277 research outputs found

    Compact convolutional neural network cascadefor face detection

    Get PDF
    This paper presents a new solution to the frontal face detection problem based on a compact convolutional neural networks cascade. Test results on an FDDB dataset show that it is able to compete with state-of-the-art algorithms. This proposed detector is implemented using three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and OpenCL. The detection speed of our approach exceeds considerably all the existing CPUbased and GPU-based algorithms. Thanks to its high computational efficiency, our detector can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while searching objects with a dimension of 60×60 pixels or higher. At the same time, its processing speed is almost independent of the background and the number of objects in a scene. This is achieved by asynchronous computation of stages in the cascade

    Reconhecimento de padrões em expressões faciais : algoritmos e aplicações

    Get PDF
    Orientador: Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O reconhecimento de emoções tem-se tornado um tópico relevante de pesquisa pela comunidade científica, uma vez que desempenha um papel essencial na melhoria contínua dos sistemas de interação humano-computador. Ele pode ser aplicado em diversas áreas, tais como medicina, entretenimento, vigilância, biometria, educação, redes sociais e computação afetiva. Há alguns desafios em aberto relacionados ao desenvolvimento de sistemas emocionais baseados em expressões faciais, como dados que refletem emoções mais espontâneas e cenários reais. Nesta tese de doutorado, apresentamos diferentes metodologias para o desenvolvimento de sistemas de reconhecimento de emoções baseado em expressões faciais, bem como sua aplicabilidade na resolução de outros problemas semelhantes. A primeira metodologia é apresentada para o reconhecimento de emoções em expressões faciais ocluídas baseada no Histograma da Transformada Census (CENTRIST). Expressões faciais ocluídas são reconstruídas usando a Análise Robusta de Componentes Principais (RPCA). A extração de características das expressões faciais é realizada pelo CENTRIST, bem como pelos Padrões Binários Locais (LBP), pela Codificação Local do Gradiente (LGC) e por uma extensão do LGC. O espaço de características gerado é reduzido aplicando-se a Análise de Componentes Principais (PCA) e a Análise Discriminante Linear (LDA). Os algoritmos K-Vizinhos mais Próximos (KNN) e Máquinas de Vetores de Suporte (SVM) são usados para classificação. O método alcançou taxas de acerto competitivas para expressões faciais ocluídas e não ocluídas. A segunda é proposta para o reconhecimento dinâmico de expressões faciais baseado em Ritmos Visuais (VR) e Imagens da História do Movimento (MHI), de modo que uma fusão de ambos descritores codifique informações de aparência, forma e movimento dos vídeos. Para extração das características, o Descritor Local de Weber (WLD), o CENTRIST, o Histograma de Gradientes Orientados (HOG) e a Matriz de Coocorrência em Nível de Cinza (GLCM) são empregados. A abordagem apresenta uma nova proposta para o reconhecimento dinâmico de expressões faciais e uma análise da relevância das partes faciais. A terceira é um método eficaz apresentado para o reconhecimento de emoções audiovisuais com base na fala e nas expressões faciais. A metodologia envolve uma rede neural híbrida para extrair características visuais e de áudio dos vídeos. Para extração de áudio, uma Rede Neural Convolucional (CNN) baseada no log-espectrograma de Mel é usada, enquanto uma CNN construída sobre a Transformada de Census é empregada para a extração das características visuais. Os atributos audiovisuais são reduzidos por PCA e LDA, então classificados por KNN, SVM, Regressão Logística (LR) e Gaussian Naïve Bayes (GNB). A abordagem obteve taxas de reconhecimento competitivas, especialmente em dados espontâneos. A penúltima investiga o problema de detectar a síndrome de Down a partir de fotografias. Um descritor geométrico é proposto para extrair características faciais. Experimentos realizados em uma base de dados pública mostram a eficácia da metodologia desenvolvida. A última metodologia trata do reconhecimento de síndromes genéticas em fotografias. O método visa extrair atributos faciais usando características de uma rede neural profunda e medidas antropométricas. Experimentos são realizados em uma base de dados pública, alcançando taxas de reconhecimento competitivasAbstract: Emotion recognition has become a relevant research topic by the scientific community, since it plays an essential role in the continuous improvement of human-computer interaction systems. It can be applied in various areas, for instance, medicine, entertainment, surveillance, biometrics, education, social networks, and affective computing. There are some open challenges related to the development of emotion systems based on facial expressions, such as data that reflect more spontaneous emotions and real scenarios. In this doctoral dissertation, we propose different methodologies to the development of emotion recognition systems based on facial expressions, as well as their applicability in the development of other similar problems. The first is an emotion recognition methodology for occluded facial expressions based on the Census Transform Histogram (CENTRIST). Occluded facial expressions are reconstructed using an algorithm based on Robust Principal Component Analysis (RPCA). Extraction of facial expression features is then performed by CENTRIST, as well as Local Binary Patterns (LBP), Local Gradient Coding (LGC), and an LGC extension. The generated feature space is reduced by applying Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms are used for classification. This method reached competitive accuracy rates for occluded and non-occluded facial expressions. The second proposes a dynamic facial expression recognition based on Visual Rhythms (VR) and Motion History Images (MHI), such that a fusion of both encodes appearance, shape, and motion information of the video sequences. For feature extraction, Weber Local Descriptor (WLD), CENTRIST, Histogram of Oriented Gradients (HOG), and Gray-Level Co-occurrence Matrix (GLCM) are employed. This approach shows a new direction for performing dynamic facial expression recognition, and an analysis of the relevance of facial parts. The third is an effective method for audio-visual emotion recognition based on speech and facial expressions. The methodology involves a hybrid neural network to extract audio and visual features from videos. For audio extraction, a Convolutional Neural Network (CNN) based on log Mel-spectrogram is used, whereas a CNN built on Census Transform is employed for visual extraction. The audio and visual features are reduced by PCA and LDA, and classified through KNN, SVM, Logistic Regression (LR), and Gaussian Naïve Bayes (GNB). This approach achieves competitive recognition rates, especially in a spontaneous data set. The second last investigates the problem of detecting Down syndrome from photographs. A geometric descriptor is proposed to extract facial features. Experiments performed on a public data set show the effectiveness of the developed methodology. The last methodology is about recognizing genetic disorders in photos. This method focuses on extracting facial features using deep features and anthropometric measurements. Experiments are conducted on a public data set, achieving competitive recognition ratesDoutoradoCiência da ComputaçãoDoutora em Ciência da Computação140532/2019-6CNPQCAPE

