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Abstract: Estimating the diameter increment of forests is one of the most important relationships in
forest management and planning. The aim of this study was to provide insight into the application
of two machine learning methods, i.e., the multilayer perceptron artificial neural network (MLP)
and adaptive neuro-fuzzy inference system (ANFIS), for developing diameter increment models for
the Hyrcanian forests. For this purpose, the diameters at breast height (DBH) of seven tree species
were recorded during two inventory periods. The trees were divided into four broad species groups,
including beech (Fagus orientalis), chestnut-leaved oak (Quercus castaneifolia), hornbeam (Carpinus
betulus), and other species. For each group, a separate model was developed. The k-fold strategy was
used to evaluate these models. The Pearson correlation coefficient (r), coefficient of determination
(R2), root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information
criterion (BIC) were utilized to evaluate the models. RMSE and R2 of the MLP and ANFIS models were
estimated for the four groups of beech ((1.61 and 0.23) and (1.57 and 0.26)), hornbeam ((1.42 and 0.13)
and (1.49 and 0.10)), chestnut-leaved oak ((1.55 and 0.28) and (1.47 and 0.39)), and other species
((1.44 and 0.32) and (1.5 and 0.24)), respectively. Despite the low coefficient of determination,
the correlation test in both techniques was significant at a 0.01 level for all four groups. In this study,
we also determined optimal network parameters such as number of nodes of one or multiple hidden
layers and the type of membership functions for modeling the diameter increment in the Hyrcanian
forests. Comparison of the results of the two techniques showed that for the groups of beech and
chestnut-leaved oak, the ANFIS technique performed better and that the modeling techniques have a
deep relationship with the nature of the tree species.

Keywords: ANFIS; beech; chestnut-leaved oak; Hyrcanian forests; MLP

1. Introduction

Estimating the diameter increment of forests is one of the most important relationships
in forest management and planning [1,2]. Therefore, choosing an accurate method to
determine this relationship in the forests has great importance. A great variety of growth
model systems exist, and they are usually grouped in different levels of resolution such as
stand, diameter class, and individual tree [3].

Growth and yield models predict the dynamics of forests, including future forest
growth and products that enable the study of alternative management options [4,5]. The di-
ameter increment of trees is affected by internal factors such as physiology, species, age,
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and genetic characteristics and external factors such as climatic conditions, ground slope,
soil type, and competition from nearby trees [6].

The revolution in computing technology has affected growth and yield modeling as it
has all fields of science [7]. Computationally intensive methods have been applied in vari-
ous studies, showing that the use of machine learning methods has many advantages [8–11].
Machine learning methods have been used to detect complex nonlinear relationships and
work with qualitative data. The utility of these methods has been well demonstrated in
many studies [12–17]. ANNs form a subset of machine learning that is used for a wide
range of problem-solving tasks, including in optimization, prediction, diagnosis, and con-
trol [18]. Another method of machine learning that has many applications in various fields,
including forestry, is the ANFIS method, and the results of various studies in this field
are satisfactory [15,19]. This method has been widely used in recent years because it is
not limited to the assumptions of experimental models and has the ability to solve prob-
lems related to nonlinear relationships [13]. The ANFIS is a fuzzy system with a parallel
structure, and neural network learning algorithms are used to adjust the parameters of the
fuzzy system [20].

Among the available methods in machine learning, ANNs are the most common
method for modeling at the individual-tree level [21], while usage of other techniques
such as the adaptive neuro-fuzzy inference system (ANFIS) and fuzzy logic are in their
early stages [18]. The ANFIS as a nonlinear model was proposed by Jang [22] for the first
time. In its structure, there are two different parametric groups that include premise and
consequence. The training of the ANFIS involves determining these parameters using an
optimization algorithm [23]. The ANFIS is a two-in-one package, as if you are utilizing a
neural network and fuzzy logic advantages at the same time [22].

Different studies have been conducted in various fields of forest science using ANNs
and ANFIS methods. Reis et al. [24] investigated the mortality and survival of individual-
trees in selectively harvested forests using ANNs in Amazon rainforests. Training and
testing of ANNs were performed for modeling, classification, mortality, and survival,
using different input variables. Reis et al. [24] argued that the overall efficiencies of the
classification in the training and testing phases were above 89% and 90%, respectively.
In another study conducted by Vieira et al. [18], the predicted growth of diameter at breast
height (DBH) and height of eucalyptus trees were determined using both techniques (ANN
and ANFIS). These two methods have high predictive accuracy for DBH growth and tree
height. Reis et al. [25], in their research, predicted a diameter growth model using an ANN
with a correlation above 99% and root mean square error (RMSE) below 11%. They argued
that the ANN could be used effectively to help in the management of rainforests and
ensure the environmental and economic sustainability of the forest. Ashraf et al. [26],
using machine learning, developed growth and yield models (basal area and volume
increment) in forests. The coefficients of determination (R2) of the model using field data
were 0.38 and 0.60 for the increments of the basal area and volume, respectively. Other
studies have also highlighted the successful use of ANNs in forest model development,
including predicting the growth and mortality of trees (e.g., [27–29]). In the Hyrcanian
uneven-aged and mixed forests, Bayat et al. [15] estimated forest tree height using an ANN
and ANFIS and concluded that these methods have good ability for tree height estimation.

