point operations in ECA for Doppler bins=1 for various range and
size of input data.

M=(Number of Range bins X Number of Doppler bins) and N= Number of Data Samples

Figure 4.1 shows the number of floating point operations in ECA in GFLOPS with varying value of
range bins and for different data sizes. The number of Doppler bins is set to 1.

Figure 4.1 reveals that the computational requirement increases tremendously with increase in the
number of range bins. When the processing is done for 2048 K samples and for 300 range bins, the
computational power required is 184.3 GFLOPS. This is the computational requirement for ECA
alone.

ARD processing has one FFT operation consisting of 5N log2 N operations added with two N point
multiplications leading to a total of 5N log2 N + 2N floating point operations, where N is the num-
ber of data samples. The addition of this value will not make a significant increase to the overall
computation requirement. From Figure 4.1 it is evident that the real time processing of PMR system
with ECA clutter cancellation cannot be handled with an AMD Phenom II X4 955 Processor which
is the CPU platform used and has a theoretical peak performance of 51.2 GFLOPS (Refer Appendix
A) even if all the cores are utilised. GTX 480 FX on the other hand has a theoretical performance
of 1848 GFLOPS [8] which is sufficient for real time processing of PMR signal processing. But the
available memory bandwidth is a major factor that affects the effective performance. The process
requires a memory bandwidth of 184.3 X 2 =368.6 GB/s. The available theoretical bandwidth [49]
of GTX 480FX is 177.4 GB/s [8]. The effective bandwidth [49] in general will be less than the
theoretical bandwidth [49]. Detailed study on the memory bandwidth perfromance is given in the
Section 4.5.

39



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

4.5 Memory bandwidth performance

Figure 4.2: Effective Bandwidth variation with data size

4.5.1 Theoretical Bandwidth

The theoretical bandwidth of GPU is calculated from hardware specifications (refer Appendix B).
Using this data, the theoretical bandwidth of Nvidia GTX 480 FX is calculated as [49]:

(1848 X 106 X (384/8) X 2)/109 = 177.4 GB/sec

where 1848 X 106 is the memory clock in Hz, 384 is the memory interface width converted to bytes
on division by 8. The multiplication by 2 is due to the double data rate, and is finally converted to
GB/sec on division by 109.

4.5.2 Effective Bandwidth

The graph in Figure 4.2 is plotted from the output of banwidthTest program in CUDA SDK. It is
observed that the peak bandwidth for device to device Transfer at a data transfer rate of 108 bytes is
111.51 GB/sec. As expected, the effective bandwidth is much lesser than the theoretical bandwidth.
Hence the available memory bandwidth of a single GPU is not sufficient for real time processing of
PMR system with reference to Section 4.4. Hence real time processing of PMR system is expected
only in a multi-GPU environment by splitting the data between the devices.

40



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

4.6 GPU implementation of ECA

4.6.1 Supporting factors for GPU implementation

• The characteristics of ECA as a batch process fits ideally into the criteria for parallel process-
ing mentioned in Section 2.2.1

• The algorithm model reveal the multiple matrix product as the major phase of processing. The
phase can be implemented using cuBlas and extending the CUDA Software Development kit
(SDK) [46].

• A major portion of the time consumption and algorithm complexity is due to the hermitian
transpose and complex matrix inversion of the large matrix. GPU processing upon speeding
up this process will significantly add the overall speed-up factor.

• The data type used for CPU implementation considered separate real and complex parts for the
surveillance and reference signal. In CUDA, all the variables are declared in cuDoubleCom-
plex [48] data type. Thus the overhead to the processor due to type conversions is eliminated.

• The effective speed-up achieved with single-GPU is not expected to be sufficient for real time
processing with reference to analysis of available memory bandwidth from Section 4.4. But,
the batch process nature of ECA and the scalability of the code helps in easy migration to a
multi-GPU platform, and hence real-time processing can be achieved.

• The data acquisition code and the steps that follow ECA and matched filtering including CFAR
detection [41] are written in C++. The analogous nature and compatibility of CUDA with
C/C++ favours the use of GPU platform with the CUDA toolkit.

4.6.2 Implementation

The GPU implementation starts with the identification of processes, that can be processed using
parallel GPU threads. Algebraic operations using large data size are selected for GPU migration.
Based on this strategy, ECA can be divided into three phases.

Features of GPU migration within each phase is discussed here. GPU based complex matrix inver-
sion achieved major performance speed-up and is discussed as a separate Section for use in other
DSP [10] algorithms.

1. Building of clutter subspace matrix X

(a) The calculation of time intervals from the sampling frequency (409.6kBs used for data
capture). The process is done using a custom kernel to perform the division on real data.

(b) The calculation of elements in matrix X is done using complex vector multiplication.

41



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

2. Calculation of Multiple matrix product
(

X
(
XHX

)−1 XHsR

)
(a) XH is calculated as the hermitian transpose of the complex matrix X. Matrix X has N

rows and M columns, where N= Number of Data Samples and M=(Number of Range
bins X Number of Doppler bins) , and hence XH is of dimension (M,N) in row major
format. Hermitian transpose is accomplished by customising the real matrix transpose
code from CUDA SDK with a subroutine for complex matrix transpose.

(b)
(
XHX

)
is performed using shared matrix multiplication extended for complex matrix

multiplication giving a square matrix of order M .

(c)
(
XHX

)−1is the most time consuming portion of processing and is done fully in GPU.
Section 4.7 discusses complex matrix inversion in detail.

(d) X
(
XHX

)−1 XHsR is realised with the same matrix multiplication kernel designed for use
in step (b).

3. Estimation error e is calculated by kernel designed for complex vector subtraction.

4.6.3 Program Flow

The Program flow of ECA illustrated in Figure 4.3. As mentioned before, the characteristic of ECA
as a batch process is exploited to the maximum extent in the implementation.

• The main program passes input data consisting of reference and surveillance signal to the CPU
subroutine for DPI and clutter cancellation .

• Processes, from clutter subspace matrix creation to estimation error calculation take place in
the GPU, and the estimation error, which is a column matrix of dimension equal to number
of data samples is copied back to the CPU. The program flow thus reduces memory transfer
between host and device to the minimum.

• The data transfer at this stage is completely device to device and the same kernel is used
multiple times for processes like matrix multiplication, as it is evident from Figure 4.3 .

• The batches are executed in parallel at multi-processor level. The processes within each batch
are executed within a single streaming processor. This implementation plan exploits maximum
usage of all the cores of the GPU as mentioned in subsection 3.6.

4.7 GPU based Complex Matrix Inversion

Complex matrix inversion is an inevitable part of many DSP algorithms. The scope of a high perfor-
mance complex matrix inversion is therefore not limited to PMR Signal Processing. The complex
matrix inversion mentioned in Figure 4.3 is explained in this section.

