
Unsupervised Training of Deep Neural

Networks for Motion Estimation

Aria Ahmadi

Submitted in partial fulfillment of the requirements of the Degree

of Doctor of Philosophy

Supervisor: Prof. Ioannis Patras

School of of Electronic Engineering and Computer Science

Queen Mary University of London

United Kingdom

Nov 2018

Statement of originality

I, Aria Ahmadi, confirm that the research included within this thesis is my own work or

that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published

material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and

does not to the best of my knowledge break any UK law, infringe any third party’s

copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check

the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or in-

formation derived from it may be published without the prior written consent of the

author.

Signature: Aria Ahmadi

Date: 29/11/2018

i

Acknowledgments

First, I would like to thank my supervisor Ioannis Patras, who trusted me from the

beginning, and whose support and advice were significantly important for the realiza-

tion of this thesis.

I’d like to thank my family, who always supported me in the pursuit of this project,

and to whom this thesis is dedicated.

There is no word that can describe my gratitude towards my friends Mina Adel Thabet,

Petar Palasek, and Ioannis Marras, who have been always there for me and have helped

me above and beyond.

I will always be thankful to my friends Thomas Cuvillier, Juan Abdon Miranda, Chris-

tos Tzelepis, Oya Celiktutan, Faranak Sobhani, and Andrej Satnik.

To all my colleagues in the MMV group, and all the friends that shared time with me

and have encouraged me to fulfill this objective.

ii

”Machine Learning” by Randall Munroe of www.xkcd.com. This work is licensed under a Creative
Commons Attribution-NonCommercial 2.5 License: https://creativecommons.org/licenses/by-nc/2.5/

iii

Abstract
This thesis addresses the problem of motion estimation, that is, the estimation of a

field that describes how pixels move from a reference frame to a target frame, using

Deep Neural Networks (DNNs). In contrast to classic methods, we don’t solve an

optimization problem at test time. We train DNNs once and apply it in one pass

during the test which reduces the computational complexity. The major contribution

is that in contrast to a supervised method, we train our DNNs in an unsupervised way.

By unsupervised, we mean without the need for ground truth motion fields which are

expensive to obtain for real scenes.

More specifically, we have trained our networks by designing cost functions inspired by

classical optical flow estimation schemes and generative methods in Computer Vision.

We first propose a straightforward CNN method that is trained to optimize the bright-

ness constancy constraint and we embed it in a classical multiscale scheme in order to

predict motions that are large in magnitude (GradNet). We show that GradNet gen-

eralizes well to an unknown dataset and performed comparably with state-of-the-art

unsupervised methods at that time. Second, we propose a convolutional Siamese archi-

tecture wherein is embedded a new soft warping scheme applied in a multiscale frame-

work and is trained to optimize a higher-level feature constancy constraint (LikeNet).

The architecture of LikeNet allows a trade-off between the computational load and

memory and is 98% smaller than other SOA methods in terms of learned parameters.

We show that LikeNet performs on par with SOA approaches and the best among

uni-directional methods, methods that calculate motion field in one pass. Third, we

propose a novel approach to distill slower LikeNet in a much faster regression neural

network without losing much of the accuracy (QLikeNet).

The results show that using DNNs is a promising direction for motion estimation,

although further improvements are required as classical methods yet perform the best.

iv

Contents

Contents

List of Figures viii

List of Tables xiii

1 Introduction 1

1.1 Challenges . 2

1.2 Previous Works . 3

1.3 Overview of the Proposed Methods . 5

1.4 Major contributions . 7

1.5 Organisation of the thesis . 9

2 Related Work 11

2.1 Classic Methods . 12

2.2 DNN-based Methods . 18

2.2.1 Supervised Methods . 18

2.2.2 Unsupervised Methods . 26

2.3 Conclusion . 33

3 GradNet: Gradient-based Unsupervised Training of Deep Neural

Networks for Motion Estimation 35

3.1 Method . 36

3.1.1 First-order Taylor expansion 37

3.1.2 Second-order Taylor expansion 39

v

Contents

3.1.3 Taylor Expansion - Interpolation, Connection 42

3.1.4 Connection to Spatial Transformation Networks 43

3.1.5 First-order vs. Second-order Expansion 44

3.1.6 Loss Augmentation . 45

3.2 Architecture and Training . 46

3.3 Dataset . 47

3.4 Experiments . 50

3.5 Computational Complexity . 55

3.6 Evaluation on MPI Sintel, Test Split 55

3.7 Conclusions . 56

4 LikeNet: A Siamese Motion Estimation Network Trained in an

Unsupervised Way 59

4.1 LikeNet: a CNN for Motion Estimation 61

4.1.1 Architecture . 62

4.2 CRF for Motion Estimation . 65

4.3 Experiments . 67

4.4 Flexible Architecture; Memory-Speed Trade-offs 68

4.4.1 Computational Complexity . 71

4.4.2 Number of Parameters . 72

4.5 Summary . 73

5 Quick LikeNet (QLikeNet) : Distilling LikeNet in a Fast Regres-

sion CNN 74

5.1 Methodology . 76

5.2 Architecture . 77

5.3 Experimental Results . 79

5.4 Computational Complexity . 83

5.5 Conclusion . 84

vi

Contents

6 Conclusions 86

6.1 Future Work . 88

A Arriving at the higher-order Taylor Expansion of Motion Com-

pensated Intensity by Fitting a Polynomial 90

A.1 Fitting Nodes in t = 0 Plane . 91

A.2 Fitting Nodes in t = 1 Plane . 93

Bibliography 95

vii

List of Figures

List of Figures

2.1 The illustration of the feature constancy constraint. 12

2.2 Two samples from Flying Chairs dataset [25]. The pair of images and the

visualization of their corresponding groundtruth motion field. 20

2.3 The general scheme for motion estimation using DNNs. 20

2.4 The two FlowNet architectures: FlowNetS (top) and FlowNetC (bottom).

The figure is from [25]. 21

2.5 Schematic view of complete FlowNet2.0 architecture: To compute large

displacement optical flow multiple FlowNets are combined. Braces indic-

ate concatenation of inputs. Brightness Error is the difference between the

first image and the second image warped with the previously estimated

flow. To optimally deal with small displacements, smaller strides are in-

troduced in the beginning and convolutions between up-convolutions into

the FlowNetS architecture. Finally, a small fusion network is applied to

provide the final estimate [41]. ”Image 1” and ”Image 2” are respectively

reference frame and target frame.The figure is from [41]. 23

2.6 The schematic for classic multiscale scheme for motion estimation. Sk

represents the scaling factor in the pyramid and k indexes the level. . . . 24

viii

List of Figures

2.7 The network G0 computes the residual flow v0 at the highest level of the

pyramid (smallest image) using the low resolution images {I1
0 , I

2
0}. At

each pyramid level, the network Gk computes a residual flow vk which

propagates to each of the next lower levels of the pyramid in turn, to

finally obtain the flow V2 at the highest resolution. The figure is from [67]. 25

2.8 On the left, classic coarse-to-fine scheme and the related energy minimiz-

ation. On the right, feature pyramid and refinement at one pyramid level

by PWC-Net. The figure is from [82]. 26

2.9 Schematic of the proposed unsupervised loss for training UnFlow [59]. The

data loss compares flow-warped images to the respective original images

and penalizes their difference. The figure is from [59]. 30

2.10 The modification to the FlowNetS structure at one of the decoding stage

- stage 6. On the left, the original FlowNetS structure is shown. On the

right, the modification of the FlowNetS structure is shown. conv6 and

conv51 are features extracted in the encoding phase and named after [25].

The figure is from [90] . 32

2.11 The network architecture used for occlusion aware technique, composed

of two FlowNetS. The figure is from [90] 33

3.1 The overview of the training and test of GradNet. The green rectangle

encloses what is involved during the test. The yellow rectangle encloses

what is involved during the training. 36

3.2 On the left is the kernel that is used to calculate the horizontal derivatives

and on the right is the kernel that is used for calculation of the vertical

derivatives. 38

3.3 Expansion around opposite pixels . 42

ix

List of Figures

3.4 The left plot shows how the training loss varies for both cases where the

loss function is based on a first-order expansion and a second-order ex-

pansion. The right plot shows how the validation MCIE varies during the

training. 45

3.5 The neighboring pixels involved in fitting the polynomials. (b): Fitting a

polynomial using the neighbors in red results in the bilinear interpolation

proposed by Jaderberg et al. [42]. (c): Fitting a polynomial using the

neighboring pixels in blue results in the second-order Taylor expansion. . 46

3.6 GradNet architecture, inspired by U-Net [72]. Each box corresponds to a

multi-channel feature map. The number of channels is denoted at the top

right corner of the box. The number denoted at the bottom left corner of

the boxes is the height×width of the featuremap. Grey boxes represent

copied feature maps. The purple box represents the input featuremap

which consists of 6 RGB channels of the input pair of frames. The arrows

denote the different operations. 48

3.7 (a) A sample drawn from UCF101 (b) The shade added as an augmentation. 49

3.8 Examples drawn from the evaluation dataset. 50

3.9 The visualized motion fields calculated by Deepflow [93], EpicFlow [70],

High Accuracy Optical Flow (HAOF) [16], Large Displacement Optical

Flow [17], Horn and Schunk method [38], GradNet First Order (GradNet-

FO), and GradNet Second Order (GradNet-SO) on MPISintel dataset [20]. 53

3.10 The AEE maps calclualted for several samples from several methods on

MPISintel the final-training split. Each sample is normalized by a factor

of 255
max(d) , where d =

√
u2
gt + v2

gt. Values more than 255 are rounded to 255. 54

3.11 The reference frames of some of the samples from test split of MPISintel,

the motion fields estimated by GradNet for each of the samples, and the

error fields calculated for the estimated motion fields. 57

3.12 Visualization of one of the filters in the first layer of GradNet 58

x

List of Figures

4.1 The overview of LikeNet. 60

4.2 The schematic describing the training order of LikeNet and the CRF . . . 61

4.3 The proposed architecture of LikeNet. For simplicity, only two branches

out of K branches (motion classes) are illustrated. The input to the kth

branch is the concatenation of the first frame and the second frame shifted

with the corresponding motion vector mk. Block Wk warps its input along

with motion vector mk. LikeNet outputs a pixel-level distribution over the

motion classes, P (L|I; θ). 62

4.4 A CRF block at the lowest resolution during test time. 66

4.5 Visualization of how the application of CRF affects the output of LikeNet. 67

4.6 MPI-Sintel examples. Top-to-bottom, input reference frames, groundtruth

flows, and predicted flows from LikeNet. 67

4.7 The plot illustrates how (b, αM) vary in different configurations as b varies

from 1 to K. 70

4.8 The plot of the number of branches against the per-branch runtime. This

plot shows how far a GPU, in our case GEFORCE GTX 1080, can paral-

lelize our architecture. 71

4.9 Visualization of the first layer filters of LikeNet. 73

5.1 The overview of QLikeNet during the test and the training. 75

5.2 F represents the estimated motion field. LN(θ) represents one branch

of LikeNet. S represents the similarity map which is the output of one

branch of LikeNet. 77

5.3 QLikeNet architecture and the training block diagram. 78

5.4 Comparison with classic methods. The visualized motion fields calculated

by Deepflow [93], EpicFlow [70], High Accuracy Optical Flow (HAOF) [16],

Large Displacement Optical Flow [17], GradNet Second Order (GradNet-

SO), LikeNet, QLikeNet on MPISintel dataset [20]. 79

xi

List of Figures

5.5 Comparison with DNN-based methods. The visualized motion fields calcu-

lated by UnFlow [59], SpyNet [67], GradNet Second Order (GradNet-SO),

LikeNet, QLikeNet on MPISintel dataset [20]. 81

5.6 Comparison with classic methods. The AEE maps calclualted for several

samples from several methods on MPISintel the final-training split. Each

sample is normalized by a factor of 255
max(d) , where d =

√
u2
gt + v2

gt. Values

more than 255 are rounded to 255. 82

5.7 Comparison with DNN-based methods. The AEE maps calclualted for

several samples from several methods on MPISintel the final-training split.

Each sample is normalized by a factor of 255
max(d) , where d =

√
u2
gt + v2

gt.

Values more than 255 are rounded to 255. 83

A.1 The nodes participating in the interpolation. 91

xii

List of Tables

List of Tables

3.1 Performance comparison. AEE stands for Average End-point Error (in

pixels). Upper section reports the performance for classical methods while

lower section reports the performance for DNN-based methods. 51

3.2 AEE for different ranges of d, d =
√
u2
gt + v2

gt. 52

3.3 The runtime breakdown of GradNet in multiscale scheme in second. Scale

1 refers to the lowest resolution, scale 9 refers to the main resolution. . . . 55

3.4 Compared to other DNN-based methods, GradNet is the smallest among

unsupervised methods and in general one of the smallest in terms of

learned parameters. DSTFlow [69] follows the FlowNetS architecture. . . 56

4.1 Compared to other DNN-based methods, LikeNet is the smallest in terms

of learned parameters. DSTFlow [69] follows the FlowNetS architecture.

UnFlow-C [59] follows the FlowNetC architecture and UnFlow-CS is a

FlowNetS architecture stacked on top of a FlowNetC. UnFlow-CSS archi-

tecture is composed of a FlowNetS stacked on top of the UnFlow-CS. . . 68

4.2 Average End-point Error (in pixels) of classic and DNN-based methods.

LikeNet performs better or in par with other unsupervised methods al-

though it is not finetuned on any of the evaluation datasets and its capacity

is considerably smaller that all other DNN-based methods. 69

4.3 The runtime breakdown of LikeNet in multiscale scheme in second. Scale

1 refers to the lowest resolution, scale 5 refers to the main resolution. . . . 72

xiii

List of Tables

5.1 AEE for different ranges of d, d =
√
u2
gt + v2

gt. 80

5.2 Average End-point Error (in pixels) of classic and DNN-based methods.

QLikeNet performs better or in par with other unsupervised methods al-

though it is not finetuned on any of the evaluation datasets and its capacity

is considerably smaller that all other DNN-based methods. 80

5.3 The runtime breakdown of GradNet in multiscale scheme in seconds. Scale

1 refers to the lowest resolution, scale 9 refers to the main resolution. . . . 84

5.4 Compared to other DNN-based methods, QLikeNet is comparably small

in terms of learned parameters. DSTFlow [69] follows the FlowNetS ar-

chitecture. 84

xiv

List of Tables

List of Abbreviations

CNN - convolutional neural network

CPU - central processing unit

DNN - deep neural network

GPU - graphics processing unit

OF - optical flow

MF - Motion Field

ME - Motion Estimation

RGB - red green blue

MRF - Markov Random Field

CRF - Conditional Random Field

xv

Chapter 1

Introduction

By the tremendous advances in electronics and communication, video data can be

easily captured and is ubiquitous. Motion in a video is as a result of moving objects

and/or moving camera, which is the essence of a video. Accurate and efficient analysis

of motion information serves many purposes.

Motion analysis refers to computing or analysing the motion pattern of the camera

or the scene. Several kinds of motion measurement problems exist in computer vision

three examples of which we present here. First, Video tracking which is the process

of locating a moving object over time using a camera and thus deals with the ana-

lysis of the motion information. Second, Camera ego-motion estimation which is the

problem of estimating the motion of camera in a static or partially-dynamic scene. It

aims at recovering the 3D rigid motion (i.e., rotation and translation) of the camera,

or, equivalently, the 3D rigid transformation of camera coordinate systems, using the

color or depth/range data captured by the camera. Third, Dense motion estimation

which aims to compute the pixel movement vectors on a 3D spatiotemporal plane, in

the presence of a dynamic scene and/or a moving camera. The goal of (dense) motion

estimation is to estimate the motion field, a field that describes how pixels move from

a reference frame to a target frame. The problems of tracking/camera ego-motion

estimation and dense motion estimation are closely related to each other: e.g. camera

1

1.1. Challenges

motion can be derived from dense motion estimates.

The measured motion can be used in several applications such as in video coding

and video understanding. In the case of video coding, motion information is used

to remove the temporal redundancy [27, 53]. Almost all video coding standards use

block-based motion estimation and compensation such as the MPEG series including

the most recent HEVC. There are a wide variety of applications such as TV broadcast-

ing, video streaming, DVD and Blue-ray discs in which direction researches have been

conducted [27, 53]. In the context of computer vision and video analysis, an accurate

estimation of the motion in a scene is fundamental for video understanding. This is

because motion is one of the basic concepts that convey a considerable portion of the

information required for video analysis. For example, motion information alone has

been shown to be effective for action recognition [46, 75]. The idea comes from the

fact that the human visual cortex has two pathways: ventral and dorsal stream. The

first one is responsible for object recognition while the second one recognizes motion.

Among other applications are surveillance, robotics, segmentation, activity recogni-

tion, registration, video search, and retrieval. Many researches have been conducted

in these directions [47, 26, 35, 55, 43, 89, 16, 17, 70, 25, 41, 95].

1.1 Challenges

Motion estimation is a complex task for which there are multiple challenges such as

illumination variation in consecutive frames (including self-shadowing [12]), estimation

of large motions, occluded area, motion discontinuities, transparent surfaces, and es-

timation of motion for low texture surfaces. We attempted to address the illumination

variation by augmenting the input data by adding artificial intensity variation while the

supervision is based on the original input. Furthermore, we propose to use features

2

1.2. Previous Works

that are more robust towards intensity variation compared to intensity features [1]

which improved the results. To estimate large motions, most of the motion estimation

methods in the literature are embedded in a multiscale schemes [1, 2, 17, 38, 16, 93].

most of the methods minimize the difference between the features extracted from the

corresponding points in the reference frame and target frame. That is while one of the

corresponding points does not exist if occluded. In the literature, the occluded area

is usually modeled through forward-backward estimation of motion field [59, 90] and

checking the consistency of both estimations. This approach needs to be improved

though. Another challenge is when a motion field consists of regions where the motion

varies smoothly, divided by the boundaries where the motion field changes abruptly.

Most of the energy minimization frameworks assume that the flow is continuous which

makes capturing the sharp discontinuities challenging [94]. In the literature, motion

boundaries are respected by applying an edge-aware smoothness term [59, 90] which

works to some extent, but yet needs to be improved. Estimation of large displacements

is another challenge which is tried to be addressed using multiscale schemes by most

of the classic [16, 17, 8] and even DNN-based methods [67, 82] in the literature. All

our unsupervised approaches have been embedded in the classic multiscale scheme as

well. In two of our approaches, we also try to improve the correspondence matching

by using more sophisticated features rather than just intensity features in the motion

compensated error. Still there are challenges that are not addressed much in the liter-

ature such as, the estimation of motion for transparent surfaces and low-texture area.

The researches that have been conducted to overcome these problems have lead to

both classic methods, which do not use DNNs, and DNN-based methods.

1.2 Previous Works

Classic motion estimation started with the method proposed by Horn and Schunk [38]

wherein the objective function penalizes the deviation from the intensity constancy as-

sumption and also the assumption that the estimated motion field has to be smooth.

3

1.2. Previous Works

Since then, the objective function for motion estimation has evolved over time to sev-

eral variations which improve the estimation. For example, including the gradient term

which penalizes the deviation from the constant gradient of the intensity assumption

improves the estimation considerably [16]. The estimation further improves by integ-

rating descriptor matching in the variational formula [17, 93]. These methods rely

on a multiscale motion estimation scheme which helps with the estimation of large

displacements. One drawback with the multiscale scheme is that the error propagates

across scales. The reason is that each scale of the multiscale scheme uses the resized

and scaled motion field estimated in the previous scale. This way, the wrong estim-

ations grow across scales. Furthermore, in the lower scales, although larger motions

and surfaces are smaller, most of the details are lost in the downsampling operation.