    Dense Vision in Image-guided Surgery

    Get PDF
    Image-guided surgery needs an efficient and effective camera tracking system in order to perform augmented reality for overlaying preoperative models or label cancerous tissues on the 2D video images of the surgical scene. Tracking in endoscopic/laparoscopic scenes however is an extremely difficult task primarily due to tissue deformation, instrument invasion into the surgical scene and the presence of specular highlights. State of the art feature-based SLAM systems such as PTAM fail in tracking such scenes since the number of good features to track is very limited. When the scene is smoky and when there are instrument motions, it will cause feature-based tracking to fail immediately. The work of this thesis provides a systematic approach to this problem using dense vision. We initially attempted to register a 3D preoperative model with multiple 2D endoscopic/laparoscopic images using a dense method but this approach did not perform well. We subsequently proposed stereo reconstruction to directly obtain the 3D structure of the scene. By using the dense reconstructed model together with robust estimation, we demonstrate that dense stereo tracking can be incredibly robust even within extremely challenging endoscopic/laparoscopic scenes. Several validation experiments have been conducted in this thesis. The proposed stereo reconstruction algorithm has turned out to be the state of the art method for several publicly available ground truth datasets. Furthermore, the proposed robust dense stereo tracking algorithm has been proved highly accurate in synthetic environment (< 0.1 mm RMSE) and qualitatively extremely robust when being applied to real scenes in RALP prostatectomy surgery. This is an important step toward achieving accurate image-guided laparoscopic surgery.Open Acces