Hyrcanian forests are of great importance as the only commercial forests in Iran that
have temperate broad-leaved species. Their approximate area is 1.85 million hectares and
about 15% of Iran’s forests. This region is of special importance with about 44% of the
vascular plants in Iran. There are about 500 species of plants native to Iran in these forests.
Therefore, sustainable and effective planning and management in this region have always
been a major concern. Accurate estimation of the characteristics of these forests, including
diameter increment, has great importance for planners [30].

However, the application of ANNs and the ANFIS to predict the diameter increment in
uneven-aged forests has not been previously conducted in the world. Therefore, by provid-
ing diameter increment models in mixed and uneven-aged Caspian forests using these two
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techniques, we are presenting here an account of novel approaches to build a foundation
for future studies.

Therefore, in this study, some specific issues were investigated: (1) estimation of
the diameter increment in mixed and uneven-aged forests using machine learning (the
main objective), (2) the potential use of nonparametric models including ANNs and the
ANFIS for the estimation of the diameter increment, (3) a comparison between the ANFIS
and ANN in estimating tree increment, and finally (4) optimization of ANN and ANFIS
methods when used in predicting tree diameter increment.

2. Materials and Methods
2.1. Study Area and Data

Kheyroud educational research forest is located in watershed 45 in northern forests of
Iran seven kilometers east of the city of Noshahr in Mazandaran Province. The forest plan
categorizes this area into eight districts including the Gorazbon district. The Gorazbon
district, with an area of 934.24 hectares, is the third largest district of Kheyroud forest
(Figure 1). This district is located in the longitudinal range 51◦ 36′ 30′ ′ to 51◦ 39′ 30′ ′ and
latitude 36◦ 32′ 0′ ′ to 36◦ 34′ 0′ ′. The general orientation of this district is north–south,
and the minimum and maximum altitudes are 840 and 1350 m above sea level. Brown soil
is typical in this district.
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The data used in modeling were obtained from two sampling periods (2003 and 2012)
with fixed-area sample plots. In 2003, using a 150 × 200 m grid, 256 permanent circular
sample plots with area of 0.1ha were present in the Gorazbon district in the form of a
systematic sample. Each sample plot was recorded with a GNSS receiver. The accuracy of
the registration of the forest monitoring permanent sample plots’ center depends on several
factors, including the density of the canopy of the study forest [31]. Inside the sample plots,
the diameter at breast height (DBH) of all living trees with a diameter of more than 7.5 cm
was measured using caliper, and their values were recorded in inventory forms and in
one-centimeter classes. These operations were repeated after nine years. In total, seven tree
species consisting of Fagus orientalis, Carpinus betulus, Quercus castaneifolia, Alnus subcordat,
Acer cappadocicum, Acer velutinum, and Tilia begonifolia were tallied in sample plots. For the
sake of our study and simplification, we put these species into four broad groups such as
beech, hornbeam, chestnut-leaved oak, and other species [32].
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2.2. Determination of the Model Inputs

The data we recorded were used as input to calculate models (Table 1). These inputs
consisted of natural logarithm of DBH (cm), square of DBH (cm2), basal area of the largest
tree (BAL) (m2/ha), Shannon–Weiner’s species diversity index (HS) (Equation (1)) [33],
size diversity index (Hd) (Equation (2)), and the mean of basal area (BA) in sample
plot (m2) (Table 2).

Hs = −
ns

∑
i=1

Bi
B

ln
(

Bi
B

)
(1)

Hd = −
nd

∑
j=1

Bj
B

ln
(

Bj
B

)
(2)

Table 1. General characteristics of the main tree groups.

Groups of Trees Year Maximum Average Standard Deviation

Beech
2003 178 39.1 29.1

2012 180 41.8 36.1

Chestnut-leaved oak
2003 108 22.7 13.3

2012 115 25.9 18.3

Hornbeam
2003 133 23.9 17.5

2012 136 26.1 19.5

Other species
2003 186 34.3 25.6

2012 188 37.5 26

Table 2. Forest stand status in terms of different parameters.