Later on, some methods proposed to estimate motion in single scale by densification

of a sparse motion field obtained from a feature matching process [70]. Apart from the

improvements over time, all classic methods have to solve an optimization problem

for each sample, thus are slower. Also, the classical methods make very approximate

assumptions about the image feature changes and the spatial structure of the flow.

The key advantage of learning to compute flow from data, as DNN-based methods

do, is that supervised methods do not make an approximate assumption and instead

learn to estimate motion from data. Regarding unsupervised methods, in chapter 3,

we will show that, because of the inner regularization effect of DNNs, our unsupervised

trained network performs better than Horn and Schunk method [38], in a multiscale

scheme, although both methods use similar loss functions. Still, there is a gap between

classic and DNN-based methods which will reduce by further researches.

Deep Neural Networks (DNNs) have shown to have promising performance in differ-

ent applications [52, 75, 76]. It was the beginning of a wave of works on the application

of DNNs in different computer vision tasks. DNNs are capable of learning high to low-

level abstract representations which enables modeling a complex relationship between

4

1.3. Overview of the Proposed Methods

their input and output. DNNs have also been used for motion estimation [25, 41]

wherein DNNs are trained in a supervised way. Although these methods work fairly

well, they are still bound to a limitation DNNs face in solving problems. For them to

achieve a high performance, they require many training data samples. Unlike other

areas of computer vision, such as action and object recognition, motion datasets still

lack enough properly labeled data for motion in real scenes. The reason is that labeling

is pixel level and thus too expensive to have for many samples. The first alternative

is to use limited synthetic datasets [25, 41] which do not completely characterize the

dynamics of real scenes. The other alternative is to train DNNs in an unsupervised

way. Unsupervised methods are mainly trained based on classic objective functions.

The core of the exploited objective functions is to minimize the feature constancy con-

straint which can be linearized in different ways [2, 69] for back-propagation purposes.

Similar to classic methods, adding extra terms to the objective function improves the

performance. Furthermore, some methods calculate both forward and backward passes

to model the occlusion and/or consistency check [59, 90] which is reported to improve

the performance significantly.

1.3 Overview of the Proposed Methods

The aim of our research is to propose a DNN-based framework that realizes training

a DNN for motion estimation without the need for labeled training data, that is

unsupervised. Furthermore, to use the unsupervised trained network as a baseline for

fine-tuning the DNN for an object specific motion estimation task.

In the first proposed training scheme, a fully convolutional DNN, CNN, with hour-

glass architecture is trained in an unsupervised way for motion estimation. The input

is the pair of reference and target frames and the output is the motion field. The archi-

tecture is a fully convolutional hourglass neural network with skip connections at the

5

1.3. Overview of the Proposed Methods

encoder side to the corresponding resolution at the decoder side. The training loss is

the widely used motion compensated intensity error linearized based on the first-order

Taylor expansion. Further experiments where the linearization is based on second-

order Taylor expansion show more stability. The training data is pairs of consecutive

frames randomly drawn from human action recognition dataset, UCF101. The classic

multiscale scheme is adopted to help with the estimation of large displacements. The

evaluations show good generalization to unknown synthetic and real datasets.

In the second proposed method, a Siamese CNN was trained in an unsupervised way

for motion estimation, likeNet. Unlike other DNN-based motion estimation methods,

LikeNet solves motion estimation as a classification problem. Each specific displace-

ment vector is assigned a label and the goal is to predict a label that represents the

displacement of each pixel in the reference frame to the target frame. LikeNet re-

ceives as input the pair of reference and target frames and calculates a distribution

over the displacement labels. Each branch of the Siamese architecture is responsible

for calculating a score map for each specific label and receives as input the reference

frame and the target frame which is shifted along the displacement vector correspond-

ing to that label. These displacement vectors have integer components and in our

experiments cover a uniform grid area around centre. The output of each branch is

a similarity map which expresses how successful the shift has been in aligning similar

pixels. During training we aim to maximize the probability of the case where similar

pixels are aligned. During the test, the estimated motion vector for each pixel equals

to the displacement vector under which shifting yields the highest probability. The

classic multiscale scheme is adopted to help with the estimation of large displacements

and also reduce the computational complexity. The similarity measure is based on the

low level features calculated by the first layer of an object recognition DNN, VGG. A

conditional Random Field (CRF) implemented as an RNN [100] is adopted to improve

the quality of the estimated motion field in the lowest scale to prevent the error from

being propagated across scales.

6

1.4. Major contributions

The main drawback of LikeNet is its slow run time. The reason is that although the

LikeNet architecture is fully parallelizable, the available parallel computing resources

are limited and as a result, a considerable part of the computation runs in serial which

slows down LikeNet. In the third proposed method, we propose a method to use

LikeNet as a teacher to train a quicker CNN, QLikeNet. The exploited CNN has an

architecture similar to what is used in the first chapter. During the training, one

branch of LikeNet stacks on top of the CNN. It receives as input the reference frame

and the warped version of the target frame, warped based on the output of the primary

CNN. Its mission is to evaluate the motion field calculated by the primary CNN by

scoring how successful has been the calculated motion field in aligning similar pixels.

For the loss function, we propose to maximize the similarity map calculated by the

branch of the LikeNet. The idea is to maximize the cases where warping operation

aligns similar pixels. We also study the case which the task is object-specific motion

estimation. In our application, we focus on motion estimation of motorcycle helmet

in real scenes.

1.4 Major contributions

We focus on unsupervised training of Deep Neural Networks (DNNs) for motion es-

timation. We were among the first to propose an unsupervised training scheme for

DNNs for motion estimation with [45] being proposed at roughly the same period. We

assume that an unsupervised training scheme has to provide good generalization to an

unknown dataset. Unlike other methods, for evaluations, we focus on the performance

without fine tuning on the target dataset. In this thesis, we make several contribu-

tions, which are summarized below. We consider the evaluation of our contributions

as an important aspect. Therefore, we performed extensive experiments on publicly

available datasets.

• In Chapter 3, for the first time, we present an unsupervised training scheme

7

1.4. Major contributions

for motion estimation. In such an approach, the training data are randomly

drawn from a real dataset, UCF101 human action recognition dataset, without

any information about the underlying motion distribution. The network trained

using the proposed approach has shown to generalize well to an unknown dataset.

We also proposed to exploit classic multiscale approach which has shown to

be effective in the whole literature, in combination with our new DNN-based

technique. The idea of combining with classic principals was later on adopted

by some other state-of-the-art supervised methods [67]. Our proposed method

is concurrent with the method in [45], which is similar to [69], although our

approach and the approaches in [45, 69] are different in architecture, training

loss, and training data.

• In Chapter 4, in contrast to all other unsupervised DNN methods solve motion

estimation as a regression problem we propose to solve motion estimation as a

classification problem. Although solving motion estimation as a classification

problem limits the resolution of the estimation, LikeNet performs better than

the state-of-the-art regression-based methods. The architecture of the proposed

method is 98% smaller than other unsupervised methods in terms of learned

parameters. In this method we propose to use more sophisticated VGG features

instead of commonly used intensity features only for training. Also, for the first

time, we propose to improve the quality of the estimation in lower scales by

adopting conditional random fields (CRFs) implemented as a recurrent neural

network [100]. This approach was at the same time put into practice in one of

the supervised DNN-based method [82].

• In Chapter 5, we propose a new way of training DNNs for motion estimation

that is both fast and accurate. Although the method proposed in Chapter 4

showed to perform well in comparison with other unsupervised methods, the

slower runtime is a drawback. We address this shortcoming by proposing a new

method for squeezing that network in a faster architecture that solves motion

8

1.5. Organisation of the thesis

estimation as a regression problem. Furthermore, we also study the performance

of training a DNN for an object specific motion estimation task, in our case

motion estimation of motorcycle helmet on a rider. For this purpose, we first

train a DNN in an unsupervised way for motion estimation and then fine tune

it in a supervised way on a synthetic bespoke dataset designed for our specific

task.

1.5 Organisation of the thesis

In Chapter 2, we review and compare works related to the problem of motion estima-

tion, then we also provide a brief review of the application of the graphical models for

improving the pixel-level prediction tasks. In Chapter 3, we present our firstly pro-

posed unsupervised method, GradNet. In Chapter 4, we present our second motion

estimation method, LikeNet, that reformulates the motion estimation as a classifica-

tion task and also benefits from the application of graphical models, more specifically

CRFs, for improving the prediction. In Chapter 5, we present our third unsupervised

training technique that is based on squeezing LikeNet in a fully convolutional neural

network. In Chapter 6, final conclusions are drawn, and a discussion of the future

work is given.

Publications

Ahmadi, Aria, and Ioannis Patras. ”Unsupervised convolutional neural networks for

motion estimation.” 2016 IEEE international conference on image processing (ICIP).

IEEE, 2016.

Ahmadi, Aria, Ioannis Marras, and Ioannis Patras. ”LikeNet: A Siamese Motion

9

1.5. Organisation of the thesis

Estimation Network Trained in an Unsupervised Way.” 2018 British Media and Vision

Conference (BMVC)

10

Chapter 2

Related Work

In Chapter 1, we introduced the field of motion estimation. In this chapter, we will

present an overview of the related works in the literature addressing the problem of

motion estimation. It all started with the simultaneous works proposed by Horn and

Schunk [38], and Lucas and Kanade [57]. Horn and Schunk in [38] proposed a clas-

sical optical flow formulation based on which several methods were later proposed to

improve the estimated motion field. We divide motion estimation methods into two

major groups: DNN-based methods and other methods which we refer to as classic

methods.

The chapter is organized as follows. In Section. 2.1 we discuss some of the methods

that do not use DNNs for motion estimation, i.e. classic methods. In Section 2.2,

we review the supervised and unsupervised DNN-based techniques proposed for the

task of motion estimation in the literature. In Section. 2.2.2, we review uni-directional

unsupervised methods for motion estimation which calculate the motion field only in a

forward pass describing how pixels move from the reference frame to the target frame.

In Section 2.2.2, we review bi-directional unsupervised methods for motion estimation

which benefits from calculating the motion field both in the forward and backward

passes. A motion field calculated in a backward pass describes how pixels move from

11

2.1. Classic Methods

the target frame to the reference frame. Bi-directional motion estimation methods

improve the estimation by excluding the occluded area from the training. Finally, we

conclude the related works in Section 2.3.

2.1 Classic Methods

To tackle the problem of motion estimation, one of the main assumptions is that the

dense features, E, describing pixels in the reference frame should not change by a dis-

placement in the target frame. This is referred to as the feature constancy constraint,

Fig. 2.1. The constraint states that,

Figure 2.1: The illustration of the feature constancy constraint.

E(x, y, t) = E(x+ δx, y + δy, t+ δt) (2.1)

where,

δx = uδt

δy = vδt

(2.2)

12

2.1. Classic Methods

where δx and δy are vertical and horizontal velocities and u and v are respectively

horizontal and vertical displacements. The first approach is to penalize the deviation

from the intensity constancy assumption. This is implemented by minimizing the

LData,

LData(u, v) = (Exu+ Eyv + Et)
2 (2.3)

where E refers to intensity features and Ex, Ey, and Et are respectively horizontal,

vertical and temporal derivatives of the intensity features. Equation 2.3, is an approx-

imation based on the first-order Taylor expansion of E(x + δx, y + δy, t + δt) around

(x, y, t) in the motion compensated intensity error. The major problem with solving

equation 2.3 is that this equation is only one constraint to solve for two variables.

Such an under-determined problem has infinite solutions. The first solution to this

problem is to assume that neighboring pixels in a small neighborhood have similar

motion vectors. Then the optical flow constraint is evaluated with respect to all pixels

in this small neighborhood. Lucas and Kanade [57] first proposed to use quadratic

deviations in a least square approach, equation 2.4.

min
u,v

∑
x′∈N(x)

(Ex(x′)u+ Ey(x
′)v + Et(x

′))2 (2.4)

where N(x) denotes a neighborhood around x. Solving this equation results in a

flow field that is subpixel accurate and the effect of higher order terms in the Taylor

expansion can be ignored. More specifically, Lucas Kanade method follows a gradient

descent method to minimize the difference between grey values in the reference frame

and their correspondences in the target frame.

At the same time, Horn and Schunk [38] proposed a method to address the under-

determined problem. Horn and Schunk also assume that the motion field is smooth.

13

2.1. Classic Methods

The smoothness assumption also takes care of the situation where there is no gradient.

Smoothness is applied by minimizing the term, LSmooth,

LSmooth(u, v) = (∂u/∂x)2 + (∂u/∂y)2 + (∂v/∂x)2 + (∂v/∂y)2 (2.5)

Based on the Horn and Schunk method, the total loss to minimize is a weighted sum

of LData and LSmooth,

L =

∫
(LData + γLSmooth)dX (2.6)

where X = (xy) and γ weights the smoothness term. Choosing a quadratic penalty

function, f(x) = x2, as in [57, 38] makes the optimization much easier, although it has

a strong influence on outliers. The next option would be to use robust statistics [40]

to reduce the influence of outliers. L1 norm [16], the Tukey function [64], the Lorent-

zian norm [13], and the Leclerc’s function [60] are robust substitutions to quadratic

penalty function. Horn and Schunk minimize their proposed energy using variational

approaches [38].

According to [9], variational methods have been dominant until the application of

deep neural networks. There are several advantages to variational methods. One is

that in variational methods, it is possible to have several assumptions in one optim-

ization problem. The other is that variational methods yield dense flow field, whilst

many of other methods need interpolation as a post-processing step to densify the

sparse estimated flow field. The estimation of motions with large magnitude was

yet an issue which was later solved by embedding a motion estimation method in a

multiscale coarse-to-fine scheme. The history of using spatial pyramid goes back to

[19] and was first used for motion estimation in [30]. Spatial pyramids are also used

14

2.1. Classic Methods

in other computer vision applications, more specifically by deep neural networks such

as in [23] where generative image models are learned.

Since Horn and Schunk, some methods have been proposed to improve the data term

by introducing a pre-processing step using Gaussian filtering [16, 18, 101]. Also, some

other methods were proposed to add to the robustness against illumination changes.

These methods can be categorized into three main schemes:

Structure texture decomposition. Based on the idea in [7], Wedel et al. [92]

used the Rudin-Usher-Fatemi technique [74] to separate the texture from the structure.

The idea is that illumination change affects mainly the structure although dropping

the structure means to loose an information that can be useful.

Color space. Methods in this scheme estimate the motion field in color spaces that

are more robust towards the illumination changes. Some examples in this direction

are to use HSI color space [87, 31], the normalized RGB channels [31], and the HSV

space [101, 62].

More robust constancy constraints. Brox et al [16] propose to add an extra

constraint, gradient term, to the loss function which makes the method robust against

intensity value changes. Gradient term penalizes the deviation from the constant

gradient of the intensity. Accordingly, the data loss updates to,

L =

∫
ψ(|E(X + F, t+ δt)− E(X, t)|2 + γ|∇E(X + F, t+ δt)−∇E(X, t)|2)dX

(2.7)

15

2.1. Classic Methods

where ψ(x) =
√
x2 + ε is the Charbonier penalty function which is the robust version

of L1 norm. Minimizing the energy function proposed in [16] allows for estimation of

accurate dense motion field for small motions. Papenberg et al. [66] suggested that

constancy of the Hessian and the Laplacian are also useful. Zimmer et al. [102] used

similar constraints [16] but in HSV space to tackle the problems caused by the illumin-

ation changes. Mohammed et al. [63] suggested using a texture constancy constraint.

Recently, there has been considerable interest in using feature matching to add ro-

bustness to the estimated motion field. The SIFT-flow method [54] employs SIFT [56]

features to estimate the motion field. Although, using SIFT features do not allow

for estimation of small displacements. Brox et al. [17] and Weinzaepfel et al. [93]

use descriptors matched between two frames integrated into a variational approach.

Brox et al. in [17] combines the advantage of both energy minimization methods

which yield dense motion field for small motions and descriptor matching which al-

lows finding large displacements. Brox et al. [17] , compared to [16], propose an

extra term in the smoothness loss that preserves the high frequencies - edges. Brox et

al. [17] use a segmentation method to find regions in the frame and produce region

descriptors that are later used to find a sparse set of hypothesis for correspondences.

These hypotheses, initial matches, are then integrated into a variational approach.

Their energy function is similar to [16] but, with one additional term which integ-

rates the correspondence information. Weinzaepfel et al. in [93] first propose a new

non-rigid matching algorithm which can retrieve smooth dense correspondence and

then they suggest a method for combining the matches with a variational approach for

motion estimation. The method proposed in [70] has three steps: First, to find the

matched features between the two frames which forms a sparse set. Second, to perform

densification of this sparse set of matches by computing a sparse-to-dense edge-aware

interpolation. Third, they perform one step of variational energy minimization using

the dense interpolation as initialization. Although this method does not suffer from

16

2.1. Classic Methods

previous shortcomings, like the other, it is still relaxing handcrafted constraints. There

is a drawback with the methods which use feature matching and that is they rely on

salient points and false matches are unavoidable. Stoll et al. [79] suggest an adaptive

method for the integration of feature matching and variational part to mitigate the

effect of false matches. Zin [15] applied segment matching to improve the matching

component. Revaud et al. [71] used HOG features to reduce false matches.

Model-based approaches dominated the motion estimation field for years. Even

though they are very successful in some cases, their performance is limited by the

approximate assumptions they make about image brightness and spatial structure

of the flow. In parallel, machine learning techniques have been used before in the

estimation of optical flow. For example, local statistics of optical flow were modeled

using Mixtures of Gaussian models [73]. In [81], in addition to studying Statistics

of optical flow, regularizers were learned using a mixture of Gaussians. The method

proposed in [14] assumes a motion field is a combination of some principal components

and learn the coefficients in the combination. Kennedy and Taylor [48] classify the

motion field among several poorly estimated flow fields. Recently, to overcome the

limitations of model-based approaches, DNN-based algorithms were exploited to learn

to estimate motion fields from the data. As shown by our experiments in the next

chapter, we show that if a DNN is trained in an unsupervised way using a classic loss

function, Horn and Schunk method [38], it performs better than the classic method.

Still, there is a gap between the performance of more recent classic and unsupervised

DNN-based methods. This gap can be addressed by introducing a more sophisticated

loss function and more expressive and practical architecture.

17

2.2. DNN-based Methods

2.2 DNN-based Methods

Recently, Deep Neural Networks (DNNs) have shown to have promising performance in

several Computer Vision problems [52]. The exploited DNNs, more specifically Con-

volutional Neural Networks (CNNs), are high-capacity models that approximate the

complex, non-linear transformation between input imagery and the output. Success

with CNNs has relied almost exclusively on fully-supervised schemes, where the target

value (i.e., the label) is provided during training, although unsupervised methods are

growing more and more. Several supervised and unsupervised training techniques have

been proposed for the training of the DNNs for motion estimation which will be briefly

reviewed in this section. Supervised methods have shown that a DNN, with a well-

designed architecture, can achieve promising performance if trained on a populated

enough dataset with ground truth [41, 28, 82]. Supervised methods mainly minimize

the Average End-point Error (AEE) for training. On the other hand, unsupervised

methods minimize a proxy loss function which minimization, ideally, minimizes the

average end-point error. A well-designed cost function is one of the key factors in the

unsupervised training of DNNs for motion estimation.

