16,061 research outputs found

    Parameters Identification for a Composite Piezoelectric Actuator Dynamics

    Get PDF
    This work presents an approach for identifying the model of a composite piezoelectric (PZT) bimorph actuator dynamics, with the objective of creating a robust model that can be used under various operating conditions. This actuator exhibits nonlinear behavior that can be described using backlash and hysteresis. A linear dynamic model with a damping matrix that incorporates the Bouc–Wen hysteresis model and the backlash operators is developed. This work proposes identifying the actuator’s model parameters using the hybrid master-slave genetic algorithm neural network (HGANN). In this algorithm, the neural network exploits the ability of the genetic algorithm to search globally to optimize its structure, weights, biases and transfer functions to perform time series analysis efficiently. A total of nine datasets (cases) representing three different voltage amplitudes excited at three different frequencies are used to train and validate the model. Four cases are considered for training the NN architecture, connection weights, bias weights and learning rules. The remaining five cases are used to validate the model, which produced results that closely match the experimental ones. The analysis shows that damping parameters are inversely proportional to the excitation frequency. This indicates that the suggested hysteresis model is too general for the PZT model in this work. It also suggests that backlash appears only when dynamic forces become dominant

    Penguasaan kemahiran generik di kalangan graduan hospitaliti di politeknik : satu kajian berkenaan keperluan industri perhotelan, persepsi pensyarah dan pelajar

    Get PDF
    Kajian yang dijalankan ini bertujuan untuk mengenal pasti kepentingan kemahiran generik mengikut keperluan industri perhotelan di Malaysia dengan persepsi pensyarah dan persepsi pelajar Jabatan Hospitaliti. Oleh kerana matlamat kurikulum pendidikan kini adalah untuk melahirkan graduan yang dapat memenuhi keperluan pihak industri, maka kajian ini dijalankan untuk menilai hubungan di antara keperluan industri perhotelan di Malaysia dengan persepsi pensyarah dan pelajar Jabatan Hospitaliti di Politeknik. Terdapat 13 kemahiran generik yang diperolehi daripada Kementerian Pelajaran dan Latihan Ontario (1997) dijadikan sebagai skop kepada instrumen kajian. Responden kajian terdiri daripada tiga pihak utama iaitu industri perhotelan di Malaysia yang melibatkan 40 buah hotel yang diwakili oleh MAH Chapter dan jawatankuasa dalam Malaysian Associated of Hotel (MAH), pensyarah Unit Hotel dan Katering dan pelajar semester akhir Diploma Hotel dan Katering di Politeknik Johor Bahru, Johor dan Politeknik Merlimau, Melaka. Kajian rintis yang dijalankan menunjukkan nilai Alpha Cronbach pada 0.8781. Data yang diperolehi dianalisis secara deskriptif dan inferensi dengan menggunakan perisian Statistical Package for Social Science (SPSS) versi 11.5. Melalui dapatan kajian, satu senarai berkenaan kemahiran generik yang diperlukan oleh industri perhotelan telah dapat dihasilkan. Selain itu, senarai kemahiran generik menurut persepsi pensyarah dan juga persepsi pelajar turut dihasilkan. Hasil statistik dan graf garis yang diperolehi menunjukkan terdapat perbezaan di antara kemahiran generik yang diperlukan oleh industri perhotelan di Malaysia dengan kemahiran generik menurut persepsi pensyarah dan persepsi pelajar Politeknik. Dapatan analisis menggunakan korelasi Pearson mendapati bahawa tidak terdapat perhubungan yang signifikan di antara kemahiran generik yang diperlukan oleh industri perhotelan dengan persepsi pensyarah dan persepsi pelajar. Namun begitu, terdapat hubungan yang signifikan di antara persepsi pensyarah dengan persepsi pelajar berkenaan dengan amalan kemahiran generik di Politeknik

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Chemical and biological reactions of solidification of peat using ordinary portland cement (OPC) and coal ashes

    Get PDF
    Construction over peat area have often posed a challenge to geotechnical engineers. After decades of study on peat stabilisation techniques, there are still no absolute formulation or guideline that have been established to handle this issue. Some researchers have proposed solidification of peat but a few researchers have also discovered that solidified peat seemed to decrease its strength after a certain period of time. Therefore, understanding the chemical and biological reaction behind the peat solidification is vital to understand the limitation of this treatment technique. In this study, all three types of peat; fabric, hemic and sapric were mixed using Mixing 1 and Mixing 2 formulation which consisted of ordinary Portland cement, fly ash and bottom ash at various ratio. The mixtures of peat-binder-filler were subjected to the unconfined compressive strength (UCS) test, bacterial count test and chemical elemental analysis by using XRF, XRD, FTIR and EDS. Two pattern of strength over curing period were observed. Mixing 1 samples showed a steadily increase in strength over curing period until Day 56 while Mixing 2 showed a decrease in strength pattern at Day 28 and Day 56. Samples which increase in strength steadily have less bacterial count and enzymatic activity with increase quantity of crystallites. Samples with lower strength recorded increase in bacterial count and enzymatic activity with less crystallites. Analysis using XRD showed that pargasite (NaCa2[Mg4Al](Si6Al2)O22(OH)2) was formed in the higher strength samples while in the lower strength samples, pargasite was predicted to be converted into monosodium phosphate and Mg(OH)2 as bacterial consortium was re-activated. The Michaelis�Menten coefficient, Km of the bio-chemical reaction in solidified peat was calculated as 303.60. This showed that reaction which happened during solidification work was inefficient. The kinetics for crystallite formation with enzymatic effect is modelled as 135.42 (1/[S] + 0.44605) which means, when pargasite formed is lower, the amount of enzyme secretes is higher

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    corecore