Variable Minimum Maximum Standard Deviation

The number of trees
per hectare 20 1220 241

DBH (cm) 7.5 188 24.7
Average of BA in
sample plot (m2) 0.02 0.633 0.1

BAL (m2/ha) 0 52 8.4
Hd in sample plot 0 2.468 0.314
Hs in sample plot 0 1.8 0.663

Wherein: diameters at breast height (DBH), basal area (BA), basal area of the largest tree (BAL) (m2/ha), size di-
versity index (Hd), and Shannon–Weiner’s species diversity index (HS).

2.3. Model Development

Almost 80% of the studied trees come from two species (beech and hornbeam),
and nearly 20% fall into chestnut-leaved oak and other species groups in the study site.
Consequently, the species were divided into four groups of beech (2215 trees), hornbeam
(3131 trees), chestnut-leaved oak (340 trees), and other species (856 trees), and a separate
model was developed for each group.

Machine learning has various algorithms including artificial neural network (ANN),
genetic algorithm, fuzzy logic, and neuro-fuzzy [30,34,35]. For predicting the diameter
increment of individual trees, two techniques of adaptive neuro-fuzzy inference system
(ANFIS) and multi-layer perceptron (MLP) neural network were designed and imple-
mented in MATLAB software version 2016. Prior to delving into the details of these
techniques, it is better to describe the data stratification method. In general, the data used in
the ANN model were divided into two subsets of training and testing data. Training section
is larger and usually involves 70 to 80% of the data and is used for training the learning pat-
terns to the network [36,37]. The test section is not utilized in the network learning process.
Rather, it is used for comparing different models in terms of network power (goodness of
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fit) and generalization [38]. In the present study, the k-fold cross validation method was
utilized. This method has been applied by Kozak and Kozak [39] and others. In our study,
all observations after random distribution were divided into four-fold (i.e., k = 4), and for
each species group every data set contained 25% of observations. Therefore, four data sets
were created with different structures (Table 3). The data sets were utilized to construct
four models for both MLP and ANFIS techniques. The three sets of data were used for
model development (training) and one data set for error estimation in each model. For each
species group, 4 models with different formation of the data sets were obtained. The final
step included averaging the calculations of outputs of the four models.

Table 3. The formation of data set.

Data Set Validation Training

A 1 2 3 4

B 2 4 3 1

C 3 3 2 1

D 4 4 2 1

2.3.1. Multilayer Perceptron Artificial Neural Network (MLP)

The typical architecture of MLP consists of three layers: an input, hidden, and output
layer [40]. The architecture of these networks includes the number of layers, the number of
neurons, the transfer function of each neuron, and how the layers are interconnected de-
pending on the type of problem [26]. The number of independent variables of the problem
determines the number of network inputs, and the number of dependent variables specifies
the neurons’ number of output layer. The main issue in the design of the ANN is the
determination of the number of suitable neurons in the hidden layer(s), which is achieved
with the trial-and-error method. A single neuron is not very useful for modeling real and
complex systems, whereas several neurons have a high power when they are linked with
one or more layers. In general, the larger number of layers enables the system to represent
more complexities. However, on the other hand, a high number of layers decreases the
accuracy of the prediction model and may prevent the network from converging. In such a
case, it has been proven that MLPs with one hidden layer, a sigmoid function (in the hidden
layer), and a linear function in the output layer are able to provide an approximation of all
the functions, provided that there are enough neurons in the hidden layer [41,42]. Hence,
in this study, the number of neurons in each layer was determined as follows:

(i) The number of neurons in input layer: The determination of inputs number for each
species group was obtained by trial and error. Thus, the combination with the lowest
mean squared error (MSE) values was selected as the final combination of the model.
The tested combinations are shown in Table 4. Therefore, according to each species
group, the suitable and normalized inputs were entered into the network. Then, these
inputs, using hyperbolic tangent (tansig) function [26], were passed from hidden layer
to the output layer.

(ii) The number of neurons in hidden layer: In MLP, the nodes of hidden layer are a
structural sensitive parameter. This means that very low nodes could lead to ill
training and high nodes lead to over-fitting [40]. In this study, the structures of MLP
with 1 to 30 neurons in the hidden layer were analyzed and their prediction accuracy
was evaluated.

(iii) The number of neurons in output layer: According to the aim of this study (diameter
increment estimation) and number of parameters, the neuron’s number in the output
layer is equal to 1. The outputs of hidden layer are eventually passed through the
output layer with a linear transfer function (purelin) to provide the final output of
the model.
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Table 4. Combinations of model inputs.