2.2.1 Supervised Methods

Training a CNN for motion estimation in a supervised way means that given a set of

frame pairs and their ground truth motion fields, a learning-based method for motion

estimation can be learned that can estimate the motion field for an unknown pair

of frames. Let {I1k, I2k ∈ Rw×h×3, Fk ∈ Rw×h×2}Nk=1 represent the training dataset

where I1k and I2k are the input pair of frames, first frame and the second frame, and

Fk is their corresponding ground truth motion field. The aim is to learn a model H

such that H(I1k, I2k) = Fk which can estimate the motion field for an unseen frame

pair during the test time. Mainly, Average End-point Error (AEE) is used to evaluate

the performance of a motion estimation algorithm. This measure is also minimized to

18

2.2. DNN-based Methods

train a DNN. AEE is defined in the following,

AEE =
N∑
k=1

|F̂k − Fk|2 (2.8)

where |.|2 is the mean square error and F̂k is the motion field estimated by the DNN.

To the best of our knowledge, all of the DNN-based supervised methods solve motion

estimation as a regression problem and rely on minimization of Eq. 2.8 for training.

Since obtaining ground truth motion field for real scenes is not easy, supervised meth-

ods rely on synthetically made datasets. The first and One of the commonly used

datasets for training is the flying chairs dataset [25]. This dataset is explained here as

it is used by most of the supervised an unsupervised methods for training. There are

other datasets which are mainly used for evaluation and are described in section 3.3.

This dataset is obtained by overlaying the randomly parameterized affine transformed

version of a rendered set of 3D chair models [6] on random background drawn from

Flickr dataset [36]. Figure 2.2 and Fig. 2.3 respectively illustrate samples from flying

chairs dataset [25] and the general scheme most of the DNN-based methods follow

for motion estimation. For visualization purposes, the direction and magnitude in the

motion field are encoded according to a color wheel.

The first supervised method was proposed by Dosovitskiy et al. in [25] for motion

estimation. FlowNet is very similar to DeepFlow [93] as both methods aggregate fea-

tures from fine to coarse using convolution and max-pooling, although in DeepFlow no

parameter is learned. FlowNet has shown a performance that was close to the state-

of-the-art classic methods in a number of synthetically generated image sequences.

Dosovitskiy et al. in [25] propose two Convolutional Neural Networks (CNN) trained

for motion estimation which differs in their early convolutional layers.

FlowNet Simple, FlowNetS, is composed of conventional convolutional layers which

19

2.2. DNN-based Methods

Figure 2.2: Two samples from Flying Chairs dataset [25]. The pair of images and the
visualization of their corresponding groundtruth motion field.

Figure 2.3: The general scheme for motion estimation using DNNs.

receive the input pair of images as 2× 3 channels of data and calculates 2 channels of

motion field in the output. The architecture is hourglass-like and is composed of two

parts, the encoder and the decoder, Fig. 2.4 upper architecture. The encoder builds

abstract representations through 9 convolutional layers with 6 down-sampling steps

of factor 2. The decoder builds towards high-resolution motion field layer by layer

through 5 convolutional layers with up-sampling. Each layer of the decoder receives

information through skip connections from the same scale on the encoder side. Each

layer of the decoder side outputs a motion field for which it receives supervision and

then is up-sampled and concatenated with the representations calculated by its next

layer.

20

2.2. DNN-based Methods

FlowNet Correlation, FlowNetC, is very similar to FlowNetS. The difference is that

the two input frames are fed into two Siamese streams, each composed of 3 convolu-

tional layers that share parameters. The idea is that first, meaningful representations

are first extracted from the input frames. The computed representations are then

joined through a correlation layer and the rest is similar to FlowNetS architecture, Fig.

2.4 lower architecture. Both FlowNetS and FlowNetC have skip connections from the

encoding side of their architecture to the decoding side, which helps to import lower

level features to higher layers to mainly keep the higher frequency information. The

idea behind this kind of architecture is to learn strong features at multiple scales and

abstractions and to ease finding the actual correspondences based on these features.

Most of the supervised and unsupervised DNN-based methods are inspired by this

architecture. FlowNet is reported to outperform some of the classical state-of-the-art

methods, table 3.1. FlowNet uses FlyingChair dataset [6] for training and minimize

AEE as training loss. As reported, FlowNetC overfits easier to the kind of data it is

provided for training.

Figure 2.4: The two FlowNet architectures: FlowNetS (top) and FlowNetC (bottom).
The figure is from [25].

21

2.2. DNN-based Methods

Flownet 2.0 [41] is an improvement to FlowNet and tries to address the shortcomings

of FlowNet. More specifically, FlowNet 2.0 improves the estimation of small displace-

ments and the quality of the estimated motion field. These improvements are realized

by stacking multiple networks that are specialized in the estimation of both large and

small displacements. A cascade of FlowNetC followed by two FlowNetS is trained

to estimate large displacements, each one improving the estimation of the previous

one. The first one receives, as input, a pair of frames and the latter ones additionally

receive the output of the previous network, the motion compensated intensity error,

and the warped version of the second frame. Also, a variation of FlowNetS is trained

to estimate small displacements. Another network is trained to fuse the output of

the cascade and the small displacement network. The whole framework is end-to-end

trainable and significantly increases the quality of the estimated motion field, of course

by slightly sacrificing the speed. A dataset scheduling is followed that improves the

results. FlowNets are initially trained on FlyingChairs [6] and then fine-tuned on Fly-

ingThings3D [58] and then fine-tuned on a mixture of both datasets. They show that

this schedule and order of using the datasets is important as FlyingChairs is simpler

and helps to learn basic matching concepts before making any confusing priors on

more complicated displacements in 3D space. Finetuning on FlyingThings3D which is

more realistic complements the already learned concepts. Although these datasets do

not characterize real-world data but allow for generating arbitrary amounts of samples

with custom properties. Figure 2.5 illustrates the architecture used by FlowNet 2.0.

Another method has been proposed by Ranjan and Black [67] which deals with

large displacements by employing DNNs in a classic coarse-to-fine scheme. This way

the number of the learned parameters reduces significantly compared to FlowNet yet

achieving a higher performance compared to FlowNet. The coarse-to-fine scheme uses a

spatial pyramid. The idea is that in the lower resolution, the displacements between the

input pair are smaller and though the context can be captured easily by convolutional

22

2.2. DNN-based Methods

Figure 2.5: Schematic view of complete FlowNet2.0 architecture: To compute large
displacement optical flow multiple FlowNets are combined. Braces indicate concatena-
tion of inputs. Brightness Error is the difference between the first image and the second
image warped with the previously estimated flow. To optimally deal with small dis-
placements, smaller strides are introduced in the beginning and convolutions between
up-convolutions into the FlowNetS architecture. Finally, a small fusion network is
applied to provide the final estimate [41]. ”Image 1” and ”Image 2” are respectively
reference frame and target frame.The figure is from [41].

filters in a ConvNet. The motion is estimated at each level of the pyramid, scaled

and up-sampled to be used in the next scale. Following the classic approaches [80],

the motion field obtained from the previous level is used to warp the second frame

towards the first frame which is used with the first frame as a pair to be fed again to

the motion estimation DNN. The estimated motion field is used to update the motion

field from the previous level before moving to the next level. This continues until the

motion field in the main resolution is calculated. The diagram of the multiscale scheme

is illustrated in Fig. 2.6.

The difference between SpyNet [67] and other supervised methods up to this point

is that instead of estimating a full motion field, the DNN is meant to predict the

flow increment at that level. More specifically, the network learns to estimate residual

flow at each pyramid level. The network is trained from coarse to fine to learn the

flow correction at each level and add this to the flow output of the network in the

previous level. This way, the estimated displacements stay small in each level. Figure

2.7 illustrates the SpyNet framework.

23

2.2. DNN-based Methods

Figure 2.6: The schematic for classic multiscale scheme for motion estimation. Sk
represents the scaling factor in the pyramid and k indexes the level.

SpyNet shows that using classic principles in combination with DNNs is potentially

beneficial. However, some important classic principles have been missing, one of which

is that the DNN-based methods all receive as input the raw images. Most of the classic

methods, preprocess the input and operate based on the extracted features that are

robust towards the shadow, or light changes [91, 9].

PWC-Net [82] addresses these shortcomings by making use of classic principles.

The method follows the classic multiscale scheme. In each scale, first, a convolutional

neural network calculates more descriptive representations in different scales for each

of the input pair of frames. These representations are then used to calculate a cost

24

2.2. DNN-based Methods

Figure 2.7: The network G0 computes the residual flow v0 at the highest level of the
pyramid (smallest image) using the low resolution images {I1

0 , I
2
0}. At each pyramid

level, the network Gk computes a residual flow vk which propagates to each of the
next lower levels of the pyramid in turn, to finally obtain the flow V2 at the highest
resolution. The figure is from [67].

volume arguing that the cost volume is a more discriminative representation of the

disparity than raw intensity features. A cost volume stores the data matching costs

for relating corresponding pixels in the two input frames [39]. Cost volumes have

been used for motion estimation before as well [97, 21], however, the cost volume has

been used in a single scale which adds significantly to the computational load. The

method proposed in [82] exploits the cost volume in several levels of a pyramid to

avoid the computational load while keeping the benefits of using a cost volume. The

computed cost volume is then fed to a convolutional neural network which calculates a

motion field. The motion field is then refined by another network. the refined motion

field is up-sampled and up-scaled for further refinement in the next scale. Figure

2.8 summarizes the key components of PWC-Net and compares it beside the classic

coarse-to-fine approaches [16, 38, 80, 13].

In Fig. 2.8, the cost volume is generated by calculating the correlation between the

features from the first frame and the warped version of the features from the second

frame. The CNN that estimates the motion field, receives as input the cost volume,

the features from the first frame and the up-sampled motion field from the previous

level of the pyramid and outputs the flow field. The number of feature channels at

each convolutional layer is 128, 128, 96, 64, and 32. This architecture is kept fixed for

25

2.2. DNN-based Methods

Figure 2.8: On the left, classic coarse-to-fine scheme and the related energy minimiza-
tion. On the right, feature pyramid and refinement at one pyramid level by PWC-Net.
The figure is from [82].

all levels of the pyramid.

2.2.2 Unsupervised Methods

Supervised training of the DNNs requires a lot of training data. Since it is difficult to

obtain dense motion field for real data, all the supervised DNN-based methods rely

on synthetically generated datasets, as it is easy to generate samples in large amount

[58, 41, 28]. Some of the datasets that are commonly used for training and evaluation

will be explained in details in the next chapter. However, the synthetic dataset does

not characterize real data and generalizing to real datasets is still a challenge. Several

unsupervised trained networks have been proposed that try to address this issue.

Although the evaluation is still based on the AEE, unsupervised methods, unlike

the supervised methods, minimize a proxy loss function that ideally minimizes the

AEE. The proxy loss functions mainly penalize the deviation from the classic feature

constancy assumption, Eq. 2.9.

MCIE =
N∑
k=1

|warp(I2k, F̂k)− I1k|2 (2.9)

where warp(I2k, F̂k) returns the warped version of I2k with respect to the motion field

Fk. In most of the unsupervised methods, warping is implemented using the spatial

transformer layer [42]. This method estimates the intensity value in the destination

26

2.2. DNN-based Methods

based on the bilinear interpolation of the surrounding neighbors. Eq. 2.10 expresses

how the interpolation is performed.

V C
i =

H∑
n

W∑
m

Icnmmax(0, 1− |xsi −m|)max(0, 1− |ysi − n|) (2.10)

where (xsi , y
s
i) defines the spatial location in the input where a sampling kernel is

applied to get the value at a particular pixel in the output V .

Unsupervised training of DNNs for motion estimation started with uni-directional

methods which estimate the motion field in only one pass. The bidirectional methods

which estimate the motion field in forward and backward passes are more accurate as

two-pass estimation allows for motion consistency check as well as taking into consider-

ation the occluded area. Forward pass estimates the displacements from the reference

frame to the target frame. Backward pass estimates the displacements from the target

frame to the reference frame.

Uni-directional Training Techniques

The first unsupervised DNN-based methods were proposed in [2, 45]. Our method [2]

minimizes the classic intensity constancy constraint and linearisation of the warped

term is based on the first order Taylor expansion. The DNN learns to estimate motion

during the training and embeds in a multiscale scheme during the test. However,

this method is not easy to train and there is no mechanism to improve the quality

of estimation in the lower resolutions to prevent the propagation of the errors across

scales. [45] adopts a similar approach, however instead of linearisation of the motion

compensated intensity differences, they utilise a spatial transformer layer [42].

[69] adopt the FlowNetS architecture [25] and train it by penalizing the deviation

from the intensity constancy assumption linearized using the method proposed in [42].

The loss function also considers penalizing the deviation from the gradient constancy

27

2.2. DNN-based Methods

assumption and also assumes that the motion field has to be smoothness. The archi-

tecture, similar to FlowNetS, has skip connections between the encoder side and the

decoder side. The motion field is estimated in lower scales of the architecture where

the supervision applies during the training and passed to the next scale after being

upscaled. This helps with the estimation of large displacements. However, the up-

scaling is embedded in the architecture and therefore any modification in the number

of up-scaling layers requires further fine-tuning. All of the methods above treat motion

estimation as a regression problem, where the estimation output is a map with 2 chan-

nels, corresponding to horizontal and vertical displacements, with spatial dimensions

equal to those of the input images.

Bi-directional Training Techniques

Although, several techniques have been proposed for unsupervised training of DNNs

for motion estimation, yet there is a large gap between the supervised and unsupervised

methods. To further improve the unsupervised training, some methods are proposed

which try to take the occlusion into consideration during the training [90, 59]. All of

them first try to identify the occluded area and train only based on the gradients from

the non-occluded regions. Otherwise, the DNN would falsely learn to move pixels to

the occluded area. Addressing this has shown to improve the accuracy during testing

[90, 59].

The end-to-end unsupervised approach proposed in [59] builds on recent optical flow

CNNs [25, 41] and trains the architectures in an unsupervised way using the photomet-

ric loss similar to [45]. To mitigate the occlusion effect during the training, the optical

flow is estimated bidirectional in forward and backward direction, see Fig. 2.9. The

difference between the forward and backward passes is the order in which the reference

frame and the target frame are fed to the network. The occlusion detection is based

on the forward-backward consistency assumption proposed in [83]. For occlusions in

28

2.2. DNN-based Methods

forward direction, the occlusion flag ofx is defined to be 1 whenever the constraint,

|wf (x) + wb(x+ wf (x))|2 < α1(|wf (x)|2 + |wb(x+ wf (x))|2) + α2 (2.11)

is violated, and 0 otherwise. In equation 2.11, wf and wb respectively denote the

forward and backward motion fields. For the backward direction, the backward flag

obx is defined in the same way as in equation 2.11, having wf and wb exchanged. By

integrating the occlusion flags in the training phase, the conventional data loss turns

into,

ED(wf , wb, of , ob) =
∑
x∈P

(1− ofx).ρ(fD(I1(x), I2(x+ wf (x))))+

(1− obx).ρ(fD(I2(x), I1(x+ wb(x))))+

ofxλp + obxλp

(2.12)

where fD(I1(x), I2(x′)) measures the photometric difference between two correspond-

ing pixels x and x′ in I1 and I2, and ρ(x) is the robust Charbonier penalty function.

In equation 2.12, λp represents a constant penalty which penalizes all pixels being

considered as occluded, trivial solution. A major difference with the method proposed

by Jason et al. [45] is that their loss function penalizes the deviation from the constant

intensity assumption which is invariant to illumination changes, whereas illumination

changes are very common in a natural scene [88]. Thus, I in equation 2.12 represents

the ternary census transform [98, 78]. The census transform has shown to be robust

towards additive and multiplicative illumination changes [33]. Another difference of

UnFlow [59] with [45] is that the smoothness term in UnFlow is based on second-

order smoothness constraint [86, 99] which provides more effective regularization. The

schematic of UnFlow [59] is illustrated in figure 2.9.

Wang et al. [90] also proposed a method that models the occlusion during the

29

2.2. DNN-based Methods

Figure 2.9: Schematic of the proposed unsupervised loss for training UnFlow [59]. The
data loss compares flow-warped images to the respective original images and penalizes
their difference. The figure is from [59].

unsupervised training. The occlusion identification works based on the fact that in the

backward pass, there are some pixels in the target frame that have no source pixel due

to occlusion. A reversed bilinear sampling is used to calculate the distribution of the

displaced pixel to its nearest neighbors, range map V [4]. Accordingly, the occlusion

map, O(x, y), is calculated as O(x, y) = min(1, V (x, y)). The core of the training

loss function consists of two components: a photometric loss (LP) and an edge-aware

smoothness loss (LS). The integration of the occlusion map into the training function

is done as in Eq. 2.13 as the intensity term and in Eq. 2.16 as the gradient term.

L1
P =

∑
i,j

ψ(Ĩ1(i, j)− I1(i, j)).O(i, j)

 /
∑
i,j

O(i, j)

 (2.13)

L1
P =

∑
i,j

ψ(∇Ĩ1(i, j)−∇I1(i, j)).O(i, j)

 /
∑
i,j

O(i, j)

 (2.14)

where Ĩ denotes the warped version of I. Multiplying the occlusion map, O(i, j),

with the motion compensated intensity and gradient of intensity errors encourages the

backpropagation of the error during the training to more focus on the non-occluded

areas. This relieves the network from finding correspondences for the areas that are

occluded in any of the input frames which is said [90] to improve the accuracy.

30

2.2. DNN-based Methods

Two smoothness terms are exploited where one encourages smoothness through

first-order δdF12 and the other one through the second-order derivatives, δ2
dF12, of the

motion field. The exponents suppress the smoothness where there is an edge in the

spatial domain in order to respect high frequencies, edges, in the estimated motion

field.

L1
S =

∑
i,j

∑
d∈x,y

ψ(|δdF12(i, j)|e−α|δdI1(i,j)|) (2.15)

L2
S =

∑
i,j

∑
d∈x,y

ψ(|δ2
dF12(i, j)|e−α|δdI1(i,j)|) (2.16)

where ψ is the Charbonnier penalty formula ψ(s) =
√
s2 + 0.0012 over the non-occluded

regions with both image brightness and image gradient. The final training loss is the

sum of the above four terms,

L = γ1L
1
P + γ2L

2
P + γ3L

1
S + γ4L

2
S (2.17)

A major difference between [90] and other unsupervised techniques that use [42] is

that the interpolation is developed to search in a larger area when back-propagating

the training error through the warping operation.

The adopted architecture is a modified version of the FlowNetS. In FlowNetS, in

the decoder side of the architecture, each layer receives the up-sampled flow field

estimated in the previous scale concatenated with the deconvoluted representations of

the previous scale and the representations from the corresponding encoder side. In

the modified version, each decoder-side layer receives similar input replacing the up-

sampled motion field from the previous scale with some auxiliary representations. The

31

2.2. DNN-based Methods

auxiliary representations are the output of a 5 layer CNN, all layers stride 1, which

receives as input the down-scaled reference frame, target frame, target frame warped

with the motion field estimated in the previous scale and the motion compensated

intensity error. The auxiliary representations consist of 2 channels. The estimated

motion field in each scale is then added to the up-sampled version of the motion field

estimated in the previous scale to form a residual block. Other scales are modified

accordingly. The modification is shown in Fig. 2.10. Image16 and Image26 are input

images down-sampled 64 times.