42



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 4.3: Flowchart of ECA clutter cancellation in CPU-GPU heterogeneous platform (The inset
illustrates data flow directions)

43

MAIN PROGRAM 

DPI Cancellation and Clutter 
Suppression 

Write ARD surface forCFAR 
detection 

CPU 

1. In~ialization : Inputdata (S", andSRJ in 
cuDoubleComplex data type. 

2. In~ia l ization : Rangeand DopplerBinsfor 
cancellation 

1 ____________ •• ____ . __ •• + __ . ________________ . _____ . __ +J 

1 
1 

Calculation of Mu~iple Matrix Product 
X(X"Xj"' )(HSR 

GPU 

----------------------------------------------. 
Subroutine 1 : 

1. Parallel calculation o!time interval 
from Sampling frequency. 

Hermitian Transpose 

.............. .............. , 

" Subroutine 3 
Shared Complex Matrix 

Subroutine 2: Complex Matrix 
inversion 

Calculation of (X"X}-1 by parallel 

Subroutine4 
1. Complex Vector Subtraction. 

--_.+_ .. __ .. _-_._--------------------------------------

DATA FLOW Representation 

cUdamemcopy - Host to Device ---
========,. cUdamemcopy-Deviceto Device 

~~~~ ...... ~~ cudamemcopy - Device to Host 



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

4.7.1 Implementation Features

The matrix inversion is done by Gaussian elimination [3]. The program is adapted from real matrix
inversion. The real matrix inversion code was converted to complex matrix inversion by changing
the variables to cuFloatComplex data type [48] with appropriate changes in the intermediate stages.
The preliminary code developed with this criteria had the limitation of input matrix size up to 400.
This problem was solved by an algorithm mentioned in [20]. This algorithm uses real matrix in-
version to calculate complex matrix inversion. The algorithm is mentioned in Algorithm 4.1. All
the intermediate multiplications in the algorithm are performed in GPU, which further increased the
performance of the program.

Algorithm 4.1 Complex matrix inversion from real matrix inversion [20]
• Input: Complex Square Matrix- (A+ iC), Order N X N

• Initialisation: The Input matrix is initialised as two real matrices A and C.

• Computation:

r0 = A−1.C

y11 = (C.r0 +A)−1

y01 = r0.(y11)

y10 =−y01

y00 = y11

• Output: Inverted matrix- (y00 + iy10)

4.7.2 Program Flow

Salient features of the program flow illustrated in Figure4.4 are:

• Inspection of Algorithm 4.1 and flowchart in Figure 4.4 reveals that two real matrix inversions
are taking place in the implementation. They are done in double precision in ECA for better
results.

• The intermediate stages in the algorithm are calculated within the GPU by “device to device”
memory transfer to the two separate kernels for shared matrix multiplication and matrix addi-
tion.

• The number of allocated threads can be increased depending on the device, when the code
works as a standalone program.

44



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 4.4: Flowchart of GPU Complex Matrix Inversion (The inset illustrates data flow directions)

45

CPU GPU 

Input: Complex matrix {A+iC} of Order N*N 

Initialization: Real matrix A and C of Order N*N 

------------------ -------------------,---------------------------------------------------
Copying A and C to device memory , -------------------; 

Calculation of k l 

Calculation of '0 

Calculation of Yll = (c. ' O+A)"l 

Calculation of YOI 

~ Calculation of YIO 1+= 

~ Calculation of Yoo 1+ 
Ii 
: 

1_----------------- ~-----------------
oJ 

I I 
1 

Output: Inverted Matrix= (Yoo+i YI0 ) 1 
1 
1 

1 
1 
I 

I , 
I , 

: + 
:I ••••••• J Calculation of k l 

Real Matrix 
~~~~----------------.......... 

Calculation of 'O=k l.C + _____________________ , t ... _-------------------: , 
Calculation of C. '0 

, 
----------------~--_______________ I I 

'+ + 
Matrix 

, I 
, I 
, I 
, I 
, I 
, I 
, I 
, I 
, I 

I 
I I 
I I 

041 ---1 I I 

T .1III •• 111 •••• ~---:-:--1-
Calculation of (c. 'o+A) -------------------, : : : 

•............. r--i r-----"'I'-------, : : : 
I Matrix ~ : : 

~-- ~ •• ~II""."' : : : ~ : : 
" I 

' :::::::::::::::::::::::::::::::I~ __ J Calculation of Yll =((c. 'O+A)"l 

............. 1 

l 
l 

~ 
I • , 

Calculation of YOl= ' 0' Yll 
, , 

----------.! 1~-':-':-':-~~~~~~~~~~~~~~~~~ 
• 

Calculation of YI0= -YOl I 
II II 

t 
Calculation of Yoo= Yll 1--------------

I 

DATA FLOW Representation 

• cudamemcopy- Hostto Device 

====== . cudamemcopy-Device to Device 

~ cudamemcopy- Device to Host 



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

• The complex matrix inversion block is customised for ECA, with final output transferred to
next step mentioned in Figure 4.3 by device to device transfer.

4.7.3 Factors affecting Speed-up

Figure 4.5: Processing Time for complex matrix inversion: CPU vs GPU

Figure 4.5 compares the processing time for complex matrix inversion in CPU and GPU. Figure 4.6
shows the variation of speed-up factor with increasing matrix order. From Figure 4.6 and Figure 4.5,
it is observed that up to a matrix size of 250 X 250, the CPU implementation is better than GPU
implementation since the speed-up factor is less than or equal to 1. When the size of the matrix
increases, the speed-up factor increases considerably up to value of 3.5X. This is due to the number
of allocated parallel threads. For small matrix sizes, the number of parallel threads allocated is less
and the flow-control data structures and memory transfer between the host and the device results
in higher total processing time. However when the matrix size increases, the speed-up achieved
by execution of more parallel threads compensates for the memory transfer time and results in an
enhanced speed-up factor.

46



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 4.6: Speed up factor variation with order of the input square matrix

4.8 Conclusion

This Chapter introduced ECA as an alternative to the NLMS algorithm for DPI and clutter cancella-
tion. The computational requirement of ECA provided evidence that GPU is a promising platform
for accelerating ECA provided that the memory bandwidth is used efficiently. Salient features of
MATLAB and C++ implementation of ECA were studied before proceeding to the GPU implemen-
tation. The GPU implementation of ECA was discussed in detail with reference to flowcharts and
program flow. GPU based complex matrix inversion implementation as a part of ECA was also dis-
cussed as a separate section with a study on the factors affecting the performance. Detailed tests and
results based on GPU implementation of ECA will be discussed in Chapter 5.

47



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 5

Tests and Results

In Chapter 3 and Chapter 4, we discussed the modelling and implementation details of matched
filtering and the two clutter cancellation algorithms- the NLMS and the ECA. This Chapter illus-
trates the testing of these accelerated processing algorithms implemented in GPU platform. The
Chapter begins by outlining the test methodology, stating the parameters and features of the testing
environment. The tests and results can be broadly classified into the following two categories:

• Computational Characteristics-

– The memory bandwidth performance is studied by comparing the theoretical bandwidth
and the effective bandwidth achieved with variation of the memory transfer size. The
results of this study was already discussed in Section 4.5.

– The GPU implementation of ARD processing, NLMS algorithm and ECA are analysed
with respect to their performance metrics. The actual processing time between CPU and
GPU and the speed-up factor is analysed for various data sizes and input parameters.

– This analysis is further utilised for comparing the two clutter cancellation algorithms
based on their computational efficiency.

• Algorithm Efficiency

– The two algorithms are compared in terms of their clutter cancellation and target detec-
tion ability.

– Detailed SCR analysis is performed to compare the clutter cancellation efficiency.