No. Model Inputs

1 Natural logarithm of DBH (cm), square of DBH (m), BAL

2 Natural logarithm of DBH (cm), square of DBH (m), BAL, the average of BA at
sample plot

3 Natural logarithm of DBH (cm), square of DBH (m), BAL, Hs
4 Natural logarithm of DBH (cm), square of DBH (m), BAL, Hd

5 Natural logarithm of DBH (cm), square of DBH (m), BAL, average BA at sample
plot, Hs

6 Natural logarithm of DBH (cm), square of DBH (m), BAL, average BA at sample
plot, Hd

7 Natural logarithm of DBH (cm), square of DBH (m), BAL, Hs, Hd

8 Natural logarithm of DBH (cm), square of DBH (m), BAL, average BA at sample
plot, Hs, Hd

The outputs of the model were compared with the target values, and the differences
were calculated as suggested by earlier studies [43,44]. The process was continued until
network’s weights were optimized. The prediction capability and performance of the
developed ANN were determined using mathematical and statistical methods. In order
to assess the network performance and terminate the training, the MSE was utilized as a
measure of the accuracy of the ANN results. The Levenberg–Marquardt (LM) algorithm
depicted the best performance in fitting functions. Therefore, this LM algorithm was used
in this study.

2.3.2. Neuro-Fuzzy Inference System (ANFIS)

ANFIS was also used to predict diameter increment of individual trees. ANFIS
structure consists of five layers: input nodes, rule nodes, average nodes, consequent
nodes, and output nodes [45,46]. Each node has a function with an adjustable or fixed
component [46]. The proper structure of the ANFIS is selected according to the input
data, membership degree, the rules, and the membership functions of the input and
output. The input values could become closer to the actual ones, if the membership degree
components are adjusted during the training stage.

For our study, we used the same stratification method as was conducted for MLP
(Table 4) during modeling and testing stages. Just as with MLP (Table 4), the inputs
of ANFIS technique were determined by trial and error. ANFIS uses neural network
learning algorithms and fuzzy logic to design nonlinear mapping between input and
output space [22]. It also has the advantage of adaptation capability and rapid learning
capacity [47]. In addition, it can adjust the conversion of human intelligence to fuzzy
systems. The learning rule is based on the back-propagation algorithm with the aim
of minimizing the MSE between the network output and the actual output. There are
three types of systems included in the fuzzy inference system (FIS): Mamdani system,
Sugeno system, and Tsukamoto system. In most cases, Mamdani system is used; however,
the Sugeno system performs better than the former in computing and has a definite (crisp)
output [46]. Therefore, for our study, modeling was performed by ANFIS technique using
Sugeno system. The grid partitioning method was used to determine the degree and
type of desirable membership functions such as triangular-shaped, trapezoidal-shaped,
bell-shaped, Gaussian, pi-shaped, Gaussian 2, and sigmoid through trial and error. Further,
the hybrid algorithm, which is a combination of the back-propagation algorithm and the
least-squares error method, was used for training and adapting with the FIS.

2.3.3. Model Evaluation

Model evaluation is an important part of the modeling process and should be consid-
ered at different stages of modeling, including design, adjustment, and implementation.
The evaluation of the model consists of two main stages, which include verification (quali-
tative) and validation (quantitative) [48]. In this study, five criteria including coefficient of
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determination (R2) (Equation (3)), root mean square error (RMSE) (Equation (4)), Akaike in-
formation criterion (AIC) (Equation (5)), Bayesian information criterion (BIC) (Equation (6)),
and correlation coefficient (r) were used. The coefficient of determination (R2) is the pro-
portion of the variance in the dependent variable that can be explained by the independent
variables [49,50]. The root mean square error (RMSE) is the standard deviation of the
residuals, which is the difference between the surveyed data and the fitted model [51,52].

R2 =
(∑N

i=1 (Oi −O)(Pi − P))
2

∑N
i=1 (Oi −O)2∑N

i=1 (Pi − P)2 (3)

RMSE =
[

N−1∑N
i=1(Pi −Oi)

2
]0.5

(4)

Akaike [53] proposed the Akaike information criterion (AIC) to estimate the expected
Kullback–Leibler distance between the model generating the data and the fitted candidate
model. AIC can be expressed as:

AIC = N. ln(SSE) + 2npar (5)

In order to overcome the over-estimation problem of AIC, Schwarz [54] proposed the
Bayesian information criterion (BIC). BIC was derived using a Bayesian perspective, and it
selects the model with the maximum posterior probability for a given prior probability.
BIC can be expressed as:

BIC = N. ln(SSE) + npar ln(N) (6)

where O, p, O, P, N, npar, and SSE are observed values, estimated values, the average of
observed values, the average of estimated values, total number of observations, number of
inputs used in the model, and sum of the squared error (SSE), respectively. The best model
has the highest value of R2 and the lowest of three other criteria (RMSE, AIC, and BIC).