Figure 2.10: The modification to the FlowNetS structure at one of the decoding stage -
stage 6. On the left, the original FlowNetS structure is shown. On the right, the modi-
fication of the FlowNetS structure is shown. conv6 and conv51 are features extracted
in the encoding phase and named after [25]. The figure is from [90]

The training schematic is shown in Fig. 2.11. It contains two FlowNetS [25] ar-

chitectures with shared parameters. One estimates forward and the other estimates

backward optical flow respectively F12 and F21. The forward warping module generates

an occlusion map from the backward flow. The backward warping module generates

the warped image that is used to compare against the original frame 1 over the non-

occluded area. The part that calculates forward optical flow has the aforementioned

smoothness term in its training loss function in addition to the photometric loss func-

32

2.3. Conclusion

tion. Although the supervision that the backward CNN receives comes from the fact

that its output is used for calculating the occlusion map.

Figure 2.11: The network architecture used for occlusion aware technique, composed
of two FlowNetS. The figure is from [90]

Although supervised DNN-based algorithms have shown to have good performance,

they require a large amount of ground truth optical flow for training the network’s

parameters in order to get reasonable accuracy. Labeling real data is expensive and

not easy and synthetic data does not fully characterize real data. Provided data,

still there is no guarantee that the trained model would perform well enough in an

unknown scenario. The unsupervised methods have recently shown the possibility to

achieve promising performance. Although they do not need ground truth for training,

there is still a large gap between them and their supervised counterpart in terms of

performance.

2.3 Conclusion

So far, many classic methods, methods that do not use DNNs, have been proposed for

motion estimation. All the classic methods, solve an optimization problem for each

sample. The minimized loss function is composed of a few constraints and thus can be

under-constrained. Developing an approach that can learn motion estimation directly

33

2.3. Conclusion

from the data is desired. Deep Neural Networks have shown to have promising per-

formance in different applications, more specifically, pixel level prediction tasks such as

motion estimation. CNNs are high capacity DNNs that are able to model the nonlinear

relationship between the input and the output. The problem with supervised training

of DNNs is that a large amount of labeled training data is required and obtaining

ground truth motion field for many real scenes is difficult. Most of the unsupervised

methods rely on synthetically generated datasets for which the ground truth can be

obtained in a large number. Although synthetic data does not characterize real data,

primary supervised DNNs trained on synthetic data has shown to perform close to

state-of-the-art classic methods. More recent supervised methods benefit from classic

principles to improve performance. In parallel, to address the problem of the labeled

data, unsupervised motion estimation techniques have been proposed. Unsupervised

methods minimize a proxy loss function whose minimization ideally minimizes the

AEE and is mainly based on the classic principles. The loss functions used for unsu-

pervised training of DNNs mainly penalize the deviation from the feature constancy

assumption. Unsupervised techniques started with uni-directional methods which es-

timate the motion field in one pass. Recently, bi-directional methods have shown to

have promising performance. Bi-directional methods estimate the motion field in both

forward and backward passes which help with consistency check and modeling the

occlusion.

34

Chapter 3

GradNet: Gradient-based

Unsupervised Training of Deep

Neural Networks for Motion

Estimation

In this chapter, we present our firstly proposed method for unsupervised training of

CNNs for motion estimation. We realize our unsupervised training scheme by exploit-

ing a classical cost function which builds on the widely used optical flow constraint

proposed by Horn-Schunk [38]. Our major difference to Horn-Schunk based methods

is that the cost function is used only during training and without regularization. Once

trained, given a pair of frames as input the CNN gives at its output layer an estimation

of the motion field. The cost function is differentiable with respect to the unknown

motion field and, therefore, allows the backpropagation of the error and the end-to-

end training of the CNN. Furthermore, we improve the way the intensity constancy

constraint introduced by Horn and Schunk is relaxed and show how our improvement

connects with the spatial transformation technique proposed by Jaderberg et al. [42]

used by other unsupervised methods [69, 90].

35

3.1. Method

In order to help with the estimation of motions large in magnitude, we embed

the proposed trained network in a classical coarse-to-fine multiscale scheme. Merging

DNNs with long proven classical principles was adapted by supervised methods as

well later in [67, 82]. We train our CNN using randomly chosen pairs of consecutive

frames from the real dataset UCF101 [77] with no information on groundtruth motion.

The trained network is then evaluated on unknown real and synthetic datasets. Since

our loss function works based on the gradients of the input, we name our trained

network GradNet. Figure 3.1 illustrates the overview of the training and test of our

first proposed DNN-based motion estimator, GradNet.

Figure 3.1: The overview of the training and test of GradNet. The green rectangle
encloses what is involved during the test. The yellow rectangle encloses what is involved
during the training.

3.1 Method

At the heart of all motion estimation methods is the minimization of the difference

between features extracted at a certain location (x, y) in the reference frame at t and

its correspondence in the target frame at t + dt. The classic Horn and Schunck [38]

method penalizes the deviation from the assumption of constant intensity, that states

that the intensity at a pixel in the reference frame at time t and the intensity at its

correspondence at time t+ dt are the same. Accordingly, the goal is the minimization

36

3.1. Method

of the Motion Compensated Intensity Error (MCIE), that is,

ED(F) =

M∑
x,y=1

|Iu(x,y),v(x,y),∆t(x, y, t)− I(x, y, t)|2 (3.1)

where M is the number of pixels in each of the input frames and,

Iu(x,y),v(x,y),∆t(x, y, t) , I(x+ u(x, y), y + v(x, y), t+ ∆t) (3.2)

In Eq. 3.1, I(x, y, t) is the intensity at pixel (x, y) at frame t, and F (x, y) , u(x, y)

v(x, y)

 is the unknown motion vector at pixel (x, y). Clearly, F has two compon-

ents u(x, y) and v(x, y) that are respectively the horizontal and vertical displacements

of the pixel with coordinates (x, y). From now on, for convenience, we will remove the

summation and write the equations for one pixel, unless mentioned otherwise.

We propose to train GradNet by minimizing Eq. 3.1 in a way that the input to the

network is the pair of Iu(x,y),v(x,y),∆t and I and the output is F . For a computationally

feasible backpropagation of error during the training, the loss function has to be dif-

ferentiable with respect to F . This would be possible if the loss is linear with respect

to the network’s output. We first study the case where Eq. 3.1 is linearized using a

first-order Taylor expansion and then we study the case which the expansion is of a

higher order. We also show the connection between the higher order Taylor expansion

and the widely used interpolation technique proposed by Jaderberge et al. [42].

3.1.1 First-order Taylor expansion

We first linearize Eq. 3.1 using the first-order Taylor expansion of the warped target

frame Iu,v,1. The Taylor expansion is performed with respect to the horizontal, vertical

37

3.1. Method

and temporal displacements. Based on the literature, the first-order Taylor expansion

leads to an approximation of Eq. 3.1, Ê1st
D = |uIx + vIy + It|2, where Ix, Iy and It

are respectively the horizontal, vertical and temporal intensity derivatives of the first

frame. Minimizing this equation penalizes the deviation from the intensity constancy

assumption. In the equation above and later on, we may omit the pixel coordinates for

notation simplicity. During the training we use the more robust Charbonnier penalty

function, ρ(x) =
√
x2 + ε, which is a differentiable variant of the robust convex function

L1 norm. ε represents a small number, in our experiments ε = 0.001. The final loss

function would be,

Ê1st
D =

√
(uIx + vIy + It)2 + ε (3.3)

While there are many formulas for approximate differentiation [5, 34], we use the

kernels that are used in the method proposed by Horn and Schunck [38]. Figure 3.2

illustrates the two-channel kernels that perform on the inputs, which are grayscale, to

calculate the horizontal derivatives, Ix, and vertical derivatives, Iy respectively on the

left and on the right-hand side. The temporal derivative It is calculated by simply

subtracting the reference frame from the target frame.

0 0 0

0 -1
4

1
4

0 -1
4

1
4

0 0 0

0 -1
4

1
4

0 -1
4

1
4

0 0 0

0 -1
4 -1

4

0 1
4

1
4

0 0 0

0 -1
4 -1

4

0 1
4

1
4

Figure 3.2: On the left is the kernel that is used to calculate the horizontal derivatives
and on the right is the kernel that is used for calculation of the vertical derivatives.

38

3.1. Method

Derivative of the Loss with Respect to the Weights

The minimization of the loss is computationally tractable only if the derivative of the

loss with respect to F can be calculated in a closed form. Since, the motion field F is

a function of the weights w of the CNN the loss, Ê1st
D , is also a function of the CNN

weights. More importantly, our loss function allows us to calculate the derivatives of

it with respect to the network weights. Specifically, using the chain rule,

∂Ê1st
D

∂w
=
∂Ê1st

D

∂F

∂F

∂w
. (3.4)

The second part, that is ∂F
∂w , is the partial derivatives of the output F of the CNN

with respect to its weights w. This can be calculated in a classical manner using the

standard form of the backpropagation algorithm.

∂Ê1st
D

∂F
=

∂Ê
1st
D
∂u

∂Ê1st
D
∂v

 =

∑M

x,y=1
Ix(uIx+vIy+It)√
(uIx+vIy+It)2+ε∑M

x,y=1
Iy(uIx+vIy+It)√
(uIx+vIy+It)2+ε

 . (3.5)

3.1.2 Second-order Taylor expansion

The first-order Taylor expansion has been the most widely used technique in classical

methods. Since the classical methods solve an optimization problem for each sample,

using a more accurate higher-order expansion is not computationally beneficial. Al-

though it is not a problem in case of DNNs as once trained, only the DNN is applied

during the test time. We will also show later, Fig. 3.4, that a DNN trained using

a higher-order expansion performs better compared to when it is trained using the

first-order expansion. In this section, we suggest using a higher-order Taylor expan-

sion when training GradNet so that the calculation of the derivatives of Eq. 3.1 with

respect to unknowns u and v is feasible. Furthermore, in the case of the first-order

expansion, expanding around x and y requires the u and v to be small. In this section,

we propose the expansion to be around (x, y, t) to remove the small motion constraint

39

3.1. Method

in the case of first-order expansion. We propose a second-order expansion along spatial

axis, x, y, and a first-order expansion along the time axis, t. To describe our higher

order expansion, we first rewrite Eq. 3.1 as follows,

ED(F) = |I(x+ bu(x, y)c+ α,y + bv(x, y)c+ β,

t+ γ)− I(x, y, t)|2
(3.6)

where

∀α, β ∈ [0, 1]

α(x, y) , u(x, y)− bu(x, y)c

β(x, y) , v(x, y)− bv(x, y)c

γ = 1

(3.7)

The approximation of ED becomes,

Ê2nd
D (F) = |T (F)|2 (3.8)

where,

T (F) = αIx + βIy + It+

1

2!
(αβIxy + αIxt + βIyt + α2Ixx + β2Iyy)

(3.9)

In Eq. 3.9,we calculate Ix, Iy, Ixy, Ixx, Iyy by using the following derivative filters

respectively, 1
2

[
0 −1 1

]
, 1

2

0

−1

1

,

0 0 0

0 1 −1

0 −1 1

,

[
1 −2 1

]
, and

1

−2

1

 at point

40

3.1. Method

(x, y, t). It is calculated by subtracting I2 from I1. Ixt and Iyt are calculated using the

combination of the already defined operations, Ix, Iy, and It .

Derivative of the Loss with Respect to the Weights

Similar to in the case of first-order Taylor expansion, the derivatives of Eq. 3.8 with

respect to F can also be calculated in a closed form,

∂Ê2nd
D

∂w
=
∂Ê2nd

D

∂F

∂F

∂w
. (3.10)

The second part of Eq. 3.10, that is ∂F
∂w , is the partial derivative of the output F of

the CNN with respect to its weights w. This can be calculated in a classical manner

using the standard form of the backpropagation algorithm. The first term, that is

∂Ê2nd
D
∂F , removing the constant terms in equation 3.6, can be calculated in closed form

as

∂Ê2nd
D

∂F
=

∂Ê
2nd
D
∂α

∂Ê2nd
D
∂β

 =

∑M

x,y=1 2(Ix + 1
2!(βIxy + γIxt + 2αIxx)(T (x, y, F))∑M

x,y=1 2(Iy + 1
2!(αIxy + γIyt + 2βIyy)(T (x, y, F))

 .
(3.11)

Double Expansion

When using a Taylor expansion, for a more accurate approximation of the target

point, the expansion should be around a node that is as close as possible to the target

point. For this purpose, we divide the subpixel area into two regions α < 1 − β and

α > 1−β and depending on where the target point is, try to expand around the closest

node. We propose to expand along the opposite points (x + bu(x, y)c, y + bv(x, y)c)

41

3.1. Method

if α < 1 − β and (x + du(x, y)e, y + dv(x, y)e) if α > 1 − β. Figure 3.3 illustrates the

aforementioned opposite points respectively in blue and green color.

Figure 3.3: Expansion around opposite pixels

3.1.3 Taylor Expansion - Interpolation, Connection

In this section, we show that if a specific polynomial is fitted to a specific set of pixels in

the spatiotemporal space of the input frames, the second-order Taylor expansion in Eq.

3.8 when the derivatives are calculated the specific way proposed in Sec. 3.1.2, can be

obtained. The higher-order expansion is meant to approximate the intensity values in

the target frame. We implement this by fitting a polynomial of degree 2, to a specific

set of neighboring pixels. For this purpose, we draw the terms of the higher-order

Taylor expansion in Eq. 3.9 from the following general formula of polynomials,

Iα(x,y),β(x,y),γ(x, y, t) =

nk∑
k=0

ni∑
i=0

nj∑
j=0

Cijkα
iβjγk (3.12)

42

3.1. Method

which would be:

Iα,β,γ(x, y, t) = C000 + C100α+ C010β + C001γ+

1

2!
(C110αβ + C101αγ + C011βγ

+C200α
2 + C020β

2)

(3.13)

The polynomial with the higher-order Taylor expansion terms, Eq. 3.13, has 9 un-

knowns, Cijk(x, y, t), that can be calculated by evaluating the polynomial at 9 points,

blue pixels in Fig.3.5-c. For further details on how to calculate the unknowns, we

refer to Appendix A. By calculating the unknowns, Cijks, Eq. 3.13 can be written

as in Eq. 3.14. This way, we arrive at the second order Taylor expansion around

(x + buc, y + bvc, t) when the derivatives are calculated point-wise similar to in Sec.

3.1.2. Equation 3.14 shows how the expansion looks like.

Iα,β,1(x+ buc, y + bvc, t) = I000 + αIx + βIy + It+

1

2!
(αβIxy + αγIxt + βγIyt + α2Ixx + β2Iyy)

(3.14)

3.1.4 Connection to Spatial Transformation Networks

Now if the following terms are picked from the general formulation of the polynomials

in Eq. A.1,

Iα,β,γ(x, y, t) = C000 + C100α+ C010β + C001γ + C110αβ (3.15)

by fitting it to the specific set of red pixels shown in Fig. 3.5-b, the bilinear interpol-

ation proposed by jaderberg et al. [42] can by obtained. For further details on fitting

43

3.1. Method

the polynomial to the specific set of pixels we would refer to the Appendix. A. The

fitted polynomial has the following form:

Iα,β,γ(x, y, t) = I0,0,γ + αIx + βIy + αβIxy (3.16)

where Ix, Iy, and Ixy are respectively calculated by the following derivative filters

[
0 −1 1

]
,

0

−1

1

, and

0 0 0

0 1 −1

0 −1 1

. By expanding and rearranging the terms, the

bilinear interpolation terms can be obtained.

Iα,β,1(x, y, t) = (1− α)(1− β)I0,0,1 + α(1− β)I1,0,1 + β(1− α)I0,1,1 + αβI1,1,1 (3.17)

3.1.5 First-order vs. Second-order Expansion

In this section, we study how the first-order expansion performs compared to second-

order expansion. We plot how the training loss, Ê, and the validation Motion Com-

pensated Intensity Error (MCIE) varies in both cases when the training and validation

samples are drawn from UCF101 [77] dataset. Figure 3.4 illustrates the comparison.

As can be seen, the training loss, Ê reduces monotonously during the training for

both cases. In the case of first-order, the validation MCIE reduces up to some gradient

steps and then slightly starts increasing. That is while for the case of second-order

expansion, MCIE significantly drops in comparison to the first-order case with no

increase. The second-order expansion shows to lead into a better performance, we

consider it as the main approach for training GradNet.

44

3.1. Method

Figure 3.4: The left plot shows how the training loss varies for both cases where the
loss function is based on a first-order expansion and a second-order expansion. The
right plot shows how the validation MCIE varies during the training.

3.1.6 Loss Augmentation

Following the literature, we also assume that the motion field has to be smooth. We

penalize the deviation from the smoothness assumption by adding the term in equation

3.18 to the training loss.

ES(F) = (|∇u|2 + |∇v|2) (3.18)

Putting all together, the final energy function that can be used to train GradNet is:

Etot(F) = ÊD(F) + ζES(F) (3.19)

To estimate motions of large magnitude, following the dominant paradigm in the

field, we embed our method in a coarse-to-fine multiscale scheme. At the test time,

that is once trained, given a pair of frames as input the CNN gives as output the

motion field that describes how pixels move from the reference frame to the target

45

3.2. Architecture and Training

Figure 3.5: The neighboring pixels involved in fitting the polynomials. (b): Fitting a
polynomial using the neighbors in red results in the bilinear interpolation proposed by
Jaderberg et al. [42]. (c): Fitting a polynomial using the neighboring pixels in blue
results in the second-order Taylor expansion.

frame. The estimation at each level updates the estimation from the previous level.

The updated motion field is up-scaled and then used to warp the target frame towards

the reference frame. The reference frame and the warped target frame are then given

as input to GradNet to calculate another update on the motion field. Several scales are

exploited in the multiscale scheme. After each update, and similar to other methods

in the literature [80], the calculated motion field in each iteration is smoothened (by a

Gaussian filter). The proposed algorithm at test time is summarized in Algorithm 1.

3.2 Architecture and Training

We propose a fully convolutional neural network with 8 convolutional layers. The

activation function of all layers is ReLu except for the last layer’s which is Linear. The

full architecture is illustrated in figure 3.6. The architecture could be imagined as two

parts. The CNN makes a compact representation of motion information in the first

46

3.3. Dataset

Algorithm 1 The algorithm of our proposed framework during the test time.

1: procedure
2: I1,I2: Two input frames
3: Ftot: The desired motion field
4: In1 ,In2 : The downsampled versions of I1 and I2 by
5: a factor of n = 0.7k

6: Ftot = 0
7: In2w ← In2
8: while n ≥ 1 do
9: ∆F ← CNN(In1 , I

n
2w) : Calculate the

10: update on the motion field
11: ∆F ← GaussF ilt(∆F) : Gaussian filter the
12: motion field
13: Ftot ← Ftot + ∆F : Update Ftot using the
14: motion field
15: Up-sample Ftot by a factor of 1

0.7
16: n = n

0.7
17: In2w ← warp(In2 , Ftot) : Warp In2 towards In1
18: using the motion field

19: end while
20: Return Ftot

part, encoder. This compact representation is then used to reconstruct the motion

field in the second part, decoder. For allowing the decoder to have access to the lost

information in the strides of the encoder, there are connections between the layers of

the encoder and the corresponding layers in the decoder. Figure 3.6 illustrates these

connections. To update the CNN weights during the training phase, we used ADAM

[49] with a batch size of 8, random samples from random requences, and with an initial

learning rate of 0.0001 and parameters β1 = 0.9 and β2 = 0.999. The samples in each

batch are not from same sequence and are randomly selected from all the samples

available in the dataset. The learning rate drops after 25k gradient steps by a factor

of 2 every 5k iterations. GradNet was trained this way for 295k iterations.