– The two algorithms are tested with simulated data for various target sizes and with dif-
ferent sources of illumination.

The Chapter also gives results from the test deployment of the system in real world scenario. Valida-
tion of the results with respect to CPU processing is done by comparing the ARD plots. The Chapter
then proceeds to overall performance gain achieved by the PMR signal processing chain in GPU

48



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

platform. Based on the broad category of tests and results mentioned above, a conclusion about the
most appropriate algorithm to use in PMR signal Processing in GPU platform is done at the end of
this Chapter.

5.1 Test Methodology

The testing of the implementation is according to methodology recommended by Nvidia for perfor-
mance metrics analysis [49]. The features and parameters of the test environment are as follows:

• Platforms

– The CPU platform used is a single threaded AMD Phenom II X4 955 3.2 GHz Processor
with 16GB RAM. All speed and other performance comparison with the GPU imple-
mentation is with the C ++ code running on this single threaded CPU platform. It is to
be noted that the CPU implementation can be improved substantially by multi-threading.
Detailed specification of the CPU platform is given in Appendix A .

– The GPU platform is Nvidia GTX 480FX with CUDA SDK version 3.0 on the same
computer. More device specification is included in Appendix B .

• Speed-up Factor

– The Speed-up Factor is calculated as recommended by Nvidia as the ratio of CPU pro-
cessing time to GPU processing time.

– The timers used are CUDA GPU timers [49].

• Memory Bandwidth

– The theoretical bandwidth is calculated from hardware specification.

– The effective bandwidth is calculated by timing specific program activities. The effective
bandwidth EB is calculated as recommended by Nvidia [49] as:

EB = ((Br +Bw)/109)/t

Here, EB is in units of Gbps, Bris the number of bytes read per kernel, Bwis the number
of bytes written per kernel, and time t is given in seconds.

– For calculation of bandwidth Gbps, the division is done by 109and not 10243.

• Processing Time

– The real processing time of the individual processing stages and the total processing
time for the complete signal processing chain in GPU platform is compared with the
corresponding processing time taken by CPU.

49



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

5.2 GPU ARD computation

5.2.1 Factors affecting Performance of GPU-ARD

Matched Filtering which generate ARD plots showing target detections, was one of the major time-
consuming processes in PMR signal Processing. GPU implementation of ARD described in Chapter
3, has achieved a major speed-up over the CPU implementation.

Figure 5.1: ARD Time Comparison-CPU vs GPU for 500 Doppler bins .

Figure 5.1 illustrates the CPU and GPU time consumption for ARD processing for different data
sizes and for different number of range bins. Figure 5.2 illustrates the variation of speed-up factor.
It is observed from Figure 5.2 that the speed-up factor increases with data size and number of range
bins up to a maximum value of 18.67X. Memory bandwidth and the number of parallel processing
threads are the key factors for the variation of speed-up. The effective data size increases with
the increase in the number of range-bins for the dot product calculation and the FFT calculation
illustrated in Figure 3.1. CUFFT library [44] for complex to complex one dimensional FFT has an
upper limit of 8 million samples in a single execution. Therefore speed-up factor for FFT calculation
will increase with the increase in data size up to 8 million samples, provided the data size is less than
the available memory bandwidth. In the present scenario, the data size is below 8 million and hence
the speed-up factor increases with the increase in size of data, due to more threads executing in
parallel as observed in Figure 5.1 and Figure 5.2.

The speed-up factor variation for Range 300 exhibits a peak at a data size of 819.2K Samples and
then decreases when the data size increases to 2048K Samples. The reason is the lack of memory
bandwidth with the increase in the effective size of data. For range 200 and range 100, the speed-up
factor further increases when the data size increase to 2048K Samples because the effective data size
is below the total available memory bandwidth. This variation of speed-up factor is observed when

50



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.2: Variation of Speed-Up Factor for GPU-ARD with data size for different range bins

the program was executed in GTX 480 FX with a global memory of 1.5 GB (Appendix A). The
program when tested in Tesla M1060 GPU [16], the speed-factor reduction at 2048K Sample data
size was eliminated due to the higher global memory of 4 GB [16] .

5.2.2 Conclusions from results of GPU-ARD

The conclusion we can derive from the speed-up factor variation graph in Figure 4.6 is focused on
the speed-up factor curve for Range 300. ARD processing for 300 Range-bins gives an effective
range of 210 km considering a range resolution [57] of 721 m per range-bin. The effective range of
210 km is sufficient for the range coverage of the present system. The present ARD implementation
on a single GPU has the maximum speed-up factor optimised at 300 range-bins. Hence the ARD-
GPU implementation, highlighted by a speed-up factor of 18.67X significantly accelerates the PMR
signal processing chain.

51



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

5.3 GPU-NLMS

5.3.1 Factors affecting Performance of GPU-NLMS

NLMS algorithm is introduced in Chapter 3, as a computationally efficient clutter cancellation algo-
rithm. In this section the performance of the GPU implementation of NLMS termed as GPU-NLMS
is studied with reference to the processing time comparison graph in Figure 5.3, and the speed-up
factor variation graph in Figure 5.4.

Figure 5.3: NLMS Time Consumption-CPU Vs GPU

Figure 5.4 reveals that the speed-up factor does not vary much in the case of NLMS with increase in
data size. The reason for this can be better explained with reference to the implementation diagram
already discussed in Figure 3.3. The kernels run with the number of parallel threads equal to the
order of the filter which is turn is equal to the number of range-bins. The implementation is rather
independent of the the data size due to the structure of the filtering model [25] shown in Figure 3.2.
It is observed that the speed-up factor increases with the increase in number of range-bins, but not
significantly. The reason is that the the number of range bins is only increased by 100 range-bins,
for each set of observation, and this is not a considerable increase in the number of parallel threads.
In short, the inherent algorithm structure of NLMS, limits maximum utilisation of the GPU cores.

The graph shown in Figure 5.4 showing a maximum speed-up of 9.2 for the curve for Range 300
followed by range 200 and range 100 provides evidence that the acceleration is more dependent on
range-bins than data size. The reduction of speed-up factor with data size for Range 300 and Range
200 is due to the influence of the sequential part of NLMS algorithm.

52



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.4: Variation of Speed-Up Factor for GPU-NLMS with data size for different range bins

5.3.2 Conclusions from results of GPU-NLMS

The actual execution time of NLMS algorithm states that the algorithm is computationally fast.
Though the speed-up factor is not significant, the effective time for clutter cancellation taken by
NLMS algorithm enables near real-time processing of PMR radar signals in a single GPU platform.
This fact is supported by the the GPU execution time of 0.68 seconds for 1 second of observation
for 300 range bins. When combined with ARD processing on single-GPU platform, the total time
of execution will be 3.1 times real time processing.

5.4 GPU-ECA

5.4.1 Factors affecting Performance of GPU-ECA

The GPU implementation of ECA, with all its GPU subroutines is one of the most important part
of this research project and the implementation was discussed in detail in Chapter 4. This Section
describes the computational performance of the GPU implementation of ECA termed as GPU-ECA,
with reference to Figure 5.5 and Figure 5.6.