3. Results

For the development of the ANN and ANFIS models, all networks examined in the
MATLAB software environment (version 2016) were designed and implemented, and the
results were derived separately for the groups of beech, hornbeam, chestnut-leaved oak,
and other species. During the simulation process, the settings of the networks’ parameters
were selected for both techniques (ANN and ANFIS) based on the minimum MSE via a
trial-and-error procedure. The results indicated that for all groups of species in all data
sets, the training of the network is more successful and has a higher accuracy (R2 and
Pearson correlation coefficient (r)) than the network validation. In addition, the correlation
values of the two techniques (ANN and ANFIS) for all species groups in all data sets were
significant at a 0.01 level. The best combination of input variables was the same for both
techniques (Table 5).

Table 5. The best combination of variables in relation to each species group.

Species Group Input Variables

Beech Natural logarithm of DBH (cm), square of DBH (m), BAL,
the average of BA, Hd

Hornbeam Natural logarithm of DBH (cm), square of DBH (m), BAL
Chestnut-leaved oak Natural logarithm of DBH (cm), square of DBH (m), BAL, Hs

Other species Natural logarithm of DBH (cm), square of DBH (m), BAL, Hs

In the ANFIS technique, the k-fold strategy was used just as with the MLP. The results
of this technique are presented separately for the four groups. The optimal ANFIS models
were obtained by implementing a hybrid learning algorithm. The type and number of
membership functions (in the form of trial and error) were determined using MSE criteria.
The number of membership functions for all models was considered to be two, because
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the network was over-fitted with the increase in the number of membership functions.
Moreover, triangular membership function was obtained as the best membership function.
We used a linear transfer function in the output layer. The grid partitioning function
was used to create the network architecture and the FIS. The number of iterations for
optimization of the model was 100.

3.1. Beech Group

In the MLP model, data set D showed the best results in terms of the correlation
and coefficient of determination (R2). However, by comparing the four data sets in terms
of the three evaluation criteria of RMSE, AIC, and BIC, a different result is obtained,
so that the lowest RMSE of training and validation were seen in groups C and B, respec-
tively. Further, group C had the least value of AIC and BIC criteria and showed better
performance (Table 6).

Table 6. Evaluation criteria of MLP and ANFIS for beech species.

Data Set Type
MLP ANFIS

r R2 RMSE BIC AIC r R2 RMSE BIC AIC

A

Training 0.47 0.22 1.61 - - 0.52 0.27 1.58 - -

Validation 0.42 0.18 1.68 - - 0.35 0.12 1.71 - -

Total 0.44 0.20 1.64 19,345 19,278 0.48 0.23 1.62 19,217 19,189

B

Training 0.45 0.204 1.66 - - 0.54 0.29 1.51 - -

Validation 0.41 0.17 1.59 - - 0.35 0.12 1.84 - -

Total 0.45 0.204 1.64 19,332 19,265 0.49 0.24 1.6 19,150 19,122

C

Training 0.48 0.23 1.60 - - 0.53 0.28 1.58 - -

Validation 0.40 0.16 1.83 - - 0.40 0.16 1.62 - -

Total 0.47 0.22 1.63 19,331 19,234 0.50 0.25 1.59 19,136 19,108

D

Training 0.47 0.22 1.631 - - 0.51 0.26 1.57 - -

Validation 0.42 0.18 1.619 - - 0.41 0.17 1.7 - -

Total 0.46 0.21 1.632 19,309 19,242 0.49 0.24 1.6 19,191 19,163

Final model 0.48 0.23 1.613 19,256 19,189 0.51 0.26 1.57 19,117 19,089

In the ANFIS model, given the R2 of both validation and training, data set C provided
the best results. Moreover, by comparing four data sets in terms of the three evaluation
criteria of RMSE, AIC, and BIC, data set C had the lowest value and presented the best
result and performance (Table 6).