3.3 Dataset

We train GradNet using a natural dataset, UCF101 [77], in an unsupervised way. The

training set consists of 100k pairs of consecutive frames drawn randomly from about 1

47

3.3. Dataset

Figure 3.6: GradNet architecture, inspired by U-Net [72]. Each box corresponds to
a multi-channel feature map. The number of channels is denoted at the top right
corner of the box. The number denoted at the bottom left corner of the boxes is
the height×width of the featuremap. Grey boxes represent copied feature maps. The
purple box represents the input featuremap which consists of 6 RGB channels of the
input pair of frames. The arrows denote the different operations.

million frames re-sized to half of the original width and height. Since no ground truth

is available, no data scheduling can be assumed in the training phase. Though, a shade

affect is added to the input as an augmentation. The spatial location of the shade is

chosen randomly. Figure 3.7-a shows an example frame from UCF101 and Fig. 3.7-b

shows the example with the augmentation. This kind of augmentation provides a level

of robustness against intensity variations.

We evaluate GradNet on both the synthetic and real datasets. The MPI Sintel [20]

dataset, training split, includes 1041 training samples, rendered artificial scenes for

which the groundtruth is available. In MPI Sintel the attention has been to meet

the properties of realistic images as much as possible. Two renders are available: the

Final version contains motion blur and atmospheric effects, such as fog, while the Clean

48

3.3. Dataset

Figure 3.7: (a) A sample drawn from UCF101 (b) The shade added as an augmenta-
tion.

version does not include realistic effects. The KITTI dataset [61] contains 200 training

image pairs and includes displacements of large magnitude. KITTI contains only a

specific motion type, as the dataset is acquired from a camera on a car. The captured

frames are real world scenes and the ground truth is obtained from simultaneously

recording the data from a 3D laser scanner. The scenes are rigid and the motion is

from a moving observer. Furthermore, the motion ground truth is sparse as it was not

possible to measure the motion of some objects, e.g. sky or distant objects. Middlebury

is a low population, 8 samples, dataset commonly used for evaluation. In the making

of Middlebury, a computer controlled system makes sure that the scenes are moved in

small steps in a way that no scene point moves by more than 2 pixels. A fine spatter

pattern of fluorescent paint is applied to all surfaces in the scene. High-resolution

images are taken both under ambient lighting and UV lighting. After capturing the

reference frame, the scene is moved slightly to capture the target frame. The ground-

truth flow is computed by tracking the patterns that were applied by fluorescent paint

and are highly visible under UV lighting. For further details, we would refer to [9].

Examples from the evaluation datasets are illustrated in Fig. 3.8.

49

3.4. Experiments

Figure 3.8: Examples drawn from the evaluation dataset.

3.4 Experiments

In order to evaluate the performance of GradNet, we report its results on 4 most

commonly used datasets, namely the real KITTI 2015 and the synthetically generated

MPI-Sintel [20] clean and final, and the widely used synthetic Middlebury dataset

and compare them with the results of other state-of-the-art methods. MPI-Sintel final

50

3.4. Experiments

Method
Fine Sintel clean Sintel final KITTI 2015 Middlebury

tuned train test train test train train

C
lassic

DeepFlow N 2.66 5.38 3.57 7.21 10.63 0.25
LDOF (CPU) [17] N 4.64 7.56 5.96 9.12 18.19 0.44
LDOF (GPU) [83] N 4.76 - 6.32 - 18.20 0.36
EpicFlow [70] N 2.27 4.12 3.56 6.29 9.27 0.31
FlowFields [8] N 1.86 3.75 3.06 5.81 8.33 0.27
PCA-Layers [96] N 3.22 5.73 4.52 7.89 12.74 0.66
PCA-Flow [96] N 4.04 6.83 5.18 8.65 14.01 .70

D
eep

n
eu

ra
l

n
etw

ork
b
ased

S
u
p

FlowNetS [25] N 4.50 6.96 5.45 7.52 - 1.09
FlowNetC [25] N 4.31 6.85 5.87 8.51 - 1.15
SpyNet [67] N 4.12 6.69 5.57 8.43 0.33
FlowNet2 [41] N 2.02 3.96 3.14 6.02 10.06 0.35

U
n
su

p

DSTFlow [69] N 6.93 10.40 7.82 11.11 24.30 -
DSTFlow(KITTI) [69] Y 7.10 10.95 7.95 11.8 16.79 -
DSTFlow(Sintel) [69] Y 6.16 10.41 7.38 11.28 23.69 -
DSTFlow(C+K) [69] Y 7.51 - 8.29 - 22.93 -
DSTFlow(C+S) [69] Y 6.47 10.84 6.81 11.27 25.98 -
GradNet-FO (First-Order) N 8.94 12.4 10.60 13.78 14.94 2.79
GradNet-SO (Second-Order) N 6.65 10.30 7.81 11.25 16.28 1.14

Table 3.1: Performance comparison. AEE stands for Average End-point Error (in
pixels). Upper section reports the performance for classical methods while lower sec-
tion reports the performance for DNN-based methods.

is a version of MPI-Sintel that includes more realistic effects and is one of the most

realistic synthetic datasets for which ground truth is available. Worthy of mentioning

that finetunning did not improve the results and in all the evaluations, GradNet-FO

and GradNet-SO are not finetuned on any of the evaluation datasets. Experimental

results show that although GradNet is not finetuned, it can generalize well to unknown

datasets. Specially the performance on KITTI, which is a real dataset, shows that

GradNet-SO, that is trained on a real dataset, performs much better than DSTFlow

that is trained on a synthetic dataset.Yet, there is a gap between the performance of

the classic methods and the DNN-based methods.

For further evaluation, the motion field estimated by different methods and the error

map are visualized, respectively, in figures 3.9 and 3.10. The illustrated samples are

chosen from MPISintel training split of the final pass. Figure 3.9 illustrates the visu-

alization of the output of some of the classic methods including the Horn and Schunk

method [38] embedded in a multiscale scheme, denoted by HS. At first glance, it can

be seen that HS performs considerably worse than GradNet-FO, although their loss

51

3.4. Experiments

Method d < 10 10<d<40 d>40

Classic

EpicFlow 2.71 6.98 36.76
DeepFlow 2.19 6.16 40.51

HAOF 2.69 8.14 50.29
LDOF 2.19 6.46 41.35

HS 7.07 16.46 62.97

DNN-based
GradNet-FO 4.68 11.42 52.02
GradNet-SO 3.89 9.15 43.74

Table 3.2: AEE for different ranges of d, d =
√
u2
gt + v2

gt.

function is similar. This shows that although using similar loss function, the internal

regularization effect of deep neural networks helps to get better performance. Still,

GradNet-SO performs better than GradNet-FO as it makes a more accurate approxim-

ation of the warped frame in the motion compensated intensity error whilst training.

The quantitative results in table 3.2 confirm the conclusion from the visualized res-

ults. In table 3.2, d is the magnitude of groundtruth motion, d =
√
u2
gt + v2

gt. Also,

the numbers are in terms of AEE and show how different methods perform in the

estimation of small to large motions. Figure 3.9 also shows that LDOF [17] respects

the edges much better than HAOF [16] due to the extra edge respecting term in the

loss function. Although EpicFlow performs the best, it is prone to high error when

estimating motion field for a large low-texture area, sample in 5th row in figure 3.9.

The reason is that EpicFlow interpolates between the corresponding matched features

and if the features are matched wrong, the interpolation calculates wrong motion field

for the whole area.

Figure 3.10 illustrates the Endpoint-Error map (EE-map) calculated for several

methods on the MPISintel training split of the final pass. This figure shows that

all methods have difficulty in estimation at motion discontinuities, occluded area, low-

texture area, and where the intensity variation is significant. These shortcomings are

addressed to some extent by supervised methods which will be illustrated and discussed

in chapter 6.

52

3.4. Experiments

F
ig

u
re

3.
9:

T
h

e
v
is

u
al

iz
ed

m
ot

io
n

fi
el

d
s

ca
lc

u
la

te
d

b
y

D
ee

p
fl

ow
[9

3]
,

E
p

ic
F

lo
w

[7
0]

,
H

ig
h

A
cc

u
ra

cy
O

p
ti

ca
l

F
lo

w
(H

A
O

F
)

[1
6
],

L
ar

ge
D

is
p

la
ce

m
en

t
O

p
ti

ca
l

F
lo

w
[1

7]
,

H
or

n
an

d
S

ch
u

n
k

m
et

h
o
d

[3
8]

,
G

ra
d

N
et

F
ir

st
O

rd
er

(G
ra

d
N

et
-F

O
),

a
n

d
G

ra
d

N
et

S
ec

o
n

d
O

rd
er

(G
ra

d
N

et
-S

O
)

on
M

P
IS

in
te

l
d

at
as

et
[2

0]
.

53

3.4. Experiments

F
ig

u
re

3.
10

:
T

h
e

A
E

E
m

ap
s

ca
lc

lu
al

te
d

fo
r

se
ve

ra
l
sa

m
p

le
s

fr
om

se
ve

ra
l
m

et
h

o
d

s
on

M
P

IS
in

te
l
th

e
fi

n
al

-t
ra

in
in

g
sp

li
t.

E
a
ch

sa
m

p
le

is
n

or
m

al
iz

ed
b
y

a
fa

ct
or

of
2
5
5

m
a
x

(d
)
,

w
h

er
e
d

=
√ u

2 g
t
+
v

2 g
t.

V
al

u
es

m
or

e
th

an
25

5
ar

e
ro

u
n

d
ed

to
25

5.

54

3.5. Computational Complexity

3.5 Computational Complexity

The runtime of GradNet is 156ms in comparison with the runtime of DSTFlow [69]

which is 30ms. DSTFlow has the same architecture as FloNetS [25]. To measure the

runtime, both algorithms are implemented using Lasagne in Theano and the exploited

GPU is GeForce GTX 1080. Table 3.3 contains the runtime breakdown of GradNet.

In terms of learned parameters, GradNet has the lowest number of learned para-

meters in comparison with other unsupervised motion estimation methods. Taking

the supervised methods into the consideration, GradNet is still one of the smallest

DNN-based motion estimators in term of learned parameters. Table 4.1 contains a

comparison with other CNN architectures trained for motion estimation.

3.6 Evaluation on MPI Sintel, Test Split

As shown in Table 3.1, compared to the training split, the accuracy is lower on the test

split. The groundtruth motion for the test split of MPI Sintel dataset is not publicly

available and the evaluation is done automatically by the Sintel official server. The

right column, middle column, and the left column fo Figure. 3.11, respectively, depict

the reference frames, motion fields calculated by GradNet and error fields of some of

GradNet (CNN) Smoothening Warping Sum

scale 1 0.0012 0.0001 0.0008 0.0022

scale 2 0.0012 0.0001 0.0009 0.0023

scale 3 0.0015 0.0001 0.0012 0.0029

scale 4 0.0023 0.0002 0.0016 0.0042

scale 5 0.0036 0.0005 0.0026 0.0068

scale 6 0.0066 0.0010 0.0046 0.0123

scale 7 0.0124 0.0021 0.0087 0.0233

scale 8 0.0247 0.0041 0.0166 0.0454

scale 9 0.0479 0.0088 - 0.0568

Sum 0.1019 0.0173 0.0372 0.1560

Table 3.3: The runtime breakdown of GradNet in multiscale scheme in second. Scale
1 refers to the lowest resolution, scale 9 refers to the main resolution.

55

3.7. Conclusions

Method Number of learned parameters
FlowNetS 32,070,472
FlowNetC 32,561,032
SpyNet 1,200,250
GradNet 3,666,562

Table 3.4: Compared to other DNN-based methods, GradNet is the smallest among
unsupervised methods and in general one of the smallest in terms of learned paramet-
ers. DSTFlow [69] follows the FlowNetS architecture.

the samples provided by the MPISintel server. Investigating these visualizations give

an idea of how the major errors happen. We point out major error regions using a

color-coded guide at the bottom of Fig. 3.11. The error field in Fig. 3.11 is obtained

by normalizing the AEE to [0, 255]. The AEE reported under each error field gives an

idea of how large the error is in bright areas of the error field. Figure 3.11 depicts how

the estimated motion field looks like in low and high error regions.

Visualization of the Learned Filters. Figure 3.12 illustrates the visualization of

one of the filters learned by the first layer of GradNet. From top to bottom, each row

shows the filter channel that operates on each of the R, G and B channels. Left column

operates on the first frame and the right one operates on the second frame. Note that

the actual filters are 7× 7 pixels and here are upsampled using bilinear interpolation

for visualization. Unlike the visualization of filters in [67], our unsupervised trained

filter shows complex derivations filters that are independent for each of RGB channels.

3.7 Conclusions

In this work, we propose estimating dense motion fields with CNNs. We show that

surprisingly perhaps, a simple cost function that relies on the optical flow equation

can be used successfully for training a deep convolutional network in a completely

unsupervised manner and without the need of any regularization or other constraints

performing better than classic counterpart, Horn and Schunk method. The cost func-

tion is based on first-order Taylor expansion. We also show that training the CNN

56

3.7. Conclusions

Figure 3.11: The reference frames of some of the samples from test split of MPISintel,
the motion fields estimated by GradNet for each of the samples, and the error fields
calculated for the estimated motion fields.

using a cost function that is based on the second-order Taylor expansion signific-

antly improves the performance. Furthermore, we show the connection between our

proposed loss function and the interpolation-based loss function used by other unsu-

pervised methods. Similar to classic methods which estimate motion in a multiscale

scheme to improve the estimation of large motions with large magnitude, GradNet

is also embedded in a multiscale scheme. We observed that finetuning on the target

datasets does not improve the performance. We show that our CNN has a performance

that is comparable to other state-of-the-art methods and that it can generalize very

well to an unknown dataset, MPI-Sintel, without the need for refinement. GradNet has

57

3.7. Conclusions

Figure 3.12: Visualization of one of the filters in the first layer of GradNet

the least number of learned parameters among other unsupervised methods and one of

the least among supervised methods. The proposed method in this chapter is among

the very few studies conducted on the application of DNNs for motion estimation.

58

Chapter 4

LikeNet: A Siamese Motion

Estimation Network Trained in an

Unsupervised Way

To the best of our knowledge, all the DNN-based methods solve motion estimation as

a regression problem, F ⊂ R2. In this section, we present in detail our approach that

addresses motion estimation as a classification problem,F ∈ Z2. We propose a CNN

for pixel-level motion class prediction, LikeNet. LikeNet treats motion estimation as a

dense labeling problem. We propose an unsupervised trained Deep Network by adopt-

ing a Siamese architecture, with as many branches as motion labels. Each branch of

the architecture, receives as input the reference frame and the target frame translated

by the motion label in question, and produces the (not normalised) probability map

for the motion label in question - that is the (unnormalized) probability that a pixel is

translated by the motion vector corresponding to the motion label in question. More

general, at test time, LikeNet receives as input a pair of consecutive frames, I, and

outputs a pixel-level distribution over K motion labels/classes, P . Figure 4.1 illus-

trates the overview of LikeNet. To the best of our knowledge, this is the first time the

problem of motion estimation is treated as a classification problem in a DNN-based

59

framework.

Figure 4.1: The overview of LikeNet.

In order to deal with motions with large magnitude, our network is embedded in

a classical multiscale scheme. A major issue in multiscale methods is that errors at

lower resolutions are propagated to higher ones - for this reason, significant gains can

be made by improving the quality of the estimation at the lower levels. To this end,

we use Conditional Random Fields (CRFs) at the lowest resolution, implemented as

an RNN similar to in [100], so that one can form an end-to-end trainable framework

for motion estimation which combines the strengths of deep learning and graphical

modelling. More specifically, we employ the CRF to improve the estimated motion

field at the lowest resolution of our multi-scale scheme. To the best of our knowledge,

this is the first time that CRFs are integrated into a DNN-based framework for motion

estimation. Figure 4.2 describes the training order of LikeNet and the CRF.

Our network is trained on a simple cost function, without explicit smoothness or

60

4.1. LikeNet: a CNN for Motion Estimation

Figure 4.2: The schematic describing the training order of LikeNet and the CRF

other constraints - those are implicitly modelled in the filters of the CNN and are

learned from training data. Random, consecutive pairs of frames drawn from videos

of the UCF-101 dataset [77] were used for training, while for evaluation both syn-

thetic and real datasets were used. Although finetunning LikeNet for a target dataset,

does not improve the results for that dataset, we show that the unsupervised trained

LikeNet performs better or in par with other unsupervised trained DNN-based meth-

ods on both synthetic and real data, even in the case that the other methods are

finetuned (in an unsupervised manner) on the target dataset. In addition, when com-

pared to other DNN-based methods, LikeNet model is the smallest in terms of learned

parameters - respectively 98% and 42% smaller than FlowNet [28, 69] and SpyNet

[67] architectures.

In this chapter, we first give a brief review of the application of the CRF implemented

as RNN for pixel level prediction, then we explain the methodology. We present the

conclusion after the experimental results are presented.

4.1 LikeNet: a CNN for Motion Estimation

In this section, we present the details of LikeNet. As similar to in classification methods

[100], let L be a Random Field defined over a set of N discrete variables {L1, · · · , LN},

where N is the number of image pixels. The domain of each variable Li is a set

of motion labels M = {m1, · · · ,mK}, each label corresponding to a motion vector.

Clearly, an instantiation of the label field L corresponds to a dense motion field and in

61

4.1. LikeNet: a CNN for Motion Estimation

this chapter, the term mk will be used to denote both the kth label and the kth motion

vector - the interpretation should be clear from the context. Also, let I ∈ R2×N

denote an input pair of consecutive frames, each of size N . LikeNet receives I as

input and outputs a pixel-level distribution over the motion classes, P (L|I; θ), where

θ denotes the model parameters, that is the parameters of the network. The mode of

P (L|I; θ) could be then used as a point estimate of the motion/label field. That is,

L∗ = argmax
L

P (L|I; θ).

4.1.1 Architecture

Figure 4.3: The proposed architecture of LikeNet. For simplicity, only two branches
out of K branches (motion classes) are illustrated. The input to the kth branch is the
concatenation of the first frame and the second frame shifted with the corresponding
motion vector mk. Block Wk warps its input along with motion vector mk. LikeNet
outputs a pixel-level distribution over the motion classes, P (L|I; θ).

An overview of the proposed architecture of LikeNet at test time is given in Fig.

4.3(a). More specifically, to calculate P (L|I; θ), we propose a Siamese CNN with

number of branches equal to K. The input to the kth branch is the concatenation

of the first frame and the second frame shifted by the corresponding motion vector

mk. Each branch consists of a Local Contrast Normalization (LCN) layer [44] and

three convolutional layers, and calculates a single channel, pixel-level heat-map, which

62

4.1. LikeNet: a CNN for Motion Estimation

indicates whether the pixels at the same location in the reference and the shifted target

frames, match. Since the target frame has been shifted by the motion vector mk this

heat-map can be interpreted as the probability (not normalized) that a pixel has moved

by mk. In order to obtain a normalized distribution over all motion classes/labels,

the concatenation of the heat-maps, calculated by all branches, are passed through a

Softmax layer. In other words, the kth branch is responsible for calculating pixel-level

probability map P (L = mk|I; θ) ∈ [0, 1]N that expresses the probability that each

pixel in I is displaced by mk. An arbitrary kth branch and P (L|I; θ) are highlighted

in blue dotted squares in Fig. 4.3(a).

During training we would like to learn parameters such that at pixel i the probability

P (Li = mk|I; θ) produced by LikeNet is high for the true motion label mk and low

for the other labels. Our assumption is that, under an appropriate distance measure,

the feature differences/distances under the correct motion vector will be lower than

the feature distance under an arbitrary motion vector. That is, the features F(xi, t)

extracted at location xi (pixel i) in the reference frames, will be more similar to their

correspondences F(xi +mk, t+ dt) in the target frame shifted by the correct mk (Fig.

