254 research outputs found

    Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Processors

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of cores in a CPU-GPU heterogeneous processor. We first speculatively execute segmented sum operations on the GPU part of a heterogeneous processor and generate a possibly incorrect results. Then the CPU part of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over the best existing CSR-based SpMV algorithms. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSRComment: 22 pages, 8 figures, Published at Parallel Computing (PARCO

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5Comment: 12 pages, 10 figures, In Proceedings of the 29th ACM International Conference on Supercomputing (ICS '15

    Application-level Performance Optimization: A Computer Vision Case Study on STHORM

    Get PDF
    AbstractComputer vision applications constitute one of the key drivers for embedded many-core architectures. In order to exploit the full potential of such systems, a balance between computation and communication is critical, but many computer vision algorithms present a highly data-dependent behavior that complexifies this task. To enable application performance optimization, the development environment must provide the developer with tools for fast and precise application-level performance analysis. We describe the process to port and optimize a face detection application onto the STHORM many-core accelerator using the STHORM OpenCL SDK. We identify the main factors that limit performance and discern the contributions arising from: the application itself, the OpenCL programming model, and the STHORM OpenCL SDK. Finally, we show how these issues can be addressed in the future to enable developers to further improve application performance

    Ray traced rendering using GPGPU devices

    Get PDF

    The Mont-Blanc prototype: an alternative approach for high-performance computing systems

    Get PDF
    High-performance computing (HPC) is recognized as one of the pillars for further advance of science, industry, medicine, and education. Current HPC systems are being developed to overcome emerging challenges in order to reach Exascale level of performance,which is expected by the year 2020. The much larger embedded and mobile market allows for rapid development of IP blocks, and provides more flexibility in designing an application-specific SoC, in turn giving possibility in balancing performance, energy-efficiency and cost. In the Mont-Blanc project, we advocate for HPC systems be built from such commodity IP blocks, currently used in embedded and mobile SoCs. As a first demonstrator of such approach, we present the Mont-Blanc prototype; the first HPC system built with commodity SoCs, memories, and NICs from the embedded and mobile domain, and off-the-shelf HPC networking, storage, cooling and integration solutions. We present the system’s architecture, and evaluation including both performance and energy efficiency. Further, we compare the system’s abilities against a production level supercomputer. At the end, we discuss parallel scalability, and estimate the maximum scalability point of this approach across a set of HPC applications.Postprint (published version
    • …
    corecore