The error rates in the correlation and RMSE (MLP model) for the training and val-
idation (four data sets) from the beech species are presented in Figure 2. The results of
the models showed that for different data sets, correlation and RMSE values varied with
increasing number of nodes, so that by increasing the number of nodes, the correlation
value of the training of all data sets increases, while, for the validation data set, the trend is
approximately unchanged. This trend is also seen in the case of RMSE criteria. The low-
est correlation with two nodes and the highest correlation with 30 nodes were observed
(Figure 2). Finally, according to the evaluation criteria of training and validation, it can be
said that the best MLP network had 21 hidden nodes (i.e., a 5-21-1 structure).
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Figure 2. Changes rate of Pearson correlation coefficient and RMSE for training and validation data
(four data sets) of beech species.

3.2. Hornbeam Group

In the MLP model of the hornbeam group, data set B had the highest R2, data set A
and C had the lowest RMSE, and data set B had the lowest AIC and BIC. Therefore, data
set B generally gives the best result. In the ANFIS model, data set B had the highest R2,
and C had the lowest RMSE, AIC, and BIC. Thus, for the hornbeam species, data set B
generally provides the best outcome (Table 7).

The results of the MLP model for hornbeam species indicated that by increasing the
number of nodes, the error rates in the correlation of training and validation data were
incremental and decreasing, respectively. However, in the case of RMSE criteria, this trend
is reversed. The lowest correlation was observed with two nodes and the highest correlation
occurred with 29 nodes (Figure 3). According to the description provided, the best MLP
model for hornbeam species consists of 29 hidden nodes (i.e., a 5-29-1 structure).
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Table 7. Evaluation criteria of MLP and ANFIS for hornbeam species.

Data Set Type
MLP ANFIS

r R2 RMSE BIC AIC r R2 RMSE BIC AIC

A

Training 0.35 0.12 1.45 - - 0.32 0.10 1.57 - -

Validation 0.33 0.11 1.38 - - 0.3 0.09 1.38 - -

Total 0.35 0.12 1.42 27,474 27,426 0.32 0.10 1.52 27,871 27,853

B

Training 0.37 0.14 1.42 - - 0.35 0.12 1.57 - -

Validation 0.33 0.11 1.46 - - 0.3 0.09 1.46 - -

Total 0.36 0.13 1.43 27,468 27,419 0.33 0.11 1.54 27,948 27,930

C

Training 0.34 0.11 1.41 - - 0.3 0.09 1.51 - -

Validation 0.26 0.07 1.53 - - 0.26 0.07 1.51 - -

Total 0.32 0.10 1.42 27,473 27,424 0.28 0.08 1.51 27,814 27,796

D

Training 0.33 0.11 1.42 - - 0.33 0.11 1.58 - -

Validation 0.23 0.05 1.44 - - 0.28 0.08 1.43 - -

Total 0.32 0.10 1.44 27,521 27,473 0.32 0.10 1.54 27,941 27,923

Final model 0.36 0.13 1.42 27,465 27,407 0.32 0.10 1.49 27,762 27,740
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Figure 3. The changes rate of Pearson correlation coefficient and RMSE for training and validation
data (four data sets) of hornbeam species.
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3.3. Chestnut-Leaved Oak Group

In the MLP model of this species, the difference between correlation and RMSE of
training and validation is more than other studied species. The R2 of the training was
approximately twice the R2 of the validation data. In both MLP and ANFIS models, in terms
of correlation, RMSE, BIC, and AIC, it can be said that the data sets of A, B, B, and B provide
the best results, respectively. Additionally, data set B also had the best performance in both
models (Table 8).

Table 8. Evaluation criteria of MLP and ANFIS for chestnut-leaved oak species.

Data Set Type MLP ANFIS

r R2 RMSE BIC AIC r R2 RMSE BIC AIC

A
Training 0.65 0.42 1.58 - - 0.68 0.46 1.33 - -

Validation 0.34 0.12 2.24 - - 0.52 0.27 1.7 - -

Total 0.59 0.35 1.76 2413 2375 0.63 0.40 1.52 2264 2260

B
Training 0.60 0.36 1.63 - - 0.65 0.42 1.42 - -

Validation 0.29 0.08 1.56 - - 0.57 0.33 1.62 - -

Total 0.56 0.31 1.59 2345 2306 0.61 0.37 1.48 2259 2255

C
Training 0.29 0.08 1.93 - - 0.62 0.38 1.42 - -

Validation 0.31 0.10 1.82 - - 0.45 0.20 1.75 - -

Total 0.29 0.08 1.84 2442 2403 0.56 0.32 1.51 2275 2271

D
Training 0.51 0.26 1.65 - - 0.62 0.38 1.41 - -

Validation 0.18 0.03 2.23 - - 0.45 0.20 1.74 - -

Total 0.47 0.22 1.94 2479 2440 0.57 0.33 1.5 2254 2250

Final model 0.53 0.28 1.55 2328 2289 0.62 0.39 1.47 2251 2247

The results of the changes in correlation and RMSE of chestnut-leaved oak species
are slightly more complicated and do not show a tangible trend. It can only be said that
by increasing the number of nodes, the value of correlation for training and validation
data increases and decreases, respectively. The lowest correlation was observed with two
nodes and the highest correlation with 21 nodes (Figure 4). The best MLP network of
chestnut-leaved oak species has 21 hidden nodes (i.e., a 4-21-1 structure).
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Figure 4. The changes rate of Pearson correlation coefficient and RMSE for training and validation
data (four data sets) of chestnut-leaved oak species.