4.3). Formally, we train the network so as to minimize the following cost function:

C(I; θ) =
∑
i

∑
mk∈M

P (Li = mk|I, θ)D(i,mk), (4.1)

where D(i,mk) is the distance between F(xi, t + dt) and its corresponding aligned

pixel in the shifted target frame F(xi + mk, t+ dt). The distance that we use in this

chapter is:

D(i,mk) = JSD(F(xi + mk, t+ dt)‖F(xi, t)) (4.2)

where JSD denotes the Jensen-Shannon divergence. In our experiments Jensen-

Shannon divergence showed to be, slightly, a better measure than Euclidean distance.

Also, we chose F in Eq. (4.2) to be the features calculated by the first convolutional

layer of VGG-16 [76]. While raw intensities/colour could also be used, we have found

63

4.1. LikeNet: a CNN for Motion Estimation

that those features perform better. These distances are calculated by the branch of

the network depicted in Fig. 4.3(b), which clearly, is used only during training.

Intuitively, we would like that the network outputs higher probability P (L = mk|I; θ)

at pixels where, under a shift by mk, the distance between the corresponding features

is smaller. Given that the probability of the motions for each pixel sums to one, min-

imizing Eq. (4.1) forces the network to increase the probability of the motion classes

for which their corresponding values in D are small. Deeper architectures for LikeNet

did not provide with better results.

The proposed formulation relies on a quantisation of the motion vectors to motion

labels. With a quantization of each of the horizontal/vertical components to integers,

in order to be able to estimate motions of magnitude V , K = V 2 branches are needed

at test time. For large V this is not practical. For this reason, at test time we

embed the trained network in a multi-scale scheme as described in Algorithm 2. In

our experiments we use 5 scales with 121, 169, 49, 9, 9, branches from the lowest

resolution to the highest resolution, respectively.

Algorithm 2 The algorithm of our proposed framework during the test time.

1: procedure
2: I1,I2: The two input frames
3: Υ: The estimated motion field
4: β: The number of image pyramid levels
5: In1 ,In2 : The downsampled versions of I1 and I2 by a factor of 2n

6: In2w : The warped version of the second frame
7: Υ← 0, In2w ← In2 , n← β
8: while n > 0 do
9: ∆Υ← CNN(In1 , I

n
2w

) : Calculate the update on the motion field
10: if n = β then
11: ∆Υ← CRF (In1 ,∆Υ) : Correcting the motion field in the lowest resolution

12: ∆Υ← GaussF ilt(∆Υ) : Gaussian filtering of the motion field
13: Υ← Υ + ∆Υ : Update Υ using the motion field
14: Up-sample Υ by a factor of 1

0.5
15: n← n− 1
16: In2w ← warp(In2 ,Υ) : Warp In2 towards In1 using the motion field

17: end while
18: Return Υ

64

4.2. CRF for Motion Estimation

4.2 CRF for Motion Estimation

To avoid the propagation of errors across scales, we improve the quality of the estimated

motion at the lowest resolution of the multi-scale scheme by using a graphical model,

CRF (Fig. 4.4). In this Section, we provide a brief overview of the CRFs, how

we learn their parameters and how we use them at inference for pixel-wise labeling.

The Random Variable L that models pixel motion labels form a Markov Random

Field when conditioned upon the observation I. Given a graph G = (V,E), where

V = {L1, L2, ..., LN} and the observation I, the pair (I, L) can be modeled as a CRF

characterized by a Gibbs distribution P (L|I) = 1
Z(I)exp(−E(L|I)). Here E(L) and

Z(I) are the energy and partition function, respectively. For convenience, we will drop

the conditioning on I. In our CRF model, similar to [100], the energy of the label

assignment L is given by:

E(L) =
N∑
i=1

ψu(Li) +
∑

j∈n(i)\i

ψp(Li, Lj) (4.3)

where ψu(Li) is the unary energy of the pixel i taking the label Li, and the pairwise

energy component ψp(Li, Lj) measures the cost of assigning labels Li, Lj to pixels

i,j simultaneously. Also, n(i) represents the neighborhood of pixel i. The unary is

obtained from LikeNet which predicts the labels without any smoothness or consistency

assumption. The pairwise energies provide an image data-dependent smoothing term

that encourages assigning similar motion labels to pixels with similar properties. As

in [51], we model pairwise potentials as weighted Gaussians:

ψp(Li, Lj) = µ(Li, Lj)

M∑
m=1

w(m)γ
(m)
G (fi, fj), (4.4)

where each γ
(m)
G ,m = 1, ...,K, is a Gaussian kernel applied on feature vectors. The

feature vector at pixel i, denoted by fi, are spatial location and intensity values.

The function µ(., .), called the label compatibility function, captures the compatibility

between different pairs of labels. Minimizing the above CRF energy E(L) yields the

65

4.3. Experiments

Figure 4.4: A CRF block at the lowest resolution during test time.

most probable motion label assignment L. To obtain the parameters, we follow the

RNN-like training scheme proposed in [100]. We set w(m) to 1 and use a compatibility

matrix µ(Li, Lj) = 1
2e
−

(Li−Lj)
2

2σ2c that is parametrized by a single parameter σc. This

is different to [100] that addresses a labeling problem where there is no natural or-

der/structure in the labels and learns a pairwise compatibility matrix µ(., .) ∈ RK×K

(where K is the number of labels) – in our case, the labels are structured. An overview

of the CRF block, drawn from [100], is illustrated in Fig. 4.4.

Table 4.2 provides a comparison between the performance of LikeNet when the CRF

is used or not used with other classic and DNN-based methods. Based on the results,

using a CRF improves the accuracy slightly, although the computational complexity

increases significantly. In comparison with DTSFlow [69] and GradNet which minimize

the motion compensated intensity error during the training, LikeNet has a consider-

ably lower AEE. Based on table 4.2, LikNet performs the best among unidirectional

unsupervised methods. Although, the supervised and classic methods still perform

better. Investigating the output of LikeNet with and without the CRF shows that the

CRF contribution is mainly to remove the erroneous estimations at the lowest scale

and preventing them from propagating across scales. Figure 4.5 shows how the CRF

visually affects the estimated motion field for some samples drawn from the MPI Sintel

final.

66

4.3. Experiments

Figure 4.5: Visualization of how the application of CRF affects the output of LikeNet.

Figure 4.6: MPI-Sintel examples. Top-to-bottom, input reference frames, groundtruth
flows, and predicted flows from LikeNet.

4.3 Experiments

In order to evaluate our work, we compare LikeNet with a number of state-of-the-

art classical and DNN-based methods, supervised and unsupervised, on a number

of benchmarks. Likenet is trained for 7k iterations on samples drawn from the real

action recognition dataset UCF101 and is not fine-tuned on any synthetic dataset. We

trained for 7k iterations on samples drawn from the action recognition dataset named

UCF101, and optimized its parameters by adopting Nesterov momentum method with

momentum 0.9 [84]. The learning rate starts from 0.1 and drops by a factor of 2

every 1000 iterations. In our experiments, during training, K is set to 121 to deal

with horizontal and vertical motions of maximum magnitude 5 pixels. The motion

distribution in the training data can be controlled by resizing the drawn frames, we

resized the frames to 96× 128 for training. The architecture of LikeNet is the smallest

67

4.4. Flexible Architecture; Memory-Speed Trade-offs

Method Number of learned parameters
FlowNetS 32,070,472
FlowNetC 32,561,032
SpyNet 1,200,250
LikeNet 697,028

Table 4.1: Compared to other DNN-based methods, LikeNet is the smallest in terms of
learned parameters. DSTFlow [69] follows the FlowNetS architecture. UnFlow-C [59]
follows the FlowNetC architecture and UnFlow-CS is a FlowNetS architecture stacked
on top of a FlowNetC. UnFlow-CSS architecture is composed of a FlowNetS stacked
on top of the UnFlow-CS.

possible that would end in an acceptable performance. Due to the Siamese nature

of the architecture, a deeper network would considerably add to the computational

complexity whilst we observed that a deeper architecture does not improve the final

performance much.

Visualization of the motion field of some examples from MPI-sintel, estimated by

LikeNet, are illustrated in Fig. 4.6. To quantitatively evaluate our method we report

the Average End-point Error (AEE) on both synthetic and real datasets in Table 4.2.

All measures include the occluded areas. We find that LikeNet is performing better

than other unsupervised methods that do not use bidirectional schemes even without

being fine-tuned on any other synthetic or real dataset, and close to UnFlow, that

adopts a bidirectional scheme that helps significantly with occlusions.

4.4 Flexible Architecture; Memory-Speed Trade-offs

To best of our knowledge, the architectures of all other DNNs trained for motion es-

timation, both supervised and unsupervised, enforce a fixed computational load and

memory requirement. A fixed architecture might not be appropriate when the compu-

tation power and/or memory is limited. The Siamese architecture of LikeNet allows

for a trade-off between the required memory and the computational load. The ar-

chitecture of LikeNet can be configured to run perfectly in parallel (P -configuration

68

4.4. Flexible Architecture; Memory-Speed Trade-offs

Method
Fine Sintel clean Sintel final KITTI 2015 Middlebury

tuned train test train test train train

C
lassic

DeepFlow N 2.66 5.38 3.57 7.21 10.63 0.25
LDOF (CPU) [17] N 4.64 7.56 5.96 9.12 18.19 0.44
LDOF (GPU) [83] N 4.76 - 6.32 - 18.20 0.36
EpicFlow [70] N 2.27 4.12 3.56 6.29 9.27 0.31
FlowFields [8] N 1.86 3.75 3.06 5.81 8.33 0.27
PCA-Layers [96] N 3.22 5.73 4.52 7.89 12.74 0.66
PCA-Flow [96] N 4.04 6.83 5.18 8.65 14.01 .70

D
eep

n
eu

ral
n

etw
ork

b
ased

S
u

p

FlowNetS [25] N 4.50 6.96 5.45 7.52 - 1.09
FlowNetC [25] N 4.31 6.85 5.87 8.51 - 1.15
SpyNet [67] N 4.12 6.69 5.57 8.43 0.33
FlowNet2 [41] N 2.02 3.96 3.14 6.02 10.06 0.35
UnFlow-CS-ft-(KITTI supervised) [59] Y - - 11.99 - (2.25) 0.64
UnFlow-CSS-ft(KITTI supervised) [59] Y - - 13.65 - (1.86) 0.64
UCNNME [2] N 8.94 12.4 10.60 13.78 14.94 2.79

U
n

su
p

DSTFlow [69] N 6.93 10.40 7.82 11.11 24.30 -
DSTFlow(KITTI) [69] Y 7.10 10.95 7.95 11.8 16.79 -
DSTFlow(Sintel) [69] Y 6.16 10.41 7.38 11.28 23.69 -
DSTFlow(C+K) [69] Y 7.51 - 8.29 - 22.93 -
DSTFlow(C+S) [69] Y 6.47 10.84 6.81 11.27 25.98 -
UnFlow-C-Cityscapes [59] N - - 8.23 - 10.78 0.85
UnFlow-C [59] N - - 8.64 - 8.80 0.88
UnFlow-CS [59] N - - 7.92 - 8.14 0.65
UnFlow-CSS [59] N - - 7.91 10.22 8.10 0.65
GradNet (Second-Order) N 6.65 10.30 7.81 11.25 16.28 1.14
LikeNet (No CRF) N 6.03 - 6.78 - 14.76 0.75
LikeNet N 5.7 10.02 6.49 10.69 14.66 0.78

Table 4.2: Average End-point Error (in pixels) of classic and DNN-based methods.
LikeNet performs better or in par with other unsupervised methods although it is not
finetuned on any of the evaluation datasets and its capacity is considerably smaller
that all other DNN-based methods.

which enforces the lowest computational load), partially parallel (PS-configuration)

or fully in serial (S-configuration which enforces the lowest required memory).

In this section, the computational load and the required memory by each branch of

LikeNet are respectively denoted by C and M and the LikeNet is supposed to predict

for K motion labels. In P -configuration, the computational load would be C and the

total required memory would be K ×M . In S-configuration, the computational load

would be K × C and the total required memory would be M .

In PS-configuration, the branches are divided to b blocks of branches, where blocks

are in S-configuration and branches in each block are in P -configuration. Ideally, the

69

4.4. Flexible Architecture; Memory-Speed Trade-offs

Figure 4.7: The plot illustrates how (b, αM) vary in different configurations as b varies
from 1 to K.

branches are distributed equally between the blocks to minimize the required memory.

Figure 4.7 depicts how the computation/memory trade-off looks like. We denote the

computation-memory pair as (b × C − αM ×M), where αM = dKb e. In Fig. 4.7, b is

changed from 1 to K and the plots depicts how (b, αM) vary in different configurations.

As can be seen in Fig. 4.7, αM can be reduced significantly by a slight increase

in b. The point b =
√
K is where there is a balance between the computational load

and the required memory. Given that each branch of LikeNet is composed of only 4

convolutional layers, M and C are small for each branch, LikeNet is highly flexible to

70

4.4. Flexible Architecture; Memory-Speed Trade-offs

Figure 4.8: The plot of the number of branches against the per-branch runtime. This
plot shows how far a GPU, in our case GEFORCE GTX 1080, can parallelize our
architecture.

meet many available memory/computational requirements.

There is one problem and that is that the parallelization capacities of GPUs are limited

by their number of processors that can run in parallel. We designed an experiment to

show how limited the parallelization capacity of a GPU is. We feed LikeNet with a

very small, 5× 5, input pair of frames and increase the number of branches from 1 to

K = 121 and inspect the processing time of each branch, Figure 4.8. By increasing the

number of branches, if the process is parallelized in the GPU, the per-branch runtime

has to reduce. Figure 4.8 shows that per-branch runtime reduces up to some extend,

however it stays fixed at some point onward. It shows that that some point is where the

GPU is serializing any additional computations. Because of the limited parallelization

capacity of the available GPUs, we do not expect LikeNet to be very fast in practice.

4.4.1 Computational Complexity

The runtime of LikeNet is 19.208s in comparison with the runtime of GradNet which

is 0.156s and DSTFlow [69] which is 0.030s. DSTFlow has the same architecture as

FloNetS [25]. To measure the runtime, all algorithms are implemented using Lasagne

in Theano and the exploited GPU is GeForce GTX 1080. Table 4.3 contains the

runtime breakdown of LikeNet.

71

4.4. Flexible Architecture; Memory-Speed Trade-offs

Data preparation LikeNet (CNN) CRF Inference Smoothening Warping Sum
scale 1 0.0514 0.1069 9.5840 0.0011 0.0002 0.0011 9.7449
scale 2 0.0520 0.5787 0.0000 0.0062 0.0006 0.0021 0.6396
scale 3 0.0934 1.0493 0.0000 0.0099 0.0022 0.0057 1.1604
scale 4 0.2153 2.3599 0.0000 0.0279 0.0076 0.0181 2.6287
scale 5 0.5009 4.4288 0.0000 0.0647 0.0401 0.0000 5.0344
Sum 0.9129 8.5236 9.5840 0.1098 0.0507 0.0270 19.2082

Table 4.3: The runtime breakdown of LikeNet in multiscale scheme in second. Scale 1
refers to the lowest resolution, scale 5 refers to the main resolution.

4.4.2 Number of Parameters

Let us note that in our Siamese architecture, each branch does the relatively easy

task of computing the similarity between corresponding pixels in two frames. This

considerably reduces the model complexity of LikeNet, each branch of which consists

of only 4 layers. The number of parameters that are learned is 697, 028 compared to

1, 200, 250, and 32, 070, 472 and 32, 561, 032 parameters SpyNet [67], FlowNetS and

FlowNetC respectively learn, Table 4.1. LikeNet is about 42% smaller than SpyNet

and 98% smaller than FlowNet. While the number of the parameters are not expli-

citly reported, the DSTFlow method proposed in [69] uses the FlowNetS architecture,

and the UnFlow methods build on the FlowNet architectures, in some cases of con-

siderable complexity (e.g., UnFlow-CSS architecture is a FlowNetC followed by a two

FlowNetS).

The visualization of the filter weights in the first layer of LikeNet is given in Fig. 4.9.

The visualization shows that most of the spatio-temporal filters are not equally sens-

itive to all color channels. This is different to what was shown in case of a supervised

trained network [67]. A guess can be that objects in the natural scenes reflect mainly

the sunlight and different colors have different distributions in the sunlight [10]. This

might indicate that because the supervision of LikeNet is from natural images, the

filters respond differently to different colors. In Fig. 4.9, most of the filters respond

more to respectively grey, blue, green, yellow and then red. Confirmation requires

further researches and experiments which is out of the scope of this thesis.

72

4.5. Summary

Figure 4.9: Visualization of the first layer filters of LikeNet.

4.5 Summary

In this chapter, we proposed a new Siamese CNN which solves the motion estimation

as a classification problem, named LikeNet. We showed that a feature constancy

constraint can be used for successfully training LikeNet in an unsupervised manner and

without the need for any handcrafted regularization or other constraints. Our CNN is

trained on the real UCF101 dataset. We show that it performs better than the other

state-of-the-art unsupervised methods that do not use bi-directional constraints, and

that it can generalize very well to unknown datasets without the need for finetunning.

The architecture of the network allows for computational flexibility and prediction of

as many motion classes as required. For future work, we intend to incorporate bi-

directional constraints (i.e., perform motion estimation based on three frames) and

investigate on computationally efficient schemes.

73

Chapter 5

Quick LikeNet (QLikeNet) :

Distilling LikeNet in a Fast

Regression CNN

Experiments in the previous section showed that using the higher level features for

training a Siamese architecture with a little number of learned parameters, leads into

impressive accuracy when generalizing to unknown datasets. Despite the high ac-

curacy, LikeNet is computationally demanding during test time. The reason is that

although the LikeNet’s architecture can be fully parallelized, the number of cores are

limited whilst LikeNet has many branches. Another drawback with LikeNet is that the

current design of LikeNet does not allow for the estimation of subpixel displacements

due to the classifier nature of the algorithm which performs based on a grid of integer

displacements. The method proposed by Hinton et al. [37] suggests distillation of a

cumbersome model in a smaller model, however the small model generalizes the same

way as the large model.

In this section, we attempt to address these drawbacks by using LikeNet as a teacher

to train a much faster CNN, Quick LikeNet (QLikeNet). Unlike LikeNet that solves

74

Figure 5.1: The overview of QLikeNet during the test and the training.

motion estimation as a classification problem, QLikeNet addresses motion estimation

as a regression problem. More specifically, at test time, QLikeNet receives as input

a pair of consecutive frames and calculates a pixel-level motion field, (u, v) ⊂ R2.

QLikeNet is presented in a separate chapter apart from LikeNet as the nature of the

two approaches, architectures, and training and test schemes are very different. The

difference between QLikeNet and GradNet is the backpropagation from extra middle

supervisions and that each supervision is formulated to come through one branch

of LikeNet. Figure 5.1 depicts the overview of the proposed DNN during the test

and training. Similar to our proposed methods in the previous chapters, we embed

QLikeNet in a multiscale scheme to help with the estimation of large displacements.

The idea is that a small model that is trained to generalize the same way as the

cumbersome model, will perform better on the test data than the case that it is

trained the normal way. In this chapter, inspired by the distillation idea, we propose

a technique that uses one branch of already trained cumbersome LikeNet to train a

faster network. Although distillation was the inspiration, we cannot call our method

distillation as in distillation the direct output of the cumbersome model is used to train

the smaller model, whilst we use the output of only one branch of LikeNet for training.