GPU implementation of ECA was able to achieve better performance gain in terms of the speed-
up factor than NLMS algorithm. The reason for this performance gain is that the inherent batch

53



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.5: ECA Time Consumption-CPU Vs GPU.

process[25] nature of the ECA, fits perfectly into the parallel architecture of GPU. From Figure
5.5, its is observed that the speed-up factor increase proportional to the data size and the number
of range-bins. This direct proportionality between data size and speed-up can be further explained,
with reference to Figure 4.3. When processing is done for one second of observation, the data can
be split at multi-processor level [46] exploiting all the parallel threads of GPU. When the number
of range-bins increase, the calculation of multiple matrix product in subsection 4.6.2 and matrix
inversion in Section 4.7, also achieves improved speed-up factor, further providing support for the
computational performance of ECA.

5.4.2 Conclusions from results of GPU-ECA

Figure 5.6 illustrates speedup factor variation in detail. The implementation was able to achieve
a speed-up factor of 27.9X for number of range-bins equal to 320 and for 2048K Samples of data
(equivalent to 5 seconds of observation at capture frequency of 409.6 KHz). But ARD plot for 5
seconds of observation is not practical for a continuous air surveillance system. Processing an ARD
plot from clutter cancelled data for 1 second or 2 seconds of observation is better suited for the
present PMR system. Hence a speed-up factor between 25X and 27X can be expected from the ECA
implementation in a single-GPU platform. When ECA is performed for 320 range-bins, an effective
range of 224 km can be achieved with consideration to the range resolution [57] of 721m /range bin.
This clutter cancelled captured data up to, 224 km is passed for ARD processing.

The effective range of ARD plot should be less than or equal to the range of clutter cancelled data.
For example, when ARD is plotted for 300 range-bins yielding an effective range of 210 km, the
range of clutter cancelled data should be greater than or equal to 210 km. Therefore the ARD plot
will consist only clutter cancelled data. This proportion between extent of clutter cancellation and

54



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.6: Variation of Speed-up factor for GPU-ECA with data size for different range bins

range of the ARD plot is very important, when the data is viewed in the streamline ARD plotter
designed at RRSG by Craig Tong [55].

5.5 ECA vs NLMS

Figure 5.7 shows the time consumption of GPU processing for the two algorithms in a percentile
scale. It is observed that NLMS algorithm is nearly 10 times faster than the ECA algorithm. Though
the speed-up factor of NLMS from Figure 5.4 was less than the speed factor of ECA in Figure 5.6,
test on the actual run-time illustrated in Figure 5.7 proves NLMS is computationally faster than
ECA.

When the processing is done for data size of 819.2 K samples which is equivalent to 2 seconds of
observation for range bins =300, NLMS algorithm is approximately 10 times more faster than ECA.
But the choice of an algorithm for a radar system is based more on the efficiency of the algorithm
than the computational performance. The efficiency of the two algorithm is discussed in the next
section with reference to tests and results. The computational performance already discussed is
combined with the algorithm efficiency test to draw a conclusion about the preferred algorithm in
Section 5.9.

55



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.7: GPU Processing Time : ECA vs NLMS

5.6 Algorithm Efficiency Tests

The first section of this chapter was dedicated to the tests and results concerned with the computa-
tional characteristics of the implementation. In this section, the efficiency of the algorithm will be
tested with both simulated and real data from various sources of illumination. The clutter cancella-
tion efficiency of both the algorithms analysed using Signal to Clutter Ratio (SCR) measurements,
for both short range and long range targets, are studied in detail in the following subsections.

5.6.1 Clutter Cancellation

Stationary objects in the surveillance area have zero Doppler frequency and has hence fall in the zero-
Doppler axis in the ARD plot and constitute clutter. These unwanted signals have to be eliminated
from observed data. Figure 5.8 shows an ARD plot when the processing is done without any clutter
cancellation algorithm. The zero-Doppler axis, evident from the data cursor values marked in the
Figure 5.8 constitutes of clutter data. The high value of clutter masks the targets in the Range-
Doppler plane. The need for clutter cancellation arises at this point.

Figure 5.9 is the ARD plot obtained after clutter cancellation using NLMS algorithm. It is evident
that the clutter at zero-Doppler have reduced considerably in short range, though total elimination
of clutter is only observed after a certain number of range-bins. The reason for this is the time taken
for filter to converge for a particular order of the filter. The reduction in clutter and multipath effect,
have resulted in detection of a short range target at nearly 22 km though it is slightly masked by
strong clutter which is also marked in Figure 5.9.

It is observed from Figure 5.9, that the Range-Doppler plane is almost flat for Range>100 km, which
means that the NLMS algorithm was not successful in detecting long range targets. Improving the
adaptivity of the filter by trial and error method can solve this problem, but that approach is not a

56



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.8: ARD 3D plot without cutter and DPI cancellation

Figure 5.9: ARD-3D plot with NLMS clutter cancellation

57



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

reliable solution.

Figure 5.10 is the ARD plot obtained after ECA clutter cancellation. As it is evident from the
computational tests on ECA in Section 5.5, the process took nearly 10X more time than NLMS,
but the results were better with respect to zero-Doppler clutter cancellation and long range target
detection. In Figure 5.11, target at 120km (range evident from X axis of data cursor) is detected
together with clear short range detection. It is also observed that the clutter signal is almost fully
eliminated in the zero Doppler axis.

Figure 5.10: ARD-3D Plot with ECA Clutter Cancellation

5.6.2 Signal to Clutter Ratio ECA vs NLMS

Signal to Clutter Ratio (SCR) [54] is a performance parameter to calculate the efficiency of the
algorithm in detecting moving targets in the presence of clutter environment. SCR is calculated as
the ratio of the amplitude of the target signal, to the mean amplitude of the surrounding cells called
guard cells. In comparing algorithms, guard cells are chosen based on assigning a threshold value
to them. The calculation of SCR for short range and long range target on ARD plot obtained after
ECA and NLMS clutter cancellation is given in Table 5.15.1. SCR, defined in Equation 5.1 is used
for Table 5.1

SCR =
AT

1
n ∑

n
i=1 AGi

(5.1)

where,

58



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

n is the total number of guard cells.

AT is the amplitude of the target.

AGi is the amplitude of the ithguard cells with i varying from 1 to n.

In Figure 5.11, the target at nearly 22 km from surveillance antenna which is comparatively short-
range, is analysed for SCR calculation. The amplitude of the target response is marked using data
cursor in Figure 5.11. The same value is entered in Table 5.1. The guard cells are enclosed in the
green coloured dashed outline in Figure 5.11. The mean amplitude of the guard cells is calculated
and is entered in Table 5.1. SCR is then calculated using Equation 5.1.

SCR is calculated using the same methodology for short and long range detection( ~120 km) for
both ECA and NLMS algorithms and the corresponding values are entered in Table 5.1 .

Short-Range (Target at 22km) Long-Range (Target at 120km)
SCR Parameters NLMS ECA NLMS ECA

Amplitude 0.006488 0.005375 0.001657 0.001108
of Target

Mean Amplitude 0.002086 0.001693 0.0016097 0.000492
of guard cells

Signal to Clutter 3.11 3.15 1.02 2.24
Ratio

Table 5.1: SCR Calculation: ECA vs NLMS for Short-Range (~22km) and Long-Range (~120km)
Target

Conclusion about SCR from Table 5.1 can be split into short range and long range targets.