3.4. Other Species Group

In the MLP model of this group, the data set B had the highest R2 in training. For the
other three evaluation criteria (RMSE, AIC, and BIC), the best performance was for the
data set D. Finally, we can say that data set D provides the best performance because the
validation provides better R2 than the training (Table 9). In the ANFIS model, data set C
presented the best result in terms of all evaluation criteria (Table 9).

Table 9. Evaluation criteria of MLP and ANFIS for other species group.

Data
Set

Type MLP ANFIS

r R2 RMSE BIC AIC r R2 RMSE BIC AIC

A
Training 0.52 0.27 1.53 - - 0.50 0.25 1.52 - -

Validation 0.27 0.07 1.87 - - 0.33 0.11 1.64 - -

Total 0.50 0.25 1.55 6555 6536 0.46 0.21 1.54 6557 6538

B
Training 0.65 0.42 1.42 - - 0.53 0.28 1.43 - -

Validation 0.46 0.22 1.51 - - 0.32 0.10 1.85 - -

Total 0.63 0.40 1.48 6474 6455 0.47 0.22 1.54 6507 6488

C
Training 0.59 0.35 1.48 - - 0.54 0.29 1.57 - -

Validation 0.40 0.16 1.52 - - 0.35 0.12 1.49 - -

Total 0.56 0.31 1.48 6482 6463 0.5 0.25 1.51 6499 6480

D
Training 0.59 0.35 1.48 - - 0.53 0.28 1.49 - -

Validation 0.52 0.27 1.49 - - 0.37 0.14 1.64 - -

Total 0.58 0.34 1.48 6466 6466 0.48 0.23 1.53 6511 6492

Final model 0.57 0.32 1.44 6432 6413 0.49 0.24 1.5 6498 6479

The results of the MLP model for the other species group showed that by increasing
nodes (up to 25 nodes), the correlation showed an increasing trend. This means that by
increasing the nodes, the error rate of the model decreases. The lowest correlation was
found with one node (Figure 5). Therefore, the best MLP model of the other species group
consists of 25 hidden nodes (i.e., a 4-25-1 structure).
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Figure 5. The change rate of Pearson correlation coefficient and RMSE for training and validation
data (four data sets) of other species.

4. Discussion

Since the habitat conditions of the Hyrcanian forests change from west to east and
in elevation, it is very difficult to develop increment models. Therefore, identifying the
appropriate predictors (inputs of the model) on increment and incorporating them into
increment models is key to making predictions. For this purpose, the best input variables
in the diameter increment models of four groups of beech, hornbeam, chestnut-leaved oak,
and other species were identified using MLP (a class of feedforward ANN) and ANFIS
techniques. The results were then compared.

Our results indicated that in relation to each group of species, different parameters
could be significant, such as a previous study concluded [55,56]. For example, in relation to
beech species, factors such as DBH and natural logarithm of DBH, BAL, Hd, and average of
BA were significant. These variables are associated with hornbeam (DBH, natural logarithm
of DBH, and BAL) and chestnut-leaved oak, and other species (DBH and natural logarithm
of DBH, BAL, and Hs) showed a different pattern. The effectiveness of the two indices,
size diversity and species diversity of Shannon–Wiener, on the increment rate were consis-
tent with the results of Liang [57]. In the research for oak forests, an individual-tree model
was presented, and it was concluded that the indices affecting the diameter increment
include tree size, basal area, tree diameter, volume inventory, and site index [58]. The results
of Lhotka and Loewenstein [59] on the development of individual-tree diameter growth
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models for the Missouri forest stands in the United States showed that the BAL parameter
was effective for all species, while the patterns of remaining predictors were different for
other species. The results of Lhotka and Loewenstein [59] were in line with the findings of
the present study, except in one case. Unlike their findings, in our study the species compo-
sition (species diversity index) was not effective for all species groups. In general, the BAL
variable has been used as the most important competition variable in previous growth and
increment modeling studies (e.g., [60–64]). In this study, we incorporated all the measured
independent variables, i.e., DBH, BAL, HS, Hd, BA, number of trees per hectare, slope,
aspect, and altitude into the modeling process. However, only DBH, BAL, BA, HS, and Hd
were significant and considered in the final model. Other variables were removed from the
final model because they were insignificant in terms of correlation because the study area
was relatively consistent in some respects (e.g., slope). If a larger area is selected for study,
these variables may become meaningful [30,40]. However, variables of size diversity and
species diversity have not been closely evaluated, except for few studies (e.g., [1,57]). Given
the fact that the Hyrcanian forests have high biodiversity (species diversity) and high size
diversity [30], consideration of these two indices in new studies is most important.