As the smaller network is trained using likenet and is quicker, in the following we refer

to it as QLikeNet.

75

5.1. Methodology

5.1 Methodology

As mentioned in the previous chapter, each branch of LikeNet, given the input pair of

frames, calculates a similarity map. The input pair of frames is the reference frame

and the warped version of the target frame. The target frame is warped based on a

constant motion field, a field with the same displacement vector for each pixel. Each

value in the calculated similarity map represents a measure of how similar the pixels in

corresponding locations in the two input frames are. More specifically, how successful

the warp operation has been in aligning similar pixels. Concatenation of the similarity

maps calculated by all branches forms a distribution over motion labels, P (L|I; θ).

The mode of P (L|I; θ) could then be used as a point estimate of the motion/label

field, that is L∗ = argmax
L

P (L|I; θ).

In order to train QLikeNet, the motion field F ⊂ R2 calculated by the CNN,

QLikeNet, with parameters ω, is used to warp the target frame towards the refer-

ence frame. Given the pair of the reference frame alongside the target frame, I, to a

single branch of LikeNet, it calculates a similarity map (or P , as only one branch is

used). We propose to train QLikeNet by maximizing P (F |I; θ). Maximizing P (F |I; θ)

encourages QLikeNet to calculate a motion field that is most successful in aligning the

corresponding pixels in reference and target frames. Figure 5.2 illustrates the process.

Maximizing the similarity map corresponds to minimizing the minus similarity map.

The loss function we minimize during the training of QLikeNet is,

L(F) = −|S(I1, Î2(F);ω)|1 (5.1)

where S, N , and ω are respectively the similarity map, the number of pixels in the

similarity map and the parameters of QLikeNet. As mentioned before, the similar-

ity map is the output of one branch of LikeNet. Similar to [25, 69], we apply the

supervision at each scale of the decoder side in our architecture, Fig. 5.3. The loss

76

5.2. Architecture

Figure 5.2: F represents the estimated motion field. LN(θ) represents one branch of
LikeNet. S represents the similarity map which is the output of one branch of LikeNet.

function we minimize during the training in each layer, is a combination of the loss in

the current scale and the sum of the losses in the previous scales weighted by ω. In

all of our experiments we set η = 0.1. The loss function that we use for training the

network in the final scale is:

Ltot =
1

N

N∑
x

(L4 + ηL3 + ηL2 + ηL1) (5.2)

5.2 Architecture

Following the literature, similarly to most of the other unsupervised methods, we

adopt an architecture inspired from FlowNetS. Our architecture is smaller in terms

of learned parameters and also incorporates less down/up scaling in the architecture

which is meant to estimate smaller displacements in one go. Using a bigger architecture

does not improve the performance. To help with the estimation of large displacements,

we adopt the classic multiscale scheme.

77

5.2. Architecture

Figure 5.3: QLikeNet architecture and the training block diagram.

The calculation of the gradient of the loss with respect to the QLikeNet’s weights is

computationally feasible, Eq. 5.3. The gradient of the first term in Equation 5.3 can

be calculated in closed form as LikeNet is a conventional CNN. The second term is also

78

5.3. Experimental Results

Figure 5.4: Comparison with classic methods. The visualized motion fields calcu-
lated by Deepflow [93], EpicFlow [70], High Accuracy Optical Flow (HAOF) [16],
Large Displacement Optical Flow [17], GradNet Second Order (GradNet-SO), LikeNet,
QLikeNet on MPISintel dataset [20].

computationally feasible as the warping operation is proven [42] to be differentiable.

∂L

∂F
=

−∂S
∂I(x+ F, t+ δt)

∂I(x+ F, t+ δt)

∂F
(5.3)

5.3 Experimental Results

Table 5.2 reports the performance of QLikeNet for both cases when the training is

based on VGG features or tracking features [11]. The results show that QLikeNet can

perform better than LikeNet on some datasets although the training is based on the

same features.

Similar to in chapter 3, for further evaluation, the motion field estimated by different

methods are visualized, respectively, in figures 5.4 to compare with classic methods and

79

5.3. Experimental Results

Method d<10 10<d<40 d>40

Classic

EpicFlow 2.71 6.98 36.76
DeepFlow 2.19 6.16 40.51

HAOF 2.69 8.14 50.29
LDOF 2.19 6.46 41.35

HS 7.07 16.46 62.97

DNN-based

GradNet-FO 4.68 11.42 52.02
GradNet-SO 3.89 9.15 43.74

LikeNet 3.21 9.26 45.27
QLikeNet 3.79 8.91 40.36
UnFlow 2.98 8.22 45.32
SpyNet 2.52 7.15 35.62

Table 5.1: AEE for different ranges of d, d =
√
u2
gt + v2

gt.

Method
Fine Sintel clean Sintel final KITTI 2015 Middlebury

tuned train test train test train train

C
lassic

DeepFlow N 2.66 5.38 3.57 7.21 10.63 0.25
LDOF (CPU) [17] N 4.64 7.56 5.96 9.12 18.19 0.44
LDOF (GPU) [83] N 4.76 - 6.32 - 18.20 0.36
EpicFlow [70] N 2.27 4.12 3.56 6.29 9.27 0.31
FlowFields [8] N 1.86 3.75 3.06 5.81 8.33 0.27
PCA-Layers [96] N 3.22 5.73 4.52 7.89 12.74 0.66
PCA-Flow [96] N 4.04 6.83 5.18 8.65 14.01 .70

D
eep

n
eu

ral
n
etw

ork
b
ased

S
u
p

FlowNetS [25] N 4.50 6.96 5.45 7.52 - 1.09
FlowNetC [25] N 4.31 6.85 5.87 8.51 - 1.15
SpyNet [67] N 4.12 6.69 5.57 8.43 0.33
FlowNet2 [41] N 2.02 3.96 3.14 6.02 10.06 0.35
UnFlow-CS-ft-(KITTI supervised) [59] Y - - 11.99 - (2.25) 0.64
UnFlow-CSS-ft(KITTI supervised) [59] Y - - 13.65 - (1.86) 0.64
UCNNME [2] N 8.94 12.4 10.60 13.78 14.94 2.79

U
n
su

p

DSTFlow [69] N 6.93 10.40 7.82 11.11 24.30 -
DSTFlow(KITTI) [69] Y 7.10 10.95 7.95 11.8 16.79 -
DSTFlow(Sintel) [69] Y 6.16 10.41 7.38 11.28 23.69 -
DSTFlow(C+K) [69] Y 7.51 - 8.29 - 22.93 -
DSTFlow(C+S) [69] Y 6.47 10.84 6.81 11.27 25.98 -
UnFlow-C-Cityscapes [59] N - - 8.23 - 10.78 0.85
UnFlow-C [59] N - - 8.64 - 8.80 0.88
UnFlow-CS [59] N - - 7.92 - 8.14 0.65
UnFlow-CSS [59] N - - 7.91 10.22 8.10 0.65
GradNet-SO (Second Order) N 6.65 10.30 7.81 11.25 16.28 1.14
LikeNet (VGG) N 5.7 10.02 6.49 10.69 14.66 0.78
LikeNet (Tracking) N 5.94 10.30 7.22 11.12 25.69 0.81
QLikeNet (VGG) N 5.49 8.87 6.99 10.24 17.78 0.64
QLikeNet (Tracking) N 5.61 9.02 7.00 10.38 17.34 0.64

Table 5.2: Average End-point Error (in pixels) of classic and DNN-based methods.
QLikeNet performs better or in par with other unsupervised methods although it is
not finetuned on any of the evaluation datasets and its capacity is considerably smaller
that all other DNN-based methods.

80

5.3. Experimental Results

Figure 5.5: Comparison with DNN-based methods. The visualized motion fields cal-
culated by UnFlow [59], SpyNet [67], GradNet Second Order (GradNet-SO), LikeNet,
QLikeNet on MPISintel dataset [20].

in figure 5.5 to compare with DNN-based methods. Comparing with classic methods,

the quality of the motion field estimated by LikeNet and QLikeNet look similar to the

ones estimated by EpicFlow. Although, the quantitative results in table 5.1 suggests

that EpicFlow performs better. Comparing LikeNet with QLikeNet, the motion field

estimated by QLikeNet seems noisier than LikeNet. The reason is that QLikeNet is

not trained in a Siamese way and there is not smoothness term in its loss function.

Comparing with DNN-based methods, figures 5.5, it can be seen that there is still

a gap between unsupervised methods and a supervised method. Although, UnFlow,

which models occlusion, still performs better than GradNet, LikeNet, and QLikeNet.

81

5.3. Experimental Results

Figure 5.6: Comparison with classic methods. The AEE maps calclualted for several
samples from several methods on MPISintel the final-training split. Each sample is

normalized by a factor of 255
max(d) , where d =

√
u2
gt + v2

gt. Values more than 255 are

rounded to 255.

The error maps are also visualized, respectively, in figures 5.6 to compare with classic

methods and in figure 5.7 to compare with DNN-based methods. Figure 5.6 shows that

all methods have difficulty in estimation at motion discontinuities, occluded area, low-

texture area, and where the intensity variation is significant. Figure 5.7 shows that

although UnFlow takes occlusion into consideration, it is yet not able to estimate for

occluded area. The situation for the supervised method, SpyNet [67], is fairly better

although the supervised method also fails when there are sever occlusion and intensity

variation, e.g. 5th sample. SpyNet also has problem for estimation around motion

discontinuities. It also has problem in case of low-texture area, e.g. 2nd sample.

82

5.4. Computational Complexity

Figure 5.7: Comparison with DNN-based methods. The AEE maps calclualted for
several samples from several methods on MPISintel the final-training split. Each

sample is normalized by a factor of 255
max(d) , where d =

√
u2
gt + v2

gt. Values more than

255 are rounded to 255.

5.4 Computational Complexity

The runtime of QLikeNet is 161ms compared to LikeNet which is 19208ms, GradNet

which is 156ms, and DSTFlow [69] which is 30ms. DSTFlow has the same architecture

as FlowNetS [25]. To measure the runtime, both algorithms are implemented using

Lasagne in Theano and the exploited GPU is GeForce GTX 1080. Table 5.3 contains

the runtime breakdown of GradNet.

In terms of learned parameters, QLikeNet has a comparably low number of learned

83

5.5. Conclusion

QLikeNet (CNN) Smoothening Warping Sum

scale 1 0.0018 0.0001 0.0007 0.0025

scale 2 0.0017 0.0001 0.0008 0.0026

scale 3 0.0021 0.0001 0.0010 0.0032

scale 4 0.0030 0.0002 0.0014 0.0046

scale 5 0.0044 0.0004 0.0023 0.0070

scale 6 0.0076 0.0008 0.0039 0.0123

scale 7 0.0140 0.0016 0.0075 0.0231

scale 8 0.0282 0.0031 0.0142 0.0454

scale 9 0.0540 0.0068 0.0000 0.608

Sum 0.1167 0.0132 0.0318 0.1618

Table 5.3: The runtime breakdown of GradNet in multiscale scheme in seconds. Scale
1 refers to the lowest resolution, scale 9 refers to the main resolution.

Method Number of learned parameters
FlowNetS 32,070,472
FlowNetC 32,561,032
SpyNet 1,200,250
GradNet 3,666,562
LikeNet 697,028
QLikeNet 3,716,550

Table 5.4: Compared to other DNN-based methods, QLikeNet is comparably small in
terms of learned parameters. DSTFlow [69] follows the FlowNetS architecture.

parameters in comparison with other supervised and unsupervised motion estimation

methods. Table 5.4 contains a comparison with other CNN architectures trained for

motion estimation.

5.5 Conclusion

In this chapter, we have shown how to squeeze the computationally heavy LikeNet

in a lighter and quicker CNN, QLikeNet without a significant drop in the accuracy.

We realize this by training QLikeNet using the supervision received from one branch

of LikeNet. A LikeNet that is trained using a feature constancy constraint in an un-

supervised manner and without the need for any handcrafted regularization or other

constraints. QLikeNet is trained on the real UCF101 dataset. We show that it per-

84

5.5. Conclusion

forms better than the other state-of-the-art unsupervised methods that do not use

bi-directional constraints, and that it can generalize very well to unknown datasets

without the need for finetuning. QLikeNet is significantly faster than LikeNet, yet

performing comparably.

85

Chapter 6

Conclusions

In this thesis, we have explored different unsupervised techniques for the problem of

dense motion estimation. We started with a fully convolutional hourglass architec-

ture which we trained in an unsupervised way, without the need for ground truth

motion field, for motion estimation, GradNet. The loss function we minimized for

training is based on the classic loss function proposed by Horn and Schunk [38] which

penalizes the deviation from the intensity constancy assumption by minimizing the

motion compensated intensity error. The loss is based on a first-order Taylor expan-

sion which makes the backpropagation of error, computationally feasible. We also

explore the case where a second-order Taylor expansion is used. We also show that

if a specific polynomial is fitted to a specific set of pixels, the result is similar to the

second order Taylor expansion. This also explains the connection to the widely used

interpolation-based spatial transformer method [42]. Although GradNet is trained on

a real dataset, UCF101, the evaluations on both synthetic and real datasets show that

GradNet generalizes well to unknown datasets. The experiments show that a network

trained using a higher-order expansion and applied in a multiscale scheme, on aver-

age performs slightly better than a network that is trained using a transformer layer

and applied in single resolution. The terms in the loss function using which GradNet

is trained do not model occlusion and non-rigid deformations, or provide robustness

86

towards intensity variations, although more sophisticated loss functions and features

(instead of only intensity features) will be used in the future.

Although GradNet performs well, yet there was a fairly large gap between the su-

pervised and unsupervised DNN-based methods. We propose a second method that

performs much better than GradNet and works based on the similarities between the

features extracted from the reference frame and the uniformly warped version of the

target frame, LikeNet. Ahead of all other unsupervised methods, LikeNet focuses on

the features calculated by the first layer of the VGG object recognition DNN rather

than intensity features. Also, unlike other DNN-based methods, LikeNet solves motion

estimation as a classification problem. LikeNet is embedded in the classic multiscale

scheme and a Conditional Random Field (CRF) implemented as an RNN was used

in the lowest scale of the multiscale scheme to improve the estimated motion field

by preventing the propagation of error across the scales. Although LikeNet has the

lowest number of learned parameters among supervised and unsupervised methods,

it performs better than other uni-directional unsupervised DNN-based motion estim-

ation techniques with more computational complexity. The flexible architecture of

LikeNet allows for a trade-off between the required memory and computational load.

Although LikeNet is fully parallelizable, the full parallelization is not feasible due to

limited processing resources in available GPUs. This makes LikeNet run slower than

other methods.

In Chapter 5, we propose to distill LikeNet in a much faster CNN, QLikeNet without

loosing much of the accuracy. The architecture is inspired from GradNet, however

slightly slower, and similarly embedded in a classic multiscale scheme.

87

6.1. Future Work

6.1 Future Work

Most of the recent unsupervised motion estimation methods focus on modeling the oc-

cluded area which removing during the training is claimed to improve the performance

during the test. Estimation of the motion field for the occluded area can be promising

as no effort has been put in this direction.

So far, the loss functions we used were mainly focusing on feature constancy con-

straint. In the future, we will try to work on learning the estimation of optical flow

under non-rigid transformations and provide more robustness against the intensity

variations. Also, different augmentations such as scaling, rotation, translation, and

color jittering will be tried to improve the results even further. So far, we have used

intensity and VGG features although, another direction would be to use features that

are more robust towards variations from the reference frame to the target frame for

training.

The motion estimation method proposed in this thesis receive a pair of frames as

input and calculate a motion field. Designing a framework that receives as input a se-

quence of frames and calculates the motion field can be promising. The input sequence

provides the network with the motion history in previous frames which can improve

the estimated motion at the current frame.

GANs have shown to have promising performance in different applications [32, 68,

3, 85, 65, 22, 24, 50, 29]. Given that the occluded area are problematic in motion

estimation as the correspinding points are missing from one of the reference or target

frames, using GANs to generate the motion field for the missing area can be a pro-

missing direction.

88

6.1. Future Work

DNNs trained for motion estimation are able to build low to high-level features

in their intermediate layers. These representations encode important motion/object-

related information and can be used as extra input data to ease other recognition/estimation

tasks such as human action recognition and pose estimation.

89

Appendix A

Arriving at the higher-order Taylor

Expansion of Motion Compensated

Intensity by Fitting a Polynomial

As mentioned in Chapter 3, the motion compensated intensity, I(x+ α, y + β, t+ 1),

can be approximated using the interpolation of a set of nodes (pixels). By choosing

a specific polynomial and calculating its parameters by fitting a specific set of nodes,

the second-order Taylor expansion, in Chapter 3, can be derived. The derivatives in

the derived Taylor expansion have to be calculated in a specific way. This appendix

describes how the second-order Taylor expansion can be derived from an interpolation

of a specific set of nodes, in section 3. From the following general polynomial formula,

∑
i

∑
j

∑
k

Cijkα
iβjγk (A.1)

where α, β, and γ are variables and Ci,j,k are constants, specific terms are drawn to

90

A.1. Fitting Nodes in t = 0 Plane

approximate Iα,β,γ(x, y, t),

Iα,β,γ(x, y, t) = C000 + C100α+ C010β + C001γ+

1

2!
(C110αβ + C101αγ + C011βγ

+C200α
2 + C020β

2)

(A.2)

The idea is to fit a polynomial of degree 2 with respect to x and y and degree 1 with

respect to t given 9 points a, b, c, d, e, f from the reference frame and g, h, i from the

target frame, Fig. A.1.

Figure A.1: The nodes participating in the interpolation.

In Fig. A.1, for node a, the variables (α, β, γ) are (0, 0, 0) and for node h, the

variables are (1,0,1). The other nodes follow the same coordination system.

A.1 Fitting Nodes in t = 0 Plane

By putting the nodes, a, b, c, d, e, and f in the Eq. A.2,

a = C000 (A.3)

91

A.1. Fitting Nodes in t = 0 Plane

b = a+ C100 + C200 (A.4)

c = a+ C010 + C020 (A.5)

e = a− C010 + C200 (A.6)

f = a− C010 + C020 (A.7)

d = a+ C100 + C010 + C200 + C020 + C110 (A.8)

The addition of the left sides of Equations. A.7 and A.5 has to be equal to the

addition of the right sides,

f + c = 2a+ 2C020 =⇒ C020 =
1

2
Iyy|Iyy , (c− a)− (a− f) : (A.9)

By adding both sides of Equations. A.6 and A.4,

b+ e = 2a+ 2C200 =⇒ C200 =
1

2
Ixx|Ixx , (b− a)− (a− e) : (A.10)

By substituting C200 value obtained in Equation. A.10 into Equation. A.4,

b = a+ C100 +
b− 2a+ e

2
=⇒ C100 = Ix|Ix ,

b− e
2

(A.11)

92

A.2. Fitting Nodes in t = 1 Plane

And by substituting C020 value obtained in Equation. A.9 into Equation. A.5,

c = a+ C010 +
c− 2a+ f

2
=⇒ C010 = Iy|Iy ,

c− f
2

(A.12)

By substituting C100, C010, C200, and C020, values into Equation. A.8,

C110 = Ixy|Ixy , (d− c)− (b− a) (A.13)

A.2 Fitting Nodes in t = 1 Plane

g = a+ C001 =⇒ C001 = It|It , g − a (A.14)

Having C001 calculated, the C101 and C011 can be calculated from the following

Equation,

h = a+ Ix + C001 + C101 + Ixx, (A.15)

which leads to,

C101 = Ixt|Ixt , (h− g)− (b− a) (A.16)

and,

i = a+ Iy + C001 + C011 + Iyy (A.17)

93

A.2. Fitting Nodes in t = 1 Plane

which leads to,

C011 = Iyt|Iyt , (i− g)− (c− a) (A.18)

Finally, the calculated constants of Eq. A.2 would turn Eq. A.2 into:

I(x, y, t) = a+ αIx + βIy + It +
1

2
(α2Ixx + β2Iyy + αβIxy + αIxt + βIyt) (A.19)

94

Bibliography

Bibliography

[1] A. Ahmadi, I. Marras, and I. Patras. Likenet: A siamese motion estimation

network trained in an unsupervised way. In BMVC, 2018. 3

[2] A. Ahmadi and I. Patras. Unsupervised convolutional neural networks for motion

estimation. In Image Processing (ICIP), 2016 IEEE International Conference

on, pages 1629–1633. IEEE, 2016. 3, 5, 27, 69, 80

[3] Y. Almalioglu, M. R. U. Saputra, P. P. de Gusmao, A. Markham, and N. Trigoni.