SCR for Short-Range Target

Figure 5.11: SCR Calculation for Short-Range Target detected in NLMS

The target observed is at nearly 22km from the surveillance antenna. The target is detected using
both the algorithms. Calculation of SCR reveals that both the algorithms were able to eliminate

59



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.12: SCR Calculation for Short-Range Target detected in ECA

the masking of clutter efficiently, however ECA has a slight better performance with higher value
of SCR. NLMS algorithm is hence found efficient and comparable to ECA in short range target
detection.

SCR for Long-Range Target

Figure 5.13: SCR Calculation for Long-Range Target detected in NLMS

The target under observation is at nearly 120.1 km and hence considered long-range. Figure 5.13 and
Figure 5.14 is used for SCR analysis on long-range targets. The target was detected only in ECA.
However the SCR analysis on ARD plot for NLMS provides evidence that NLMS is not suitable for
long-range target detection. The SCR value from Table 5.1 is nearly equal to 1 which means, the
target is strongly masked by clutter, or in other words the target and clutter are not distinguishable
in the ARD plot. SCR analysis for ECA algorithm on the same target give promising result with
SCR equal to 2.24 which means that the amplitude of the target response is 2.24 times greater than
clutter signal. This makes ECA as a better algorithm for PMR systems in target detection especially
when the processing stage is pipelined with CFAR detection in future. When CFAR detection is
performed on the ARD data, depending upon the threshold set for false detection, responses with
amplitude below above the threshold level will be only considered as targets. To meet this criteria,
the target response should be sufficiently higher than surrounding clutter response.

60



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.14: SCR Calculation for Long-Range Target detected in ECA

5.7 Test deployment result

Testing of the program was done in simulated data using Flexible Extensible Radar Simulator
(FERS) [13] and the second phase of testing was done in real world scenario.

5.7.1 Testing using Simulated data

FERS [13] simulation was done for different target sizes- Big,Normal and Small. Figure 5.15 shows
the ARD plotted for target of smaller cross-section. The effect of ECA, cancelling the clutter at
zero-Doppler is visible in all the ARD plots.

Figure 5.15: ARD Plot on FERS data on small target cross-section

Testing the program on FERS [13] simulation gave good results and motivated for the test deploy-
ment of the system in real world scenario.

61



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

5.7.2 Real-world Deployment

DVB-T data from Pisa

Figure 5.16 showed target detection from real-world DVB-T data from Pisa. Figure 3.5 was pro-
cessed using NLMS algorithm. Figure 5.16 shows ARD plot obtained after ECA clutter cancellation
for the same data. The target at (55,-350) and the clutter cancellation at zero-Doppler is clearly
illustrated . Figure 5.16 provides the proof for the data independent nature of the ECA algorithm.

Figure 5.16: ARD Plot illustrating selective cancellation of ECA on DVB-T data. Target at (55,-350)
encircled.

Figure 5.16 also highlights one of the additional advantages of ECA, the selective cancellation. It is
observed that the clutter cancellation begins only from range 40 and then spans over the entire range.
A minor editing in the cancellation algorithm can enable ECA to achieve selective cancellation so
that area of surveillance can be limited to a certain range for specific application. The same prop-
erty can be used for selective cancellation of unwanted targets. But the latter results in processing
overhead and hence recommended only for specific uses.

FM data from Cape Town International Airport

Figure 5.17 is photograph from the test deployment of the PMR radar system at Tygerberg in Western
Cape on December 15th 2010. The reference and the surveillance antenna are marked in the picture.
Data captures was sent to the radar lab at UCT using High-Speed Downlink Packet Access (HSDPA)
link.

The target at (5,-10) in Figure 5.18 is a landing flight. The Doppler and range translation of the flight
can be seen in the compound ARD plot in Figure 5.19 . The Compound ARD [55] is obtained by
overlaying 1 second ARD frames over a 40 second observation time. The results were compared to
the actual flight path obtained from a DBS transponder on the aircraft and a commercial receiver.
From Figure 5.19 it is evident that the actual flight and the calculated flight are identical.

62



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.17: Photograph showing antenna position and coverage area from Trial 1

Figure 5.18: ARD from Test-deployment1-ECA

63



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.19: Compound ARD from Test-deployment1-ECA [55]

In the first deployment, target detection was obtained only at short range. But the second test de-
ployment on April 15th 2011, gave more evidence to prove the expected range and the efficiency of
ECA algorithm. Figure 5.20 shows multiple target detections from second phase deployment.

In Figure 5.20, clutter cancellations done using ECA and in the ARD plot, both short-range and
long-range targets are visible. Figure 5.11 and Figure 5.13 used for SCR analysis shows the output
of NLMS processing for the same data set for short and long range. Targets at short-range were
visible using NLMS, but long range target was not detected. Adjusting the input parameter µNLMS

can improve the adaptivity of the filter for long range detection. But for an uninterrupted robust air
traffic surveillance scenario, this is not practical.

5.8 Validation of processing with CPU processing

The results from the GPU processing of capture data from test deployment were compared to the
results from CPU processing of the same data. This is a vital procedure to ensure the correctness of
the processing and thereby validation of this research project. Figure 5.20 and Figure 5.21 are output
ARDs from GPU and CPU respectively for the same capture data.

The processing is done for 4 seconds of observation for 1200 Doppler bins centres at 0 Hz for 395
range bins. 4 seconds of observation is equivalent to a data size of 1638.4 K samples of complex
data. ECA algorithm is used for DPI and clutter cancellation. It is observed that the two ARD plots
in Figure 5.20 and Figure 5.21 are very similar in terms of positions of the targets (encircled) in
range and Doppler axis. The amplitude of the reflected signal from the target is also similar which
is evident by comparison of the colour bar. The plots are obtained in the streamline plotter named
ARDView [55] designed for the PMR project. The header to the ‘.ard’ [55] file which highlights the

64



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.20: Long range Multiple target ARD from Test-deployment II-ECA on GPU (The title of
the plot prefixed by ‘g’ refers to GPU Processed ARD plot)

Figure 5.21: ARD from Test-deployment II-ECA processed on CPU

65



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

processing and signal parameters are set exactly identical so that the comparison between the CPU
and the GPU ARD plot can be considered as a reliable validation of the PMR signal processing in
GPU platform.

5.9 Interpretation of Tests and Results

• Computational Efficiency

– NLMS algorithm is computationally faster than ECA with reference to results illustrated
in Figure 5.7. But the GPU implementation of ECA with reference to the graph in Figure
5.6 provided evidence that ECA algorithm is well suited for parallel computation than
NLMS. Though the processing time of GPU-ECA was larger than GPU-NLMS, the batch
processing nature of the ECA is promising for multi-GPU implementation. The reason
for this difference in effective speed-up factor is an implication of the Amdhal’s law
[37]. The sequential processes in NLMS algorithm reduces the overall speed-up factor
whereas in ECA, the major portion of algorithm is parallelisable and hence achieves a
higher speed-up factor. Thus in a multi-GPU environment, GPU-ECA can compete with
GPU-NLMS in computational efficiency enabling real time-processing.

• SCR Analysis

– The SCR analysis in Section 5.6 with the results in Table 5.1 provided evidence for the
enhanced clutter cancellation efficiency of ECA. Both ECA and NLMS clutter cancel-
lation gave comparable SCR values for short range targets. But for long range targets
(>100 km), NLMS algorithm exhibited relatively poor performance and the targets were
not detected. ECA on the on the other hand was able to detect targets with good SCR.

