Constraint "at most one" is a basic cardinality constraint which requires
that at most one of its n boolean inputs is set to 1. This constraint is
widely used when translating a problem into a conjunctive normal form (CNF) and
we investigate its CNF encodings suitable for this purpose. An encoding differs
from a CNF representation of a function in that it can use auxiliary variables.
We are especially interested in propagation complete encodings which have the
property that unit propagation is strong enough to enforce consistency on input
variables. We show a lower bound on the number of clauses in any propagation
complete encoding of the "at most one" constraint. The lower bound almost
matches the size of the best known encodings. We also study an important case
of 2-CNF encodings where we show a slightly better lower bound. The lower bound
holds also for a related "exactly one" constraint.Comment: 38 pages, version 3 is significantly reorganized in order to improve
readabilit