93 research outputs found

    Construction and Accuracy Analysis of a BDS/GPS-Integrated Positioning Algorithm for Forests

    Get PDF
    The objective of this study was to construct a BeiDou navigation satellite system (BDS)/ global positioning system (GPS)-integrated positioning algorithm that meets the accuracy requirement of forest surveys and to analyze its accuracy to provide theoretical and technical support for accurate positioning and navigation in forests. The Quercus variabilis broad-leaved forest in Jiufeng National Forest Park and the Sabina Coniferous forest in Dongsheng Bajia forest farm were selected as the study area. A Sanding T-23 multi-frequency three-constellation receiver and a u-blox NEO-M8T multi-constellation receiving module were used for continuous observation under the forest canopy. Compared with T-23, the u-blox NEO-M8T is much lighter and more flexible in the forest. The BDS/GPS-integrated positioning algorithm for forests was constructed by temporally and spatially unifying the satellite systems and using a reasonable observed value weighting method. Additionally, the algorithm is also written into the RTKLIB software to calculate the three-dimensional (3D) coordinates of the forest observation point in the World Geodetic System 1984 (WGS-84) coordinate system. Finally, the results were compared with the positioning results obtained using GPS alone. The experimental results indicated that, compared with GPS positioning, there were 13ā€“27 visible satellites available for the BDS/GPS-integrated positioning algorithm for forests, far more than the satellites available for the GPS positioning algorithm alone. The Position Dilution of Precision (PDOP) values for the BDS/GPS-integrated positioning ranged from 0.5 to 1.9, lower than those for GPS positioning. The signal noise ratio (SNR) of the BDS/GPS-integrated satellite signals and GPS satellite signals were both in the range of 10ā€“50 dB-Hz. However, because there were more visible satellites for the BDS/GPS-integrated positioning, the signals from the BDS/GPS-integrated satellites were stronger and had a more stable SNR than those from the GPS satellites alone. The results obtained using the BDS/GPS-integrated positioning algorithm for forests had significantly higher theoretical and actual accuracies in the X, Y and Z directions than those obtained using the GPS positioning algorithm. This suggests that the BDS/GPS-integrated positioning algorithm can obtain more accurate positioning results for complex forest environments

    An updated survey on the use of geospatial technologies in New Zealandā€™s plantation forestry sector

    Get PDF
    Background: Geospatial technologies have developed rapidly in recent decades and can provide detailed, accurate data to support forest management. Knowledge of the uptake of geospatial technologies, as well as barriers to adoption, in New Zealandā€™s plantation forest management sector is limited and would be beneficial to the industry. This study provides an update to the 2013 benchmark study by Morgenroth and Visser. Methods: An online survey was sent to 29 companies that own or manage plantation forests in New Zealand. The survey was split into seven sections, composed of multiple-choice and open-ended questions, on the topics of: demographic information, data portals and datasets, global navigation satellite system (GNSS) receivers, and four remote-sensing technologies. These included aerial imagery, multispectral imagery, hyperspectral imagery, and light detection and ranging (LiDAR). Each section included questions relating to the acquisition, application and products created from each remote-sensing technology. Questions were also included that related to the barriers preventing the uptake of technologies. To determine the progression in the uptake of these technologies the results were compared to Morgenroth and Visser's study conducted five years' earlier. Results: Twenty-three companies responded to the survey and together, those companies managed approximately 1,172,000 ha (or 69% of New Zealandā€™s 1.706 million ha plantation forest estate (NZFOA, 2018)). The size of the estates managed by individual companies ranged from 1,000 ha to 177,000 ha (quartile 1 = 19,000 ha, median = 33,000 ha, quartile 3 = 63,150 ha). All companies used GNSS receivers and acquired three-band, Red-Green-Blue, aerial imagery. Multispectral imagery, hyperspectral imagery and LiDAR data were acquired by 48%, 9% and 70% of companies, respectively. Common applications for the products derived from these technologies were forest mapping and description, harvest planning, and cutover mapping. The main barrier preventing companies from acquiring most remotely-sensed data was the lack of staff knowledge and training, though cost was the main barrier to LiDAR acquisition. The uptake of all remote-sensing technologies has increased since 2013. LiDAR had the largest progression in uptake, increasing from 17% to 70%. There has also been a change in the way companies acquired the data. Many of the companies used unpiloted aerial vehicles (UAV) to acquire aerial and multispectral imagery in 2018, while in 2013 no companies were using UAVs. ESRI ArcGIS continues to be the dominant geographic information system used by New Zealandā€™s forest management companies (91%), though 22% of companies now use free GIS software, like QGIS or GRASS. The use of specialised software (e.g. FUSION, LAStools) for LiDAR or photogrammetric point cloud analysis increased since 2013, but most forestry companies who are processing .las files into various products (e.g. digital terrain model) are using ArcGIS. Conclusions: This study showed that there had been a progression in the uptake of geospatial technologies in the New Zealand plantation forest management sector. However, there are still barriers preventing the full utilisation of these technologies. The results suggest that the industry could benefit from investing in more training relating to geospatial technologies

    Recreation Potential Assessment at Tamarix Forest Reserves: A Method Based on Multicriteria Evaluation Approach and Landscape Metrics