• Source independent nature and Selective cancellation.

– ECA was used for clutter cancellation for both FM and DVB-T based sources of illu-
mination without any change in input parameters. NLMS on the other hand have to be
provided with suitable adaption factor as the input variable by trial and error method with
change in the source of illumination. This aspect makes ECA more reliable and robust
than NLMS algorithm.

– The selective clutter cancellation ability of ECA illustrated in Figure 5.16 enables lim-
iting of clutter cancellation to preferred range of interest. This feature is not achievable
with the NLMS algorithm and can be considered as an additional supporting factor for
ECA.

66



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

5.10 Complete System Performance

Figure 5.22: Complete system run-time comparison between CPU and GPU.(The processing is done
using ECA with cancellation for 300 Range bins, Doppler bins=3 and ARD plot for 300 Range bins
and 1201 Doppler bins centred at 0 Hz.)

The complete system performance with respect to the total run-time comparison between CPU and
GPU is shown in Figure 5.22 and the overall speed-up factor is shown in Figure 5.23. The previous
section selected ECA as the preferred algorithm for PMR signal processing. In Figure 5.22, ECA
is used together with ARD processing for the time comparison between CPU and GPU for 300
range bins. It is observed that the run-time for GPU implementation is much faster than the CPU
implementation and the time difference of processing between the two platforms increases with
increase in the data size. This point can be better observed in the overall speed factor variation graph
in Figure 5.23.

In Figure 5.23, PMR signal processing using ECA as cancellation algorithm is designated as PMR(ECA)
and processing using NLMS algorithm is designated as PMR (NLMS). NLMS algorithm is included
since the algorithm was found efficient for DVB-T based target detection as evident from Section
3.7. PMR signal processing was able to achieve a total speed-up factor of 29.43X in a single GPU
platform using ECA and 16.39X using NLMS cancellation algorithms respectively. The perfor-
mance speed-up achieved is promising for implementation using multiple GPUs after integrating the
system with a hyper threaded CPU platform which is a part of future work in this field and will be
discussed in Chapter 6.

5.11 Conclusion

This Chapter gave a detailed illustration of the test and results of the GPU-ARD, GPU-NLMS and
GPU-ECA with respect to various performance metrics. The two algorithms were compared with
respect to their computational performance. The ECA was able to achieve better speed-up than

67



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

Figure 5.23: Overall Speed-Up Factor for the PMR system. (The processing is done using ECA
with cancellation for 300 Range bins, Doppler bins=3 and ARD plot for 300 Range bins and 1201
Doppler bins centred at 0 Hz.)

NLMS which can be regarded as a direct implication of Amdhal’s law [37] in multi-processor sys-
tem. However when comparing the algorithms based on run-time, NLMS is much faster than ECA.
The Chapter also compared the two algorithms based on their clutter cancellation efficiency using
detailed SCR analysis for short and long range targets. Based on the test and results, ECA algorithm
was selected as the preferred algorithm for PMR signal processing, though NLMS algorithm was
found efficient for DVB-T based systems. The Chapter also validated the overall GPU implemen-
tation with the results from the CPU implementation by comparing ARD plots with the same input
data. Finally, the Chapter illustrated the overall system performance in GPU platform with respect
to the CPU platform. The Conclusions from the dissertation and leads for further improvement of
the system in a multi-threaded multi-gpu heterogeneous platform is discussed in Chapter 6.

68



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 6

Conclusions and Recommendations

6.1 Summary

This dissertation can be summarised into the following work in the GPU sub-system, that was com-
pleted as a part of the PMR project:

• Literature reviews of PMR system and GPGPU were presented. Literature on PMR is rela-
tively short and is confined to the signal processing part. Extensive references about previous
work and PMR properties were included in the literature review for further information. GPG-
PUs were discussed, with more details of CUDA SDK and its properties.

• The computationally intensive stages of PMR signal processing chain were identified and the
compatibility of the algorithm nature for parallel processing was analysed.

• Matched Filtering/ARD Processing was modelled and implemented in GPU.

• Two distinct clutter cancellation algorithms- NLMS and ECA were modelled and implemented
in GPU platform.

• NLMS and ECA were compared and benchmarked based on their computational efficiency
and clutter cancellation efficiency with respect to SCR analysis.

• The performance analysis of individual sections and the complete systems was done. The
GPU implementation was compared to CPU implementation with respect to computational
and algorithm efficiency.

• Validation of the GPU processed results with reference to the CPU results was done.

• Details and results from the test deployment of the system were presented.

69



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

6.2 Conclusions

This dissertation provides evidence that GPUs are a promising platform for PMR signal processing,
and in general for radar signal processing. The signal processing of the PMR system handles very
large data sizes and the parallel nature of the algorithm fits ideally for the GPU processing.

GPU implementation of matched filtering, NLMS algorithm and ECA were discussed in detail with
reference to flowcharts and program flow. The optimisation measures and the performance param-
eters were discussed in detail. The implementation was tested extensively according to standard
performance metrics. The performance gain of the GPU implementation in terms of computational
efficiency is compared to the CPU with respect to the speed-up factor and effective run-time. It is
to be noted that the CPU code used for comparison can be well optimised by multi-threading. The
effective speed-up achieved for the overall system in single-GPU platform supports for extending
the project to a multi-GPU platform.

The dissertation also studied the clutter cancellation efficiency of both the algorithms based on SCR
analysis. The SCR at short-range for NLMS and ECA were comparable, but when it comes to long-
range detection ECA was found to be far more efficient than NLMS with a higher value of SCR.
Testing of ECA with DVB-T data with successful target detection together with selective cancella-
tion ability provides further supporting factor for ECA algorithm to use in the extended PMR system
under design for different signal environment.The performance comparison of the two algorithms
discussed in Chapter 5 gives evidence that ECA, though computationally more demanding than
NLMS, is a better clutter cancellation algorithm for the PMR systems in GPU platform. The choice
is made with consideration to the computational cost in a multi-gpu platform and the increased reli-
ability and robustness that can be achieved for the overall system.

Details of the test deployment of the systems at Tygerberg in Western cape using FM data and in
Pisa using DVB-T data and target detections using GPU processing were discussed in detail. Results
form the test deployment provided evidence for the efficiency of GPU platforms for the PMR signal
processing in a real-world scenario.

6.3 Recommendations for Future Work

The present implementation is now working as an offline processing code. The integration of the
code to the streamline capture manager (under development) and pipelining the output of matched
filtering to the real time plotter [55] and CFAR detector [54], which is under development, is part of
the future work on this project.

This research work mainly focuses on the implementation of NLMS filter in the GPU platform. How-
ever there are other variation of filters like Gradient adaptive lattice (GAL),Least Square Lattice etc.
which have to be tried in GPU platform for better results in terms of both clutter-cancellation effi-
ciency and processing time. Alternate algorithms for ARD processing using blocked FFT approach

70



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

also provides scope for future work, though it is recommended to use GPU platform only for large
data sizes, and hence blocked FFT approach only becomes applicable for longer observations times.

