16 research outputs found

    Development of an Epileptic Seizure Detection Application based on Parallel Computing

    Get PDF
    Abstract—Epileptic seizure detection in a large database of Electroencephalography (EEG) signals needs to be a time constrained process for real-time analysis. Epileptic seizure detection algorithms are designed to obtain and analyze a group of neural signals and recognize the presence of seizure occurrence. The computational cost of the algorithms should be minimized to reduce the processing time and memory consumption. Automated epileptic seizure detection using optimized feature selection improves the classification accuracy, but it occupies more processing time during the Artifact Removal (AR) stage. So, the execution time is greatly reduced by introducing task parallelism in the artifact removal stage. By harnessing parallel computing the computational overhead and processing time are decreased. An epileptic seizure detection application is developed and analyzed with respect to execution time, speedup, and parallel efficiency. The application was developed in Intel Pentium(R) Dual-core CPU with processor clock rate of 2.60 GHz, memory of 1.96 GB, and operating system of Windows X

    Anesthesia assessment based on ICA permutation entropy analysis of two-channel EEG signals

    Get PDF
    Inaccurate assessment may lead to inaccurate levels of dosage given to the patients that may lead to intraoperative awareness that is caused by under dosage during surgery or prolonged recovery in patients that is caused by over dosage after the surgery is done. Previous research and evidence show that assessing anesthetic levels with the help of electroencephalography (EEG) signals gives an overall better aspect of the patient’s anesthetic state. This paper presents a new method to assess the depth of anesthesia (DoA) using Independent Component Analysis (ICA) and permutation entropy analysis. ICA is performed on two-channel EEG to reduce the noise then Wavelet and permutation entropy are applied on these channels to extract the features. A linear regression model was used to build the new DoA index using the selected features. The new index designed by proposed methods performs well under low signal quality and it was overall consistent in most of the cases where Bispectral index (BIS) may fail to provide any valid value

    Chaos-modified detrended moving average methodology for monitoring the depth of anaesthesia

    Get PDF
    This paper proposes a new method to monitor the depth of anaesthesia (DoA) based on the EEG signal. This approach firstly uses discrete wavelet transform (DWT) to to remove the spikes and the low frequency noise from raw EEG signals. After de-noising the EEG signals, the modified Hurst parameter is proposed with two new indices (CDoA and CsDoA), to estimate the anaesthesia states of the patients. To reduce the fluctuation of the new DoA index, a combination of Modified Chaos and Modifying Detrended Moving Average is used (MC-DMA). Analyses of variance (ANOVA) for C-MDMA and BIS distributions are presented The results indicate that the C-MDMA distributions at each anaesthesia state level are significantly different and the C-MDMA can distinguish five depths of anaesthesia. Compared with BIS trends, MC-DMA trend is close to BIS trend covering the whole scale from 100 to 0 with a full recording time

    Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform

    Get PDF
    Copyright @ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.National Science Council (NSC) of Taiwan and the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan (which is sponsored by the NSC)

    Complexity of Wake Electroencephalography Correlates With Slow Wave Activity After Sleep Onset

    No full text
    Sleep electroencephalography (EEG) provides an opportunity to study sleep scientifically, whose chaotic, dynamic, complex, and dissipative nature implies that non-linear approaches could uncover some mechanism of sleep. Based on well-established complexity theories, one hypothesis in sleep medicine is that lower complexity of brain waves at pre-sleep state can facilitate sleep initiation and further improve sleep quality. However, this has never been studied with solid data. In this study, EEG collected from healthy subjects was used to investigate the association between pre-sleep EEG complexity and sleep quality. Multiscale entropy analysis (MSE) was applied to pre-sleep EEG signals recorded immediately after light-off (while subjects were awake) for measuring the complexities of brain dynamics by a proposed index, CI1−30. Slow wave activity (SWA) in sleep, which is commonly used as an indicator of sleep depth or sleep intensity, was quantified based on two methods, traditional Fast Fourier transform (FFT) and ensemble empirical mode decomposition (EEMD). The associations between wake EEG complexity, sleep latency, and SWA in sleep were evaluated. Our results demonstrated that lower complexity before sleep onset is associated with decreased sleep latency, indicating a potential facilitating role of reduced pre-sleep complexity in the wake-sleep transition. In addition, the proposed EEMD-based method revealed an association between wake complexity and quantified SWA in the beginning of sleep (90 min after sleep onset). Complexity metric could thus be considered as a potential indicator for sleep interventions, and further studies are encouraged to examine the application of EEG complexity before sleep onset in populations with difficulty in sleep initiation. Further studies may also examine the mechanisms of the causal relationships between pre-sleep brain complexity and SWA, or conduct comparisons between normal and pathological conditions

    Localization of Active Brain Sources From EEG Signals Using Empirical Mode Decomposition: A Comparative Study

    Get PDF
    The localization of active brain sources from Electroencephalogram (EEG) is a useful method in clinical applications, such as the study of localized epilepsy, evoked-related-potentials, and attention deficit/hyperactivity disorder. The distributed-source model is a common method to estimate neural activity in the brain. The location and amplitude of each active source are estimated by solving the inverse problem by regularization or using Bayesian methods with spatio-temporal constraints. Frequency and spatio-temporal constraints improve the quality of the reconstructed neural activity. However, separation into frequency bands is beneficial when the relevant information is in specific sub-bands. We improved frequency-band identification and preserved good temporal resolution using EEG pre-processing techniques with good frequency band separation and temporal resolution properties. The identified frequency bands were included as constraints in the solution of the inverse problem by decomposing the EEG signals into frequency bands through various methods that offer good frequency and temporal resolution, such as empirical mode decomposition (EMD) and wavelet transform (WT). We present a comparative analysis of the accuracy of brain-source reconstruction using these techniques. The accuracy of the spatial reconstruction was assessed using the Wasserstein metric for real and simulated signals. We approached the mode-mixing problem, inherent to EMD, by exploring three variants of EMD: masking EMD, Ensemble-EMD (EEMD), and multivariate EMD (MEMD). The results of the spatio-temporal brain source reconstruction using these techniques show that masking EMD and MEMD can largely mitigate the mode-mixing problem and achieve a good spatio-temporal reconstruction of the active sources. Masking EMD and EEMD achieved better reconstruction than standard EMD, Multiple Sparse Priors, or wavelet packet decomposition when EMD was used as a pre-processing tool for the spatial reconstruction (averaged over time) of the brain sources. The spatial resolution obtained using all three EMD variants was substantially better than the use of EMD alone, as the mode-mixing problem was mitigated, particularly with masking EMD and EEMD. These findings encourage further exploration into the use of EMD-based pre-processing, the mode-mixing problem, and its impact on the accuracy of brain source activity reconstruction
    corecore