Comparison of the MLP and ANFIS techniques showed that the latter performed
better for of the beech and chestnut-leaved oak groups. On the other hand, MLP showed
promising results for the hornbeam and other species groups. However, in the study of
Vieira et al. [18], no significant difference was observed for diameter growth estimation
between the ANFIS and ANN techniques. It seems that with increasing complexity of the
relationship, the ANN technique brings better results [65]. Beech and chestnut-leaved oak
clusters occupy more distinctive site conditions than the other two groups in the Hyrcanian
forests. For instance, the beech class is mainly situated in the northern side [6], while
the chestnut-leaved oak group is situated in the southern and southwestern directions.
The hornbeam group appeared in almost all sample plots (high distribution). Therefore,
the determination of its diameter increment was more challenging and complicated, and the
coefficient of determination (R2) of the model showed the lowest value compared to the
other tree groups. This means that the inputs of the model did not properly account for the
variation in the diameter increment. It is recommended that hybrid models be fitted for this
group. The low R2 values can be attributed to a large number of heterogeneous data used
in this study. However, the values were statistically significant and allowed for identifying
major growth driving factors. For future works, other factors (e.g., soil properties) from
a large-scale area might be incorporated into the models for measuring, and perhaps
improving, their performance.

Using the k-fold strategy in evaluation showed that different combinations of data give
different results. Therefore, the use of this strategy and the acquisition of the final model
of the four-folds (where, k = 4) average provides the most realistic result. We found this
strategy useful, as it has been considered promising in other recent studies (e.g., [26,61,63]).
The correlation coefficient of models, despite not having high values, were significant at
a 0.01 level. There could be several reasons for such a pattern of correlation coefficients.
One possibility could be the existence of trees with the same diameter and significant
differences in diameter increment values [66], which resulted from forest competition
and succession [67]. The second reason might be the autocorrelation of data used in
increment models due to both time and spatial components [26]. Although permanent
sample plots are the most popular method for estimating forest growth and yield and have
been used in numerous studies (e.g., [60–63]), they are not immune from the autocorrelation.
The autocorrelation created within the sample plots was greater than the autocorrelation
between the sample plots, because the sample plots are separated by more distance than
the trees within a sample plot [26].

Since previous studies carried out using ANNs and the ANFIS are different from
our study in terms of diverse aspects such as forest type (even-aged or uneven-aged) and
research goal (diameter increment, diameter growth, basal area growth survival, etc.),
comparisons between our results and those of most prior studies are not possible.
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5. Conclusions

The aim of this study was to provide insight into the utilization of two machine
learning methods (MLP and ANFIS) for developing a diameter increment model for the
Hyrcanian forests. The findings of this study would for the first time provide general
information on the number of optimal hidden neurons (in ANNs) and the type and number
of membership functions (in ANFIS) for diameter increment modeling.

RMSE and R2 of the MLP and ANFIS models were estimated for the four groups of
beech ((1.61 and 0.23) and (1.57 and 0.26)), hornbeam ((1.42 and 0.13) and (1.49 and 0.10)),
chestnut-leaved oak ((1.55 and 0.28) and (1.47 and 0.39)), and other species ((1.44 and 0.32)
and (1.5 and 0.24)), respectively. Despite the low coefficient of determination, the correla-
tion test in both techniques was significant at a 0.01 level for all four groups. In general,
the ANFIS worked better when the data from the oak and beech groups were used, proba-
bly because these groups represent the dense-covered areas with trees. On the other hand,
the ANN performed better with the hornbeam and other species groups that represent a
wide but less-covered area with trees. Our study also provides information on optimizing
and adjusting the parameters necessary for the application of machine learning in develop-
ing prediction models for the estimation of the diameter increment in the Hyrcanian forests.
We found that modeling techniques have a deep relationship with the nature of the tree
species. The results provide guidance for future studies in the same area (Hyrcanian forest)
or elsewhere in the diverse forests of the world.
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