    Get PDF
    The purpose of this study was to develop new methods to describe outdoor recreation potential based on landscape indicators and systemic multicriteria evolution in the Tamarix forest reserves of Varamin city, a part of Iranianā€“Turanian forests of the Tehran province in Iran. First, in conducting a multicriteria evaluation, ecological factors that included slope, aspect, elevation, vegetation density, precipitation, temperature, and soil texture were mapped, classified, and coded according to the degree of desirability for outdoor recreation. All these maps were then intersected and the final map of recreational potential for three regions of the forest reserves was prepared. Results showed that the Shokrabad region had more recreation potential than the other two regions (Fakhrabad and Dolatabad) in terms of the sum of ecological factors potentially affecting tourism potential. Second, in conducting a landscape-based method, six of the most important indicators of the landscape that are effective in outdoor recreational potential were developed for each region. The combination of these landscape features determined the value of a place for recreational activities from a landscape perspective. The results showed that a large part of the Shokrabad region and a smaller number of places in the Fakhrabad and Dolatabad regions have high outdoor recreational potential. The area suitable for recreation in the output of the multicriteria evaluation method turned out to be greater than the area suggested by the landscape method, as more factors were examined in the multicriteria evaluation method. Of the set investigated, the topography and soil factors played an important role in the evaluation

    Machine Learning for the Estimation of Diameter Increment in Mixed and Uneven-Aged Forests

    Get PDF
    Estimating the diameter increment of forests is one of the most important relationships in forest management and planning. The aim of this study was to provide insight into the application of two machine learning methods, i.e., the multilayer perceptron artificial neural network (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for developing diameter increment models for the Hyrcanian forests. For this purpose, the diameters at breast height (DBH) of seven tree species were recorded during two inventory periods. The trees were divided into four broad species groups, including beech (Fagus orientalis), chestnut-leaved oak (Quercus castaneifolia), hornbeam (Carpinus betulus), and other species. For each group, a separate model was developed. The k-fold strategy was used to evaluate these models. The Pearson correlation coefficient (r), coefficient of determination (R2), root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC) were utilized to evaluate the models. RMSE and R2 of the MLP and ANFIS models were estimated for the four groups of beech ((1.61 and 0.23) and (1.57 and 0.26)), hornbeam ((1.42 and 0.13) and (1.49 and 0.10)), chestnut-leaved oak ((1.55 and 0.28) and (1.47 and 0.39)), and other species ((1.44 and 0.32) and (1.5 and 0.24)), respectively. Despite the low coefficient of determination, the correlation test in both techniques was significant at a 0.01 level for all four groups. In this study, we also determined optimal network parameters such as number of nodes of one or multiple hidden layers and the type of membership functions for modeling the diameter increment in the Hyrcanian forests. Comparison of the results of the two techniques showed that for the groups of beech and chestnut-leaved oak, the ANFIS technique performed better and that the modeling techniques have a deep relationship with the nature of the tree species

    Machine Learning for the Estimation of Diameter Increment in Mixed and Uneven-Aged Forests

    Get PDF
    Estimating the diameter increment of forests is one of the most important relationships in forest management and planning. The aim of this study was to provide insight into the application of two machine learning methods, i.e., the multilayer perceptron artificial neural network (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for developing diameter increment models for the Hyrcanian forests. For this purpose, the diameters at breast height (DBH) of seven tree species were recorded during two inventory periods. The trees were divided into four broad species groups, including beech (Fagus orientalis), chestnut-leaved oak (Quercus castaneifolia), hornbeam (Carpinus betulus), and other species. For each group, a separate model was developed. The k-fold strategy was used to evaluate these models. The Pearson correlation coefficient (r), coefficient of determination (R2), root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC) were utilized to evaluate the models. RMSE and R2 of the MLP and ANFIS models were estimated for the four groups of beech ((1.61 and 0.23) and (1.57 and 0.26)), hornbeam ((1.42 and 0.13) and (1.49 and 0.10)), chestnut-leaved oak ((1.55 and 0.28) and (1.47 and 0.39)), and other species ((1.44 and 0.32) and (1.5 and 0.24)), respectively. Despite the low coefficient of determination, the correlation test in both techniques was significant at a 0.01 level for all four groups. In this study, we also determined optimal network parameters such as number of nodes of one or multiple hidden layers and the type of membership functions for modeling the diameter increment in the Hyrcanian forests. Comparison of the results of the two techniques showed that for the groups of beech and chestnut-leaved oak, the ANFIS technique performed better and that the modeling techniques have a deep relationship with the nature of the tree species

    Operationalization of Remote Sensing Solutions for Sustainable Forest Management

    Get PDF
    The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue ā€œOperationalization of Remote Sensing Solutions for Sustainable Forest Managementā€. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry

    Land Use and Land Cover Mapping in a Changing World

    Get PDF
    It is increasingly being recognized that land use and land cover changes driven by anthropogenic pressures are impacting terrestrial and aquatic ecosystems and their services, human society, and human livelihoods and well-being. This Special Issue contains 12 original papers covering various issues related to land use and land use changes in various parts of the world (see references), with the purpose of providing a forum to exchange ideas and progress in related areas. Research topics include land use targets, dynamic modelling and mapping using satellite images, pressures from energy production, deforestation, impacts on ecosystem services, aboveground biomass evaluation, and investigations on libraries of legends and classiļ¬cation systems

    Land Use and Land Cover Mapping in a Changing World

    Get PDF
    It is increasingly being recognized that land use and land cover changes driven by anthropogenic pressures are impacting terrestrial and aquatic ecosystems and their services, human society, and human livelihoods and well-being. This Special Issue contains 12 original papers covering various issues related to land use and land use changes in various parts of the world (see references), with the purpose of providing a forum to exchange ideas and progress in related areas. Research topics include land use targets, dynamic modelling and mapping using satellite images, pressures from energy production, deforestation, impacts on ecosystem services, aboveground biomass evaluation, and investigations on libraries of legends and classiļ¬cation systems

    Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). The book provides a common platform for the publication of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to the Kyoto Landslide Commitment 2020, which is expected to continue up to 2030 and even beyond to globally promote the understanding and reduction of landslide disaster risk, as well as to address the 2030 Agenda Sustainable Development Goals
    • ā€¦
    corecore