Recommendations for upgrading the implementation to a multi-GPU platform also include optimisa-
tion of the CPU platform to deliver maximum performance. Active research on parallel computation
using GPUs in radar technology is being initiated at many advanced research agencies in the World.
Parallel computation for Synthetic Aperture Radar (SAR) [54] systems at Fraunhofer Institute for
High Frequency Physics and Radar Techniques (FHR) [4] is one such research project. Radar signal
processing consists of a combination of sequential and parallel computing phases. Hence the pre-
ferred platform for radar signal processing is a highly optimised heterogeneous platform. The future
work on this project should be the migration of the computing platform to a multi-threaded CPU,
multi-GPU heterogeneous platform. An efficient Message Passing Interface (MPI) Center [14] have
to developed when the scope of the project increases to the level of a distributed system. Finally,
extensive testing and optimisation of the processing code, after integration to the fully automated
PMR system under design, have to be performed before releasing the prototype of the PMR air
surveillance system.

71



Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix A

CPU-Specification and Software
Environment

Software Environment

Operating System Ubuntu 10.04 (Lucid Lynx) LTS

gcc Compiler 4.3

CUDA Driver Version 3.0

CUDA Runtime Version 3.0

CPU Specification

Manufacturer AMD

Model AMD Phenom(tm) II X4 955 Processor

Speed 3.2 GHz

Peak Processing Performance (PPP) 51.2 GFLOPS

RAM 16 GB DDR2 800MHz

Adjusted Peak Performance (APP) 15.33 WG

Cores per Processor 4 Unit(s)

Threads per Core 1 Unit(s)

Type Quad-Core

Bus HyperTransport

Maximum Speed 3.2 GHz

Maximum Power 176.61 W

72



Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix B

Nvidia GTX 480 FX-Specification

GPU Engine Specification

CUDA Cores 480

Graphics Clock (MHz) 700 MHz

Processor Clock (MHz) 1401 MHz

Texture Fill Rate (billion/sec) 42

Memory Specification

Memory Clock (MHz) 1848

Standard Memory Configuration 1536 MB GDDR5

Memory Interface Width 384-bit

Memory Bandwidth (GB/sec) 177.4

Property Value

CUDA Capability Major revision number 2

CUDA Capability Minor revision number 0

Number of multiprocessors 15

Total amount of constant memory 65536 bytes

Total amount of shared memory per block 49152 bytes

Total number of registers available per block 32768

Warp size 32

Maximum number of threads per block 1024

Maximum sizes of each dimension of a block 1024 x 1024 x 64

Maximum sizes of each dimension of a grid 65535 x 65535 x 1

Maximum memory pitch 2147483647 bytes

Texture alignment 512 bytes

73



Univ
ers

ity
 of

 C
ap

e T
ow

n

Bibliography

[1] Nvidia’s next generation cuda compute architecture: Fermi. Technical report, NVIDIA Corpo-
ration, 2009.

[2] Tesla Data Center Solutions. [Online] Available: http://www.nvidia.com/object/preconfigured-
clusters.html, Accessed: February 15, 2011.

[3] Gaussian Elimination. [Online] Available: http://www.sosmath.com/matrix/system1/system1.html,
Accessed: January 12, 2011.

[4] Fraunhofer Institute for High Frequency Physics and Radar Techniques. [Online] Avail-
able:http://www.fhr.fraunhofer.de/fhr/fhr_c628_f7_en.html, Accessed: May 15, 2011.

[5] Soviet Radar in WW II. [Online] Available: http://www.soviethammer.info/blog/519402-
soviet-radar-in-ww-ii/, Accessed: November 1, 2010.

[6] Automatically Tuned Linear Algebra Software (ATLAS). [Online] Available: http://math-
atlas.sourceforge.net/, Accessed: October 20, 2010.

[7] BLAS(Basic Linear Algebra Subprograms). [Online] : http://www.netlib.org/blas/, Accessed:
October 30, 2010.

[8] Nvidia GTX 480. [Online] Available: http://www.nvidia.com/object/product_geforce_gtx_480_us.html,
Accessed: September 5, 2010.

[9] A. Moreiga G. Krieger P. Dubois-Fernandez H. Cantalloube B. Vaizan M. Cherniakov T. Zeng
P. Howland H.Griffiths C.Baker A. Moccia, M.D Errico and J. Sahr. Bistatic Radar: Emerging

Technology. John Wiley & Sons Ltd, 2008.

[10] Ronald W. Scafer Alan V. Oppenheim. Digital Signal Processing. Prentice-Hall, 1975.

[11] D. M. Ritchie. B. W. Kernighan. The C Programming Language. Prentice Hall Inc, 1988.

[12] Constantine A. Balanis. Antenna Theory: Analysis and Design. John Wiley & Sons, 2005.

[13] Marc John Brooker. The Design and Implementation of a Simulator for Multistatic Radar

Systems. Doctoral thesis, University of Cape Town - RRSG, June 2008.

74



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

[14] Maui High Performance Computing Center. Message Passing Interface. [Online] Available:
http://www.mhpcc.edu/training/workshop/mpi/MAIN.html, Accessed: July 12, 2011.

[15] F. Colone. A multistage processing algorithm for disturbance removal and target detection in
passive bistatic radar. In IEEE Trans. On Aerospace and Electronic Systems, volume 45, pages
698–721, 2009.

[16] Nvidia Corporation. [Online] Available: http://www.nvidia.com/, Accessed: February 5, 2011.

[17] Y. Lu M. Lesturgie D. Tan, H. Sun and H. Chan. Passive radar using global system for mo-
bile communication signal: theory, implementation and measurements. In Radar, Sonar and

Navigation, IEE Proceeding, volume 152, pages 116–123„ June 2005.

[18] S. Muller DH. Kuschel, J. Heckenbach and R. Appel. On the potentials of passive,multistatic,
low frequency radars to counter stealth and detect low flying targets. pages 1–6, May 2008.

[19] Matt Ettus. USRP User’s and Developer’s Guide. Ettus Research LLC, Matt Ettus, Ettus
Research LLC.

[20] Andreas Falkenberg. Method to calculate the inverse of a complex matrix using real matrix
inversion. Technical report, Im Espenhagen 10 ; 51702 Bergneustadt, Germany.

[21] Michael Rice Fredric J. Harris, Chris Dick. Digital receivers and transmitters using polyphase
filter banks for wireless communications. In IEEE Transactions On Microwave Theory And

Techniques, volume 51, page 4, April 2003.

[22] H. Griffiths. Bistatic and multistatic radar. Technical report, University College London.

[23] H. Griffiths and N. Long. Television-based bistatic radar. In Communications, Radar and

Signal Processing, volume 133„ pages 649–657. IEE Proceedings, December 1986.

[24] G.Bishop G.Welch. An introduction to the kalman filter, 2006.

[25] Simon Haykin. Adaptive Filter Theory. Prentice Hall, fourth edition, 2002.

[26] Francois Sebastiaan Heunis. Passive coherent location radar using software-defined radio tech-
niques. Master’s thesis, University of Cape Town, March 2010.

[27] P. Howland. Editorial: Passive radar systems. In Radar, Sonar and Navigation, IEE Proceed-

ings, volume 152, pages 105–106, June 2005.

[28] P. Hudson. Passive multistatic radars in anti-stealth air defence. Master’s thesis, Canadian
Forces College, 2003.

