22 research outputs found

    Set Constraint Model and Automated Encoding into SAT: Application to the Social Golfer Problem

    Get PDF
    On the one hand, Constraint Satisfaction Problems allow one to declaratively model problems. On the other hand, propositional satisfiability problem (SAT) solvers can handle huge SAT instances. We thus present a technique to declaratively model set constraint problems and to encode them automatically into SAT instances. We apply our technique to the Social Golfer Problem and we also use it to break symmetries of the problem. Our technique is simpler, more declarative, and less error-prone than direct and improved hand modeling. The SAT instances that we automatically generate contain less clauses than improved hand-written instances such as in [20], and with unit propagation they also contain less variables. Moreover, they are well-suited for SAT solvers and they are solved faster as shown when solving difficult instances of the Social Golfer Problem.Comment: Submitted to Annals of Operations researc

    Automated Design of Elevator Systems: Experimenting with Constraint-Based Approaches

    Get PDF
    System configuration and design is a well-established topic in AI. While many successful applications exists, there are still areas of manufacturing where AI techniques find little or no application. We focus on one such area, namely building and installation of elevator systems, for which we are developing an automated design and configuration tool. The questions that we address in this paper are: (i) What are the best ways to encode some subtasks of elevator design into constraint-based representations? (ii) What are the best tools available to solve the encodings? We contribute an empirical analysis to address these questions in our domain of interest, as well as the complete set of benchmarks to foster further researc

    A lower bound on CNF encodings of the at-most-one constraint

    Full text link
    Constraint "at most one" is a basic cardinality constraint which requires that at most one of its nn boolean inputs is set to 11. This constraint is widely used when translating a problem into a conjunctive normal form (CNF) and we investigate its CNF encodings suitable for this purpose. An encoding differs from a CNF representation of a function in that it can use auxiliary variables. We are especially interested in propagation complete encodings which have the property that unit propagation is strong enough to enforce consistency on input variables. We show a lower bound on the number of clauses in any propagation complete encoding of the "at most one" constraint. The lower bound almost matches the size of the best known encodings. We also study an important case of 2-CNF encodings where we show a slightly better lower bound. The lower bound holds also for a related "exactly one" constraint.Comment: 38 pages, version 3 is significantly reorganized in order to improve readabilit

    Effective encodings of constraint programming models to SMT

    Get PDF
    Funding: UK EPSRC grant EP/P015638/1.Satisfiability Modulo Theories (SMT) is a well-established methodology that generalises propositional satisfiability (SAT) by adding support for a variety of theories such as integer arithmetic and bit-vector operations. SMT solvers have made rapid progress in recent years. In part, the efficiency of modern SMT solvers derives from the use of specialised decision procedures for each theory. In this paper we explore how the Essence Prime constraint modelling language can be translated to the standard SMT-LIB language. We target four theories: bit-vectors (QF_BV), linear integer arithmetic (QF_LIA), non-linear integer arithmetic (QF_NIA), and integer difference logic (QF_IDL). The encodings are implemented in the constraint modelling tool Savile Row. In an extensive set of experiments, we compare our encodings for the four theories, showing some notable differences and complementary strengths. We also compare our new encodings to the existing work targeting SMT and SAT, and to a well-established learning CP solver. Our two proposed encodings targeting the theory of bit-vectors (QF_BV) both substantially outperform earlier work on encoding to QF_BV on a large and diverse set of problem classes.Postprin

    Effective Encodings of Constraint Programming Models to SMT

    Get PDF
    Satisfiability Modulo Theories (SMT) is a well-established methodology that generalises propositional satisfiability (SAT) by adding support for a variety of theories such as integer arithmetic and bit-vector operations. SMT solvers have made rapid progress in recent years. In part, the efficiency of modern SMT solvers derives from the use of specialised decision procedures for each theory. In this paper we explore how the Essence Prime constraint modelling language can be translated to the standard SMT-LIB language. We target four theories: bit-vectors (QF_BV), linear integer arithmetic (QF_LIA), non-linear integer arithmetic (QF_NIA), and integer difference logic (QF_IDL). The encodings are implemented in the constraint modelling tool Savile Row. In an extensive set of experiments, we compare our encodings for the four theories, showing some notable differences and complementary strengths. We also compare our new encodings to the existing work targeting SMT and SAT, and to a well-established learning CP solver. Our two proposed encodings targeting the theory of bit-vectors (QF_BV) both substantially outperform earlier work on encoding to QF_BV on a large and diverse set of problem classes

    The power of propagation:when GAC is enough

    Get PDF
    Considerable effort in constraint programming has focused on the development of efficient propagators for individual constraints. In this paper, we consider the combined power of such propagators when applied to collections of more than one constraint. In particular we identify classes of constraint problems where such propagators can decide the existence of a solution on their own, without the need for any additional search. Sporadic examples of such classes have previously been identified, including classes based on restricting the structure of the problem, restricting the constraint types, and some hybrid examples. However, there has previously been no unifying approach which characterises all of these classes: structural, language-based and hybrid. In this paper we develop such a unifying approach and embed all the known classes into a common framework. We then use this framework to identify a further class of problems that can be solved by propagation alone

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201
    corecore