    Unsupervised Training of Deep Neural Networks for Motion Estimation

    Get PDF
    PhDThis thesis addresses the problem of motion estimation, that is, the estimation of a eld that describes how pixels move from a reference frame to a target frame, using Deep Neural Networks (DNNs). In contrast to classic methods, we don't solve an optimization problem at test time. We train DNNs once and apply it in one pass during the test which reduces the computational complexity. The major contribution is that in contrast to a supervised method, we train our DNNs in an unsupervised way. By unsupervised, we mean without the need for ground truth motion elds which are expensive to obtain for real scenes. More speci cally, we have trained our networks by designing cost functions inspired by classical optical ow estimation schemes and generative methods in Computer Vision. We rst propose a straightforward CNN method that is trained to optimize the brightness constancy constraint and we embed it in a classical multiscale scheme in order to predict motions that are large in magnitude (GradNet). We show that GradNet generalizes well to an unknown dataset and performed comparably with state-of-the-art unsupervised methods at that time. Second, we propose a convolutional Siamese architecture wherein is embedded a new soft warping scheme applied in a multiscale framework and is trained to optimize a higher-level feature constancy constraint (LikeNet). The architecture of LikeNet allows a trade-o between the computational load and memory and is 98% smaller than other SOA methods in terms of learned parameters. We show that LikeNet performs on par with SOA approaches and the best among uni-directional methods, methods that calculate motion eld in one pass. Third, we propose a novel approach to distill slower LikeNet in a much faster regression neural network without losing much of the accuracy (QLikeNet). The results show that using DNNs is a promising direction for motion estimation, although further improvements are required as classical methods yet perform the best

    Large-Scale Light Field Capture and Reconstruction

    Get PDF
    This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. To overcome these three challenges, we propose: (i) a novel self-calibration method, which takes advantage of the geometric constraints from the scene and the cameras, for estimating the rigid transformations from the camera coordinate frame of one Kinect V2 to the camera coordinate frames of 12-nearest RGB cameras; (ii) a novel coarse-to-fine approach for recovering the rigid transformation from the coordinate system of one Kinect to the coordinate system of the other by means of local color and geometry information; (iii) several novel algorithms that can be categorized into two groups for reconstructing a DSLF from an input SSLF, including novel view synthesis methods, which are inspired by the state-of-the-art video frame interpolation algorithms, and Epipolar-Plane Image (EPI) inpainting methods, which are inspired by the Shearlet Transform (ST)-based DSLF reconstruction approaches

    A Study on Traditional and CNN Based Computer Vision Sensors for Detection and Recognition of Road Signs with Realization for ADAS

    Get PDF
    The aim of this chapter is to provide an overview of how road signs can be detected and recognized to aid the ADAS applications and thus enhance the safety employing digital image processing and neural network based methods. The chapter also provides a comparison of these methods

    People detection using IR camera on a drone for more effective rescue operations

    Get PDF
    Bakalárska práca sa zaobera spojením disciplíny nazývanej temografia so softwarovými systémami na dekekciu objektov. Cieľom je pomocou analýzy a testovania nájsť vhodnú metódu, ktorá dokáže zautomatizovať analýzu dát z termokamier na dronoch. Využitie tejto práce spočíva napríklad v zefektívnení záchranných operácií. Pre dosiahnutie daných cieľov bolo potrebné implementovat aplikáciu v jazyku Python, ktorá realizuje detekciu pomocou dostupných systémov, ako je Darknet. Pomocou tejto aplikácie som experimentálne preukázal, že detekcia pomocou neurónových sietí predstavuje najlepšiu možnost a pomocou systému Darknet je možné detekovať objekty dostatočne rýchlo a presne.This bachelor's thesis investigates the usage of object detection algorithms on images captured by an infrared camera placed on a drone. The solution will help to automate the analysis of captured data, targeting to increase the effectiveness of rescue operations. During the completion of the task, I developed a Python desktop application, that realizes chosen detection methods. The methods selection was based on an analysis of current approaches and take advantage of the existing detection systems. The application was used to measure the accuracy and performance of these approaches on the dataset created as a part of the thesis. In the end, the conclusion evaluates the possibility to use image detection on a thermogram, in a real-world application. The single-stage Region Proposal Convolutional Network showed the best result and was chosen for future development

    RASW: A run-time adaptive sliding window to improve Viola-Jones object detection

    Full text link
    Abstract—In recent years accurate algorithms for detecting objects in images have been developed. Among these algorithms, the object detection scheme proposed by Viola and Jones gained great popularity, especially after the release of high-quality face classifiers by the OpenCV group. However, as any other slidingwindow based object detector, it is affected by a strong increase in the computational cost as the size of the scene grows. Especially in real-time applications, a search strategy based on a sliding window can be computationally too expensive. In this paper, we propose an efficient approach to adapt at run time the sliding window step size in order to speed-up the detection task without compromising the accuracy. We demonstrate the effectiveness of the proposed Run-time Adaptive Sliding Window (RASW) in improving the performance of Viola-Jones object detection by providing better throughput-accuracy tradeoffs. When comparing our approach with the OpenCV face detection implementation, we obtain up to 2.03x speedup in frames per second without any loss in accuracy
    corecore