[29] Michael Raymond Inggs, Yoann Paichard, and Gunther Erich Lange. Networked pcl system.
In Proceedings of the 2010 Cognitive Systems with Interactive Sensors (COGIS 2010). IET
United Kingdom, 2010.

75



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

[30] National Instruments. PCI Express. [Online] Available: www.ni.com/pciexpress/, Accessed:
February 5, 2011.

[31] A. M. Cunningham L. Martin J. Baniak, G.Baker. Silent sentry passive surveillance. [On-
line] Available: www.blockyourid.com/g̃bpprorg/mil/radar/sentry.pdf, Accessed: December 1,
2010.

[32] M. Jackson. The geometry of bistatic radar systems. In Communications, Radar and Signal

Processing,IEE Proceedings, volume 133, pages 604–612, December 1986.

[33] D. Luebke S. Green J.E. Stone J.C. Phillips J.D. Owens, M.Houston. Gpu computing. In
Proceedings of the IEEE, volume 96, pages 879–899, May 2008.

[34] W. A. Wall K. A. Duke. A professional graphics controller. IBM Systems Journal, 24(1):14,
1985.

[35] K.Szumski. Real-time software implementation of passive radar. In Proceedings of the 6th

European Radar Conference, pages 33 – 36, September 2009. ISBN 978-1-4244-4747-3. doi:
Sept.302009-Oct.22009.

[36] M. Brooker M Inggs. Extensible simulator for waveform diversity testing. In Waveform Diver-

sity and Design Conference, pages 273–277, 2009.

[37] M.R. Marty M.D. Hill. Amdahl’s law in the multicore era. IEEE Computer Society, pages
33–38, 2008.

[38] S.G. Johnson M.Frigo. FFTW User Manual, 2009.

[39] Y. Paichard M.Inggs, G.Lange. A quantitative method for mono- and multistatic radar coverage
area prediction. In Proceedings of the 2010 IEEE Radar Conference, May 2010.

[40] Ethan Mollick. Establishing moore’s law. In Annals of the History of Computing, IEEE,
volume 28, pages 62 – 75, September 2009.

[41] Norman Morrison, Richard Thomas Lord, and Michael Raymond Inggs. The gauss-newton
algorithm in passive aircraft tracking using doppler and bearings. In Proceedings of the IET

International Conference on Radar Systems (RADAR 2007). Institution of Engineering and
Technology, October 2007.

[42] B. T. Neale. Ch - the first operational radar. The GEC Journal of Research, 3(2):73–83, 1985.

[43] R. Nitzberg. Radar signal processing and adaptive systems. Artech House, 1999.

[44] CUDA CUFFT Library Version 1.1. NVIDIA, Santa Clara, CA, October 2007.

[45] CUDA CUBLAS Library. NVIDIA, Santa Clara, CA, March 2008.

76



Univ
ers

ity
 of

 C
ap

e T
ow

n

Department of Electrical Engineering

[46] NVIDIA CUDA Programming Guide. NVIDIA, version 3.0 edition, February 2010.

[47] Tuning CUDA Applications for Fermi Version 1.2. NVIDIA, Santa Clara, CA, July 2010.

[48] NVIDIA CUDA Reference Manual Version 3.0. NVIDIA, Santa Clara, CA, February 2010.

[49] NVIDIA CUDA Best Practices Guide 3.0. NVIDIA Corporation, 2010.

[50] D. Maksimiuk P. Howland and G. Reitsma. Fm radio based bistatic radar. In Radar, Sonar and

Navigation, IEE Proceeding, volume 152, pages 107–115„ June 2005.

[51] R.Lyons. Understanding Digital Signal Processing. Prentice Hall, 2004.

[52] Conrad Sanderson. An Open Source C++ Linear Algebra Library for Fast Prototyping and

Computationally Intensive Experiments. NICTA, St Lucia, Australia, September 2010.

[53] Scott.C.Douglas. A family of normalized lms algorithms. In IEEE Signal Processing Letters,
volume SPL-1, pages 49–51, 1994.

[54] Merrill Skolnik. Introduction to Radar Systems. MCGraw-Hill, 1980.

[55] Craig Tong, Michael Raymond Inggs, and Gunther Erich Lange. Processing design of a net-
worked passive coherent location system. In Proceedings of the 2011 IEEE Radar Conference,
May 2011.

[56] R.I. Wilkinson. Short survey of Japanese Radar-1. [Online] Avail-
able:http://dreadnoughtproject.org/friends/dickson/Japanese%20Radar%20Short%20Survey.pdf,
Accessed: December 1, 2010.

[57] N.J. Willis. ’Bistatic radar’ chapter 25 in Radar Handbook. McGrawHill, second edition,
1990.

77


	Declaration
	Abstract
	Acknowledgements
	Introduction
	Background 
	Parasitic Multistatic Radar
	Graphics Processing Unit

	Research Motivation
	Research Objectives
	Dissertation Outline

	PMR and GPGPUs
	Architecture of PMR System
	Data Acquisition
	Direct Path Interference Cancellation and Clutter Suppression
	Matched filtering
	Target Detection 
	Line Tracking
	Track Association and State Estimation

	GPGPU: An Introduction
	GPGPUs-An efficient Parallel Processor
	CUDA 
	CUDA Programming Model 
	Fermi series and GTX 480FX

	Conclusion

	GPU Implementation of PMR Signal Processing
	Model for Matched Filtering
	CPU Implementation of Matched Filtering
	GPU migration

	DPI Cancellation and Clutter Suppression
	Adaptive Filtering

	Modelling of NLMS Algorithm
	CPU implementation of NLMS Algorithm
	GPU implementation of NLMS Algorithm
	Performance Optimisation of GPU Implementation
	Program Flow
	Optimisation Measures

	Pros and Cons of NLMS algorithm
	Pros of NLMS Algorithm
	Cons of NLMS Algorithm

	Conclusion

	Extensive Cancellation Algorithm
	Theory of ECA 
	Modelling of ECA

	MATLAB Simulation of ECA
	Implementation of ECA in C++
	Computational requirement of ECA
	Memory bandwidth performance
	Theoretical Bandwidth
	Effective Bandwidth

	GPU implementation of ECA
	Supporting factors for GPU implementation
	Implementation
	Program Flow

	GPU based Complex Matrix Inversion
	Implementation Features
	Program Flow
	Factors affecting Speed-up

	Conclusion

	Tests and Results
	Test Methodology 
	GPU ARD computation
	Factors affecting Performance of GPU-ARD
	Conclusions from results of GPU-ARD

	GPU-NLMS
	Factors affecting Performance of GPU-NLMS 
	Conclusions from results of GPU-NLMS

	GPU-ECA
	Factors affecting Performance of GPU-ECA
	Conclusions from results of GPU-ECA

	ECA vs NLMS 
	Algorithm Efficiency Tests
	Clutter Cancellation
	Signal to Clutter Ratio ECA vs NLMS

	Test deployment result
	Testing using Simulated data
	Real-world Deployment

	Validation of processing with CPU processing
	Interpretation of Tests and Results
	Complete System Performance
	Conclusion

	Conclusions and Recommendations 
	Summary
	Conclusions
	Recommendations for Future Work

	CPU-Specification and Software Environment
	Nvidia GTX 480 FX-Specification
	Bibliography