Ganvo: Unsupervised deep monocular visual odometry and depth estimation

with generative adversarial networks. arXiv preprint arXiv:1809.05786, 2018.

88

[4] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sánchez. Symmetrical dense

optical flow estimation with occlusions detection. International Journal of Com-

puter Vision, 75(3):371–385, 2007. 30

[5] K. E. Atkinson and W. Han. Elementary numerical analysis. Wiley New York

et al., 1985. 38

[6] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3d chairs:

exemplar part-based 2d-3d alignment using a large dataset of cad models. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3762–3769, 2014. 19, 21, 22

[7] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture image decom-

position—modeling, algorithms, and parameter selection. International journal

of computer vision, 67(1):111–136, 2006. 15

[8] C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for

highly accurate large displacement optical flow estimation. In Proceedings of the

95

Bibliography

IEEE International Conference on Computer Vision, pages 4015–4023, 2015. 3,

51, 69, 80

[9] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A

database and evaluation methodology for optical flow. International Journal of

Computer Vision, 92(1):1–31, 2011. 14, 24, 49

[10] F. Behar-Cohen, G. Baillet, T. de Ayguavives, P. O. Garcia, J. Krutmann,

P. Peña-Garćıa, C. Reme, and J. S. Wolffsohn. Ultraviolet damage to the eye

revisited: eye-sun protection factor (e-spf R©), a new ultraviolet protection label

for eyewear. Clinical ophthalmology (Auckland, NZ), 8:87, 2014. 72

[11] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr. Fully-

convolutional siamese networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016. 79

[12] M. J. Black. Explaining optical flow events with parameterized spatio-temporal

models. In Computer Vision and Pattern Recognition, 1999. IEEE Computer

Society Conference on., volume 1, pages 326–332. IEEE, 1999. 2

[13] M. J. Black and P. Anandan. The robust estimation of multiple motions: Para-

metric and piecewise-smooth flow fields. Computer vision and image understand-

ing, 63(1):75–104, 1996. 14, 25

[14] M. J. Black, Y. Yacoob, A. D. Jepson, and D. J. Fleet. Learning parameterized

models of image motion. In Proceedings of IEEE computer society conference on

Computer vision and pattern recognition, pages 561–567. IEEE, 1997. 17

[15] J. Braux-Zin, R. Dupont, and A. Bartoli. A general dense image matching

framework combining direct and feature-based costs. In Proceedings of the IEEE

International Conference on Computer Vision, pages 185–192, 2013. 17

96

Bibliography

[16] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow

estimation based on a theory for warping. In Computer Vision-ECCV 2004,

pages 25–36. Springer, 2004. x, xi, 2, 3, 4, 14, 15, 16, 25, 52, 53, 79

[17] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in

variational motion estimation. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 33(3):500–513, 2011. x, xi, 2, 3, 4, 16, 51, 52, 53, 69, 79, 80

[18] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/kanade meets horn/schunck: Com-

bining local and global optic flow methods. International journal of computer

vision, 61(3):211–231, 2005. 15

[19] P. Burt and E. Adelson. The laplacian pyramid as a compact image code. IEEE

Transactions on communications, 31(4):532–540, 1983. 14

[20] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source

movie for optical flow evaluation. In Computer Vision–ECCV 2012, pages 611–

625. Springer, 2012. x, xi, xii, 48, 50, 53, 79, 81

[21] Q. Chen and V. Koltun. Full flow: Optical flow estimation by global optimization

over regular grids. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4706–4714, 2016. 25

[22] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified

generative adversarial networks for multi-domain image-to-image translation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 8789–8797, 2018. 88

[23] E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using

a laplacian pyramid of adversarial networks. In Advances in neural information

processing systems, pages 1486–1494, 2015. 15

97

Bibliography

[24] H. Dong, P. Neekhara, C. Wu, and Y. Guo. Unsupervised image-to-image trans-

lation with generative adversarial networks. arXiv preprint arXiv:1701.02676,

2017. 88

[25] A. Dosovitskiy, P. Fischer, E. Ilg, P. Höusser, C. Hazırbaş, V. Golkov, P. v. d.

Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolu-

tional networks. In IEEE International Conference on Computer Vision (ICCV),

Dec 2015. viii, ix, 2, 5, 19, 20, 21, 27, 28, 32, 51, 55, 69, 71, 76, 80, 83

[26] Q. Duan, E. Angelini, S. Homma, and A. Laine. Tracking endocardium using

optical flow along iso-value curve. In Engineering in Medicine and Biology Soci-

ety, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pages

707–710. IEEE, 2006. 2

[27] F. Dufaux and J. Konrad. Efficient, robust, and fast global motion estimation

for video coding. Image Processing, IEEE Transactions on, 9(3):497–501, 2000.

2

[28] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. van der

Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolu-

tional networks. arXiv preprint arXiv:1504.06852, 2015. 18, 26, 61

[29] J. Gauthier. Conditional generative adversarial nets for convolutional face gen-

eration. Class Project for Stanford CS231N: Convolutional Neural Networks for

Visual Recognition, Winter semester, 2014(5):2, 2014. 88

[30] F. C. Glazer. Hierarchical motion detection. 1987. 14

[31] P. Golland and A. M. Bruckstein. Motion from color. Computer Vision and

Image Understanding, 68(3):346–362, 1997. 15

[32] K. Gwn Lore, K. Reddy, M. Giering, and E. A. Bernal. Generative adversarial

networks for depth map estimation from rgb video. In Proceedings of the IEEE

98

Bibliography

Conference on Computer Vision and Pattern Recognition Workshops, pages

1177–1185, 2018. 88

[33] D. Hafner, O. Demetz, and J. Weickert. Why is the census transform good for

robust optic flow computation? In International Conference on Scale Space and

Variational Methods in Computer Vision, pages 210–221. Springer, 2013. 29

[34] R. Hamming. Numerical methods for scientists and engineers. Courier Corpor-

ation, 2012. 38

[35] N. Hata, A. Nabavi, W. M. Wells III, S. K. Warfield, R. Kikinis, P. M. Black, and

F. A. Jolesz. Three-dimensional optical flow method for measurement of volu-

metric brain deformation from intraoperative mr images. Journal of Computer

Assisted Tomography, 24(4):531–538, 2000. 2

[36] J. Hays and A. A. Efros. Im2gps: estimating geographic information from a

single image. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1–8. IEEE, 2008. 19

[37] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531, 2015. 74

[38] B. K. Horn and B. G. Schunck. Determining optical flow. In 1981 Technical

symposium east, pages 319–331. International Society for Optics and Photonics,

1981. x, 3, 4, 11, 13, 14, 17, 25, 35, 36, 38, 51, 53, 86

[39] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume

filtering for visual correspondence and beyond. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(2):504–511, 2013. 25

[40] P. J. Huber. Robust statistics. Springer, 2011. 14

99

Bibliography

[41] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet

2.0: Evolution of optical flow estimation with deep networks. arXiv preprint

arXiv:1612.01925, 2016. viii, 2, 5, 18, 22, 23, 26, 28, 51, 69, 80

[42] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks.

In Advances in Neural Information Processing Systems, pages 2017–2025, 2015.

x, 26, 27, 31, 35, 37, 43, 46, 79, 86

[43] M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for better action

recognition. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, pages 2555–2562. IEEE, 2013. 2

[44] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-

stage architecture for object recognition? In Computer Vision, 2009 IEEE 12th

International Conference on, pages 2146–2153. IEEE, 2009. 62

[45] J. Y. Jason, A. W. Harley, and K. G. Derpanis. Back to basics: Unsupervised

learning of optical flow via brightness constancy and motion smoothness. In

European Conference on Computer Vision, pages 3–10. Springer, 2016. 7, 8, 27,

28, 29

[46] Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo. Trajectory-based modeling

of human actions with motion reference points. In Computer Vision–ECCV 2012,

pages 425–438. Springer, 2012. 2

[47] S. L. Keeling. Medical image registration and interpolation by optical flow with

maximal rigidity. In Mathematical Models for Registration and Applications to

Medical imaging, pages 27–61. Springer, 2006. 2

[48] R. Kennedy and C. J. Taylor. Optical flow with geometric occlusion estimation

and fusion of multiple frames. In International Workshop on Energy Minim-

ization Methods in Computer Vision and Pattern Recognition, pages 364–377.

Springer, 2015. 17

100

Bibliography

[49] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Proceed-

ings of the 3rd International Conference on Learning Representations (ICLR),

2014. 47

[50] I. Korshunova, W. Shi, J. Dambre, and L. Theis. Fast face-swap using convolu-

tional neural networks. In Proceedings of the IEEE International Conference on

Computer Vision, pages 3677–3685, 2017. 88

[51] P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with

gaussian edge potentials. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,

F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 24, pages 109–117. Curran Associates, Inc., 2011. 65

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing

Systems 25, pages 1106–1114, 2012. 4, 18

[53] W. Li. Mpeg-4 video verification model version 18.0. ISO/IEC

JTC1/SC29/WG11, N3908, 2001. 2

[54] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. Sift flow: Dense

correspondence across different scenes. In European conference on computer

vision, pages 28–42. Springer, 2008. 16

[55] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic

segmentation. CVPR (to appear), Nov. 2015. 2

[56] D. G. Lowe. Object recognition from local scale-invariant features. In iccv, page

1150. Ieee, 1999. 16

[57] B. D. Lucas, T. Kanade, et al. An iterative image registration technique with

an application to stereo vision. 1981. 11, 13, 14

101

Bibliography

[58] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox.

A large dataset to train convolutional networks for disparity, optical flow, and

scene flow estimation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4040–4048, 2016. 22, 26

[59] S. Meister, J. Hur, and S. Roth. Unflow: Unsupervised learning of optical flow

with a bidirectional census loss. In AAAI, 2018. ix, xii, xiii, 3, 5, 28, 29, 30, 68,

69, 80, 81

[60] E. Mémin and P. Pérez. Dense estimation and object-based segmentation of the

optical flow with robust techniques. IEEE Transactions on Image Processing,

7(5):703–719, 1998. 14

[61] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation of vehicles and scene

flow. In ISPRS Workshop on Image Sequence Analysis (ISA), 2015. 49

[62] Y. Mileva, A. Bruhn, and J. Weickert. Illumination-robust variational optical

flow with photometric invariants. In Joint Pattern Recognition Symposium, pages

152–162. Springer, 2007. 15

[63] M. A. Mohamed, H. A. Rashwan, B. Mertsching, M. A. Garćıa, and D. Puig.

Illumination-robust optical flow using a local directional pattern. IEEE Trans-

actions on Circuits and Systems for Video Technology, 24(9):1499–1508, 2014.

16

[64] J.-M. Odobez and P. Bouthemy. Robust multiresolution estimation of paramet-

ric motion models. Journal of visual communication and image representation,

6(4):348–365, 1995. 14

[65] S. Palsson, E. Agustsson, R. Timofte, and L. Van Gool. Generative adversarial

style transfer networks for face aging. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 2084–2092, 2018.

88

102

Bibliography

[66] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accur-

ate optic flow computation with theoretically justified warping. International

Journal of Computer Vision, 67(2):141–158, 2006. 16

[67] A. Ranjan and M. J. Black. Optical flow estimation using a spatial pyramid

network. arXiv preprint arXiv:1611.00850, 2016. ix, xii, 3, 8, 22, 23, 25, 36, 51,

56, 61, 69, 72, 80, 81, 82

[68] A. Ranjan, V. Jampani, K. Kim, D. Sun, J. Wulff, and M. J. Black. Adversarial

collaboration: Joint unsupervised learning of depth, camera motion, optical flow

and motion segmentation. arXiv preprint arXiv:1805.09806, 2018. 88

[69] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha. Unsupervised deep learning

for optical flow estimation. In AAAI, pages 1495–1501, 2017. xiii, xiv, 5, 8, 27,

35, 51, 55, 56, 61, 66, 68, 69, 71, 72, 76, 80, 83, 84

[70] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-

preserving interpolation of correspondences for optical flow. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 1164–

1172, 2015. x, xi, 2, 4, 16, 51, 53, 69, 79, 80

[71] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deepmatching: Hier-

archical deformable dense matching. International Journal of Computer Vision,

120(3):300–323, 2016. 17

[72] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer, 2015. x,

48

[73] D. Rosenbaum, D. Zoran, and Y. Weiss. Learning the local statistics of optical

flow. In Advances in Neural Information Processing Systems, pages 2373–2381,

2013. 17

103

Bibliography

[74] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

15

[75] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action

recognition in videos. In Advances in neural information processing systems,

pages 568–576, 2014. 2, 4

[76] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Learning Representations,

2015. 4, 63

[77] K. Soomro, A. Roshan Zamir, and M. Shah. UCF101: A dataset of 101 human

actions classes from videos in the wild. In CRCV-TR-12-01, 2012. 44, 47, 61

[78] F. Stein. Efficient computation of optical flow using the census transform. In

Joint Pattern Recognition Symposium, pages 79–86. Springer, 2004. 29

[79] M. Stoll, S. Volz, and A. Bruhn. Adaptive integration of feature matches into

variational optical flow methods. In Asian Conference on Computer Vision,

pages 1–14. Springer, 2012. 17

[80] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of current practices

in optical flow estimation and the principles behind them. International Journal

of Computer Vision, 106(2):115–137, 2014. 23, 25, 46

[81] D. Sun, S. Roth, J. Lewis, and M. J. Black. Learning optical flow. In European

Conference on Computer Vision, pages 83–97. Springer, 2008. 17

[82] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns for optical flow using

pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 8934–8943, 2018. ix, 3, 8, 18,

24, 25, 26, 36

104

Bibliography

[83] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by gpu-

accelerated large displacement optical flow. In European conference on computer

vision, pages 438–451. Springer, 2010. 28, 51, 69, 80

[84] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of

initialization and momentum in deep learning. ICML (3), 28:1139–1147, 2013.

67

[85] R. K. Thakur and S. Mukherjee. A conditional adversarial network for scene

flow estimation. arXiv preprint arXiv:1904.11163, 2019. 88

[86] W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior

for high-accuracy motion estimation. In Joint Pattern Recognition Symposium,

pages 396–405. Springer, 2008. 29

[87] J. van de Weijer and T. Gevers. Robust optical flow from photometric invari-

ants. In 2004 International Conference on Image Processing, 2004. ICIP’04.,

volume 3, pages 1835–1838. IEEE, 2004. 15

[88] C. Vogel, S. Roth, and K. Schindler. An evaluation of data costs for optical flow.

In German Conference on Pattern Recognition, pages 343–353. Springer, 2013.

29

[89] H. Wang and C. Schmid. Action recognition with improved trajectories. In

Computer Vision (ICCV), 2013 IEEE International Conference on, pages 3551–

3558. IEEE, 2013. 2

[90] Y. Wang, Y. Yang, Z. Yang, L. Zhao, and W. Xu. Occlusion aware unsupervised

learning of optical flow. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4884–4893, 2018. ix, 3, 5, 28, 29, 30, 31,

32, 33, 35

105

Bibliography

[91] J. Weber and J. Malik. Robust computation of optical flow in a multi-scale

differential framework. International Journal of Computer Vision, 14(1):67–81,

1995. 24

[92] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm

for tv-l 1 optical flow. In Statistical and geometrical approaches to visual motion

analysis, pages 23–45. Springer, 2009. 15

[93] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deepflow: Large

displacement optical flow with deep matching. In Computer Vision (ICCV),

2013 IEEE International Conference on, pages 1385–1392. IEEE, 2013. x, xi, 3,

4, 16, 19, 53, 79

[94] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Learning to detect

motion boundaries. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2578–2586, 2015. 3

[95] Z. Wu, Y.-G. Jiang, X. Wang, H. Ye, X. Xue, and J. Wang. Fusing multi-stream

deep networks for video classification. arXiv preprint arXiv:1509.06086, 2015. 2

[96] J. Wulff and M. J. Black. Efficient sparse-to-dense optical flow estimation using

a learned basis and layers. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 120–130, 2015. 51, 69, 80

[97] J. Xu, R. Ranftl, and V. Koltun. Accurate optical flow via direct cost volume

processing. arXiv preprint arXiv:1704.07325, 2017. 25

[98] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual

correspondence. In European conference on computer vision, pages 151–158.

Springer, 1994. 29

[99] C. Zhang, Z. Li, R. Cai, H. Chao, and Y. Rui. As-rigid-as-possible stereo under

second order smoothness priors. In European Conference on Computer Vision,

pages 112–126. Springer, 2014. 29

106

Bibliography

[100] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,

C. Huang, and P. H. Torr. Conditional random fields as recurrent neural net-

works. In Proceedings of the IEEE International Conference on Computer Vision,

pages 1529–1537, 2015. 6, 8, 60, 61, 65, 66

[101] H. Zimmer, A. Bruhn, and J. Weickert. Optic flow in harmony. International

Journal of Computer Vision, 93(3):368–388, 2011. 15

[102] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and

H.-P. Seidel. Complementary optic flow. In International Workshop on Energy

Minimization Methods in Computer Vision and Pattern Recognition, pages 207–

220. Springer, 2009. 16

107

	List of Figures
	List of Tables
	Introduction
	Challenges
	Previous Works
	Overview of the Proposed Methods
	Major contributions
	Organisation of the thesis

	Related Work
	Classic Methods
	DNN-based Methods
	Supervised Methods
	Unsupervised Methods

	Conclusion

	GradNet: Gradient-based Unsupervised Training of Deep Neural Networks for Motion Estimation
	Method
	First-order Taylor expansion
	Second-order Taylor expansion
	Taylor Expansion - Interpolation, Connection
	Connection to Spatial Transformation Networks
	First-order vs. Second-order Expansion
	Loss Augmentation

	Architecture and Training
	Dataset
	Experiments
	Computational Complexity
	Evaluation on MPI Sintel, Test Split
	Conclusions

	LikeNet: A Siamese Motion Estimation Network Trained in an Unsupervised Way
	LikeNet: a CNN for Motion Estimation
	Architecture

	CRF for Motion Estimation
	Experiments
	Flexible Architecture; Memory-Speed Trade-offs
	Computational Complexity
	Number of Parameters

	Summary

	Quick LikeNet (QLikeNet) : Distilling LikeNet in a Fast Regression CNN
	Methodology
	Architecture
	Experimental Results
	Computational Complexity
	Conclusion

	Conclusions
	Future Work

	Arriving at the higher-order Taylor Expansion of Motion Compensated Intensity by Fitting a Polynomial
	Fitting Nodes in t=0 Plane
	Fitting Nodes in t=1 Plane

